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Abstract

We describe a methodology and a tool for performing scalablebit-precise static analysis. The
tool combines the scalable static analysis enginePREfix [14] and the bit-precise efficient SMT solver
Z3 [20]. Since 1999,PREfix has been used at Microsoft to analyze C/C++ production code. It relies
on an efficient custom constraint solver, but addresses bit-level semantics only partially. On the
other hand, the Satisfiability Modulo Theories solverZ3, developed at Microsoft Research, supports
precise machine-level semantics for integer arithmetic operations.

The integration ofPREfix with Z3 allows uncovering software bugs that could not previously
be identified. Of particular importance are integer overflows. These typically arise when the pro-
grammer wrongly assumes mathematical integer semantics, and they are notorious causes of buffer
overflow vulnerabilities in C/C++ programs.

We performed an experimental evaluation of our integrationby running the modified version of
PREfix on a large legacy code base for the next version of a Microsoft product. The experiments
resulted in a number of bugs filed and fixed related to integer overflows. We also describe how we
developed useful filters for avoiding false positives basedon the comprehensive evaluation.

1 Introduction

Integer overflows have received heightened attention recently due to the increasing number of reports
of security vulnerabilities where they can be exploited. The main problem with integer overflows is that
they can manifest in subtle ways in any program that manipulates integers, which is to say every program
at all. Figure 1 presents commonly found implementations inC of well-known algorithms for searching
in a sorted array and converting an integer to ASCII. Both functions are in fact vulnerable to integer

int binary_search(
int* arr, int low, int high, int key)

{
while (low <= high)
{

// Find middle value
int mid = (low + high) / 2;
int val = arr[mid];
// Refine range
...

}

void itoa(int n, char* buf)
{

// Handle negative
if (n < 0)
{

*buf++ = ’-’;
n = -n;

}
// Output digits
...

}

Figure 1: Some classical programs suffering from integer overflows

overflows: in the case of functionbinary_search applied tolow andhigh both equal toINT MAX+1
2

(0x40000000), the computationlow + high will evaluate toINT_MIN instead ofINT MAX+1
2

; in the

* Work performed while at Microsoft Research
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uint rest(
uint sz, uint done)

{
return sz - done;

}

void alloc(
uint pos)

{
int sz = f();
if (pos < sz) ...

}

Figure 2: Integer overflows: arithmetic and cast

case of functionitoa applied ton equal toINT_MIN (0x80000000), the negation-n will evaluate to
INT_MIN instead ofINT_MAX+1. Despite the publicity given to the case of binary search [8], many
such programs remain vulnerable to integer overflows. The case ofitoa is compelling: the first edition
of The C Programming Languagein 1978 [34] contained the integer oveflow problem just mentioned;
the problem was noted in the second edition in 1988 (and its solution left in exercise), but many currently
available implementations, such as the one from projectitoa onsourceforge.net, still suffer from the same
problem.

1.1 Integer Overflows in Practice

Some dynamically typed languages like LISP, Python and JavaScript prevent integer overflows by using
bignumsas the default integer representation. Efficient implementations of bignums use machine integers
for small numbers and switch to general, and more expensive,representations when the operations on
machine integers overflow. Most languages, however, do not support this default semantics and common
programs will be exposed to integer overflows when working with machine integers. Integer overflows
occur when the result of an arithmetic operation on machine integers is different from the mathematical
result of the operation. In C/C++, this problem is exacerbated by the incredible number of machine
integer types (6 on 32-bits machines, 8 on 64-bits machines), which can be freely mixed in operations
and converted one to another, with subtle rules that can trick even experts (e.g., see conclusion in [40]).

As a result, machine integer semantics are often overlookedby programmers who wrongly assume
mathematical integers semantics for values that are outside of the range where the two semantics co-
incide. Bugs related to integer overflows are of two kinds, according to the operation that leads to the
overflow: arithmetic and cast. Figure 2 shows an example of code for each kind. Functionrest may
be called withsz < done, in which case the result of the subtraction is a large positive integer. Func-
tion alloc can end up executing thethen branch ifsz is negative, due to the implicit cast ofsz to
unsigned integer performed in the testpos < sz.

One difficulty in finding integer overflow bugs stems from the fact that integer overflows are perfectly
legal in C/C++. While the C and C++ standards [30, 31] distinguish cases in which integer overflows
follow a modulo semantics (e.g., arithmetic on unsigned integers) from cases where integeroverflows
trigger undefined behavior (e.g., arithmetic on signed integers), most architectures give amodulo seman-
tics to all integer overflows. Many programs rely on such behavior. Therefore it is not possible to discard
integer overflows when analyzing these programs. From our experience at looking for integer overflow
bugs in Microsoft code base, there are three main cases whereinteger overflows are intended. Figure 3
shows an example of each.

• Overflow is intentional. Typically, this is almost always the case when the programmer has inserted
an explicit cast in the code.E.g., this is the case in functionhtons, where the higher bits ofx
should be ignored.
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uint16 htons(
uint16 a)

{
uint x = a << 8;
uint y = a >> 8;
return (uint16)(x | y);

}

uint i = 0;
while (i < max) {

if (sel(vect[i])) {
vect.remove(i);
--i;

}
++i;

}

uint safe_uadd(
uint a, uint b)

{
uint r = a + b;
if (r < a) error();
return r;

}

Figure 3: Expected integer overflows: intentional, reversed and checked

• Overflow is reverseda posteriori. This is usually associated to increments or decrements per-
formed in a loop.E.g., when an element is removed from vectorvect, indexi is decremented
to compensate for the increment at the end of the loop. If the element at index0 is removed, then
unsigned integeri overflows toUINT_MAX, but the subsequent increment reverses the overflow.

• Overflow is checkeda posteriori. This is either done in dedicated functions that perform safe
operations, likesafe_uadd, or inlined where required. In the case ofsafe_uadd, the test
r < a indeed filters all cases where an overflow occurs in the operation a + b.

So, we are interested in finding bugs related to integer overflows in large code bases written in C/C++.
Among these, we are mostly interested in finding those bugs that can lead to a buffer overflow that an
attacker could exploit to craft an elevation of privilege (EoP) attack, or a denial of service (DoS) attack.
Ultimately, like in most bug-finders, our tool depends on a human reviewer to decide the inocuity or
severity of the integer overflows reported. This is all the more the case with integer overflows due to the
subtlety of the associated bugs.

Our constraints are thus the following: (1) there are no manual annotations for integer overflows in
the code, (2) the analysis should assume overflowing semantics for operations on integers and (3) the
user should be presented with high-risk security bugs with few false positives.

1.2 Related Work

Bit-precise static analysis originates in hardware model checking, where the bit is the natural unit of
information. Work around tools like SMV [13] prompted the research for efficient solvers based on
BDDs or SAT techniques. Software model checkers like CBMC [16], SatAbs [17], F-Soft [32] build on
efficient SAT solvers to analyze operations on machine integer as Boolean circuits. However, the state
explosion problem limits those tools to bounded model checking, where integers are imprecisely modeled
using only a few bits. Tools for automatic software testing like SAGE [25] manage to accurately model
machine integers as bit-vectors by giving up on (bounded) completeness. All these tools have been
reported to find bugs in real C/C++ programs, most of them related to buffer overflows. Bug-finders
like PolySpace [43] and Coverity [35] target integer overflow bugs too, based on abstract interpretation,
symbolic simulation and SMT solvers.

Interestingly, none of these tools has publicly reported integer overflow bugs, which sustains our
claim that these bugs are more subtle than many others. So far, the best attempt at preventing these
bugs has been the creation of safe libraries for integer arithmetic operations and casts, like SafeInt [39],
intsafe [29] and the CERT Secure integer library [15]. One should keep in mind that it is sometimes
subtle to prevent integer overflows, even with these libraries. The best example of this is the allocation
of memory throughnew in C++. Figure 4 presents a C++ program which is guaranteed tocause a
buffer overflow (with 32-bits integers), despite the testarr == NULL that filters failed allocations.
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void main()
{

uint siz = 0x40000000;
int *arr = new int[siz];
if (arr == NULL) return;
for (int j = 0; j < siz; ++j) {

arr[j] = 0;
}

}

...
uint siz = 0x40000000;
uint safeint_check =

siz * SafeInt<uint>(sizeof(int));
uint intsafe_check;
if (FAILED(UIntMult(siz, sizeof(int),

&intsafe_check))) ...;
uint cert_check =

multui(siz, sizeof(int));
int *arr = new int[siz];
...

Figure 4: Tricky prevention of integer overflows withnew in C++

This is because heresizeof(int) * siz evaluates to 0! Therefore the allocation returns a pointer
to an array of 0 elements. The current version of Microsoft’sVisual Studio C++ compiler automatically
generates defensive code to detect such integer overflows, but it is not the case for all compilers. It is up
to the programmer to check that the multiplication will not overflow, possibly by calling a function of
the safe library, like shown in Figure 4, where an integer overflow would raise an exception during the
computation ofsafeint_check,intsafe_check or cert_check.

Recently, a flurry of interest for bit-vector solving has been exhibited in the context of SMT solvers.
Some of these are Beaver [9], Boolector [10], Mathsat [11], Spear [1], STP [24], Sword [47] andZ3 [20].
The solvers are compared in anual competitions (http://www.smtcomp.org) among SMT solvers.
The bit-vector division has received strong attention thanks to the number and quality of solvers that
enter.

High integrity software development is especially concerned with integer overflows after an integer
overflow run-time error (in Ada) led to the loss of Ariane 5 in 1994. The SPARK approach [3] pro-
vides a methodology, a safer language (a subset of Ada), an annotation language and automatic/manual
provers to guarantee the absence of run-time errors, including integer overflows. This requires a sub-
stantial involvement of the programmer from the design to the coding/proving phase. The application of
SMT solvers Yices [23], CVC3 [5] and theorem prover Simplify[22] in the context of SPARK [33] has
shown some limitations of the encoding of machine integers as mathematical integers: despite a suitable
axiomatization, non-linear arithmetic, division and modulo remain problematic.

Righting software [37] deals with the task of improving the quality of existing mainstream industrial
software. The greatest industrial success of this approachto date is the application of the static analysis
tools PREfix and ESP to detect buffer overflows in Microsoft code base [28].

1.3 Paper Outline

Section 2 introduces some of the notation and conventions that will be used. It is followed with an
overview of the toolsPREfix and Z3 in Section 3. Section 3.2.2 provides some background on thebit-
vector decision procedures in the context ofZ3. The work to integrate the two systems is presented in
Section 4. In Section 5, we describe how we encoded the absence of integer overflows as propositions
in the theory of bit-vectors so that they can be handled efficiently by Z3. In Section 6, we discuss our
treatment of security bugs, false positives and ranking of warnings, that make our tool effective at finding
bugs in this particular code base. We report the results of our experiments on the code base in Section 7,
in particular the kind of bugs uncovered by our tool so far. Weconclude in Section 8 with an examination
of the possibilities for improvement.
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2 Bit-fiddling Preliminaries

In the following, uncapitalized letters likex stand for bit-vectors while Capitalized Letters likeN stand
for constant sizes. Unless said otherwise,N is used for arbitrary, but fixed, sized bit-vectors. The zero
and one bits are called 0 and 1 respectively. Superscripts likeN in 0N stand for repetition of bits in a
bit-vector. We omit the superscript if it is 1. Thus, a singlebit can also be used as a bit-vector of length 1.
Concatenation of bit-vectors is denoted⊕, which has higher precedence than any other operator. We
represent bit-vectors with the most significant bit first, sothat integer 1 is represented byN -bits bit-
vector0N−1⊕1. We use brackets to extract single bits, like inx[0]. The result is a single bit. Sub-ranges
are extracted using two indices, like inx[1 ∶ 0]. Finally, we distinguish equality of bit-vectors≃ from
usual equality.E.g., we always havex ≃ x[N − 1 ∶ 0] andx[1 ∶ 0] ≃ x[1] ⊕ x[0].

The standard arithmetic operations are available in two forms on bit-vectors, signed and unsigned.
We use subscripts to distinguish the two forms. For example,≤s is signed less-than comparison and≤u is
unsigned less-than comparison. For≤ and other comparison operations, this simply reflects the fact that
signed and unsigned comparisons do not have the same semantics. E.g., the bit-vectors that represent
zero andINT_MIN are ordered differently when interpreting them as unsignedor signed integers:0N <u
1⊕ 0N−1 but1⊕ 0N−1 <s 0N . We extend this notation to these arithmetic operations that have the same
semantics on signed and unsigned integers: addition+, subtraction− and multiplication×. Indeed,
the resulting bit-vector is the same, only the interpretation of this bit-vector as an integer changes. For
example, distinguishing subtraction on unsigned integers−u from subtraction on signed integers−s helps
us expressing non-overflowing propositions, which depend on the signedness of the subtraction.E.g., for
N > 1, there is an overflow in the expression0N −u 0N−1 ⊕ 1, but not in the expression0N −s 0N−1 ⊕ 1.
When simply evaluating the result of a bit-vector arithmetic operation, where this distinction is useless,
we will omit the subscript.

We use the special equality symbol≐ to denote a definition, andite(x, y, z) to denote a conditional
expression. Wheny andz are Booleans, it is equivalent to(x ∧ y) ∨ (¬x ∧ z).

Although it is not prescribed by the C and C++ standards [30, 31], we assume machine integers are
encoded in 2-complement notation. (Otherwise, there is notmuch more to say.)

3 PREfix and Z3

3.1 ThePREfix Static Analysis Engine

PREfix [14] is a bug-finding tool based on symbolic simulation, initially developed at Intrinsa between
1994 and 1999, and at Microsoft since 1999. Since 2000, running PREfix analysis on the Microsoft
codebase, as well as on many other Microsoft products, has been a requirement for every new release.
During development of the new version of the product codebase we analyzed, PREfix reported over 2500
bugs, of which 72% have been fixed. The remaining 28% are falsepositives, dead code or innocuous
bugs.

The architecture ofPREfix is that of a static analysis engine, allowing to quickly add new checking
capabilities. It traverses the call-graph bottom-up, analyzing one function at a time. The result of this
analysis is a set ofoutcomesfor each function (a.k.a. amodel), that comprise each a set ofguards,
constraintsandresults[14]. In the terminology of a specification language like JML[38], Spec# [4] or
ACSL [6], PREfix generates behaviors for each function, whereguardsare assumes clauses,constraints
are requires clauses andresultsare ensures clauses. Or equivalently, the formulaguards⇒constraints
is part of the function precondition, and the formulaold(guards)∧ b⇒results is part of the function
postcondition, whereb is a fresh Boolean variable expressing the fact that some path through the function
(but not all) satisfying toguardsleads toresults.
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As expected,PREfix only analyzes a subset of the paths through a function, andit models aliasing
with unsound heuristics. For each path it analyzes,PREfix maintains three sets of propositions.

• The set ofguardscollects the tests from if-statements and loops, as well as the guards from the
selected outcomes of the functions called.

• The set ofconstraintscollects checks which are not known to betrue or false.

• The set offactsincludes the set of guards, together with the equalities implied by assignments.

As it unrolls a path,PREfix creates an SSA equivalent path, whose variables are used in the propositions
just mentioned.

At every branching in the function, be it caused by a test or a call, the simulation engine queries
the solver to know if the test or the guard (corresponding to an outcome of the function called) is valid
(always true), unsatisfiable (always false) or none of these(because both branches are feasible). The
solver’s three-valued logic answer can betrue, meaning the query is valid,false, meaning the query is
unsatisfiable ordon’t knowif the query is provably neither valid or unsatisfiable, or ifthe solver could not
determine the correct answer. The simulation engine uses this information to avoid analyzing unfeasible
paths.

All safety properties targeted byPREfix are encoded as assertions in the code (possibly involving
instrumentation variables) whose violations are considered as bugs. For each one of thesechecks, the
simulation engine also queries the solver, with the same three-valued logic answer.

• The answer istrue: the check is valid on this path.

• The answer isfalse: the check is invalid on this path.PREfix issues a corresponding warning.

• The answer isdon’t know: PREfix adds the check to the set of constraints for this path.

At the end of a path, the sets ofguards, constraintsandfactsare mapped, if possible, to values reachable
from the parameters, return value and global variables, andbecome theguards, constraintsandresults
of a new outcome for the function.

Figure 5 shows an example of path selected byPREfix, consisting in the lines 3, 6, 7, 8 and 11 in
functionget_name. We illustrate now howPREfix analyzes this path, although this simplification does
not do justice to the more complex and efficient actual analysis. At line 3, propositionsinit(buf0)
andinit(size0) are added to the set of facts, to denote that parameters are necessarily initialized.
At line 6, propositionsinit(status0) andstatus0 == 0 are added to the set of facts. At line 7,
assuming outcome initname0 is chosen here, the solver cannot determine whethersize0 == 0 is
valid or unsatisfiable. Therefore the corresponding proposition is added to the set of guards and result
init(status1) andstatus1 == 0 are added to the set of facts. The solver determines that test
! status1 >= 0 at line 8 is false on this path, therefore the simulation engine proceeds with the
(empty) else-branch. At line 11, upon reading the value of variable name, PREfix issues a query for
checkinit(name0), which the solver is able to determine is false. So the simulation engine issues a
warning that functionget_name is using uninitialized memoryname on the path analyzed.

A very carefully crafted part ofPREfix is the ranking of warnings that allows discarding false posi-
tives. PREfix keeps metrics on each warning issued, so that these metrics can be used later on to compute
a score. This way, a user needs only look at the warnings of lowest score, which should be of higher
quality, i.e., with fewer false positives.

Overall,PREfix static analysis engine is both modular and interprocedural, thanks to its syntax-driven
splitting of paths.
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1 NTSTATUS init_name(char **outname, uint n);
2

3 NTSTATUS get_name(char* buf, uint size)
4 {
5 char* name;
6 NTSTATUS status = STATUS_SUCCESS;
7 status = init_name(&name, size);
8 if (! NT_SUCCESS(status)) {
9 goto error;

10 }
11 strcpy(buf, name);
12 error:
13 return status;
14 }

model for functioninit name

outcome initname0:
guards:n == 0
results:result == 0

outcome initname1:
guards:n > 0; n <= 65535
results:result == 0xC0000095

outcome initname2:
guards:n > 0; n <= 65535
constraints: valid(outname)
results:result == 0; init(*outname)

Figure 5: Path selection inPREfix

3.2 The SMT SolverZ3

Z3 [20] is a state-of-the-art Satisfiability Modulo Theories(SMT) solver. An SMT solver is a theorem
prover that can establish theorems for formulas that combine one or moretheories, where a theory is
given by a sets of sorts, functions over those sorts and axioms about these functions. One such theory
is the theory of bit-vectors; other theories commonly foundin SMT solvers are the theories of real
arithmetic and linear integer arithmetic, the theory of arrays à la McCarthy [41], and the theory of tuples
and algebraic datatypes [44]. All of these theories are decidable in the quantifier-free case, that is, there
are special purpose algorithms, also known as decision procedures, that decide satisfiability of constraints
over each of the theories. To decide the validity of a formula, one typically shows the unsatisfiability
of the negated formula. Formulas are free to mix functions defined from one of the respective theories;
decidability is preserved.Z3 integrates a modern DPLL-based SAT solver, a core theory solver that
handles ground equalities over uninterpreted functions, and satellite solversfor the theories. PREfix
requires almost exclusively the theory of bit-vectors. We currently encode constraints over floating points
using a rough approximation with arithmetic over reals.

Currently,Z3 is used in several projects related to Microsoft Research,including Spec#/Boogie [4,
21], Pex [45], HAVOC [36], Vigilante [18], a verifying C compiler (VCC), SLAM/SDV [2], SAGE [42],
and Yogi [27].

3.2.1 Interfacing with Z3

Users interface withZ3 using one of the available APIs.Z3 supports three different text formats and
exposes programmatic APIs for C, OCaml, and .NET. Our integration withPREfix uses the C-based API.
The main functionality exposed by the programmatic APIs is to build expressions, assert expressions of
Boolean type, and check for consistency of the asserted expressions. It is also possible topushandpop
local scope such that assertions inside apushcan be retracted after a matchingpop. A sample C program
using the API is shown in Figure 6. It checks that botha ≤u a × b and¬(a ≤u a × b) are satisfiable.

3.2.2 Bit-precise Reasoning inZ3

The implementation of bit-level reasoning in the current version of Z3 uses a preprocessor based on
rewriting rules followed by an eager reduction of bit-levelconstraints into propositional constraints.
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Z3_sort* bv32 = Z3_mk_bv_sort(ctx, 32);
Z3_symbol a_s = Z3_mk_string_symbol(ctx, "a");
Z3_ast* a = Z3_mk_const(ctx, a_s, bv32);
Z3_symbol b_s = Z3_mk_string_symbol(ctx, "b");
Z3_ast* b = Z3_mk_const(ctx, b_s, bv32);
Z3_ast* ab = Z3_mk_bvmul(ctx, a, b);
Z3_ast* e = Z3_mk_bvule(ctx, a, ab);
Z3_push(ctx);
Z3_assert_cnstr(ctx, e);
Z3_lbool result1 = Z3_check(ctx);
Z3_pop(ctx, 1);
Z3_push(ctx);
Z3_ast* ne = Z3_mk_not(ctx, e);
Z3_assert_cnstr(ctx, ne);
Z3_lbool result2 = Z3_check(ctx);
Z3_pop(ctx, 1);

// create the sort bv32
// create the name ’a’
// create a 32-bit constant ’a’
// create the name ’b’
// create a 32-bit constant ’b’
// create a * b
// create e := a <= a * b
// push a scope
// assert e
// ’e’ is sat, result1 = Z3_true
// pop one scope level
// push a scope
// create ne := !(a <= a * b)
// assert ne
// ’ne’ is sat, result2 = Z3_true
// pop one scope level

Figure 6: SampleZ3 API usage

Figure 7: A circuit for multiplying two 4-bit vectors

This reduction is calledbit-blasting. The propositional constraints are then handled by the SAT solver
component. We illustrate the encoding of bit-level multiplication for two vectors of length4 in Figure 7.

Each gate represents one or more propositional connectives. Z3 associates with each gate in the
multiplication circuit one or more propositional subformulas. For example, the expressiona[3 ∶ 0]×b[3 ∶
0] is represented by four bit-level expressions we will callz0,0, z1,1, z2,2, z3,3, where:

z0,0 ≐ a[0] ∧ b[0] z1,1, u1,1 ≐ ha(a[0] ∧ b[1], a[1] ∧ b[0])
z2,1, u2,1 ≐ ha(a[0] ∧ b[2], a[1] ∧ b[1])
z2,2, u2,2 ≐ fa(u1,1, z2,1, a[2] ∧ b[0])

z3,1, u3,1 ≐ ha(a[0] ∧ b[3], a[1] ∧ b[2])
z3,2, u3,2 ≐ fa(u2,1, z3,1, a[2] ∧ b[1])
z3,3, u3,3 ≐ fa(u2,2, z3,2, a[3] ∧ b[0])

andz,u ≐ ha(x, y) ≐ (x⊗ y,x ∧ y) assigns toz,u the result of a half-adder, andz,u ≐ fa(x, y,w) ≐
8



Integer Overflows Moy, Bjørner, Sielaff

(x⊗ y⊗w, (x∧ y)∨ (x∧w)∨ (y ∧w)) assigns toz,u the result of a full-adder. In Figure 7,z variables
are represented by vertical results andu variables by oblique carries.

If a × b is used in an atom of the forma ≤u a × b, then the atom is equivalent to the formula:

(z3,3 ∧ ¬a[3]) ∨ ((z3,3 ∨ ¬a[3]) ∧ ((z2,2 ∧ ¬a[2]) ∨ ((z2,2 ∨ ¬a[2]) ∧
((z1,1 ∧ ¬a[1]) ∨ ((z1,1 ∨ ¬a[1]) ∧ (z0,0 ∨ ¬a[0])))))) (1)

wherez0,0, z1,1, z2,2, andz3,3 are shorthands for the formulas defined using the gates.
Propositional formulas are finally clausified using a Tseitsin [46] style conversion algorithm. The al-

gorithm replaces nested Boolean connectives by fresh propositional atoms and adds clauses that constrain
the fresh atoms to encode the connectives. Terms inZ3 use maximal structure sharing, such that com-
mon sub-expressions are represented using a unique node. Then, common sub-expressions are clausified
only once, so if the CNF conversion encounteres a sub-formula that has already been clausified, it pro-
duces the fresh predicate that was produced as a result of thefirst time clausification was invoked on the
sub-expression.

We illustrate clausification using formula (1). In a top-down traversal of the formula, we introduce
fresh atomsp1, p2, . . . for every unique sub-formula. Clauses for the top four subformulas are listed
below.

(p1 ⇒ p2 ∨ p3) ∧ (p2 ⇒ p1) ∧ (p3 ⇒ p1) ∧ i.e., p1 ≐ (z3,3 ∧ ¬a[3])´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p2

∨(. . . ∧ . . .)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p3

(p2 ⇒ z3,3) ∧ (p2 ⇒ ¬a[3]) ∧ (a[3] ∨ ¬z3,3 ∨ p2) ∧ i.e., p2 ≐ z3,3 ∧ ¬a[3]
(z3,3 ⇒ u2,2 ∨ z3,2 ∨ p4) ∧ (z3,3 ∧ u2,2 ∧ z3,2 ⇒ p4) ∧(z3,3 ∧ u2,2 ∧ p4 ⇒ z3,2) ∧ (z3,3 ∧ z3,2 ∧ p4 ⇒ u2,2) ∧(p4 ⇒ z3,3 ∨ z3,2 ∨ u2,2) ∧ (z3,2 ⇒ z3,3 ∨ p4 ∨ u2,2) ∧(u2,2 ⇒ z3,3 ∨ z3,2 ∨ p4) ∧ (p4 ∧ z3,2 ∧ u2,2 ⇒ z3,3) ∧

i.e., z3,3 ≐ u2,2 ⊗ z3,2 ⊗ (a[3] ∧ b[0])´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p4

(p3 ⇒ p5) ∧ (p3 ⇒ p6) ∧ (p5 ∧ p6 ⇒ p3) i.e., p3 ≐ ((z3,3 ∨ ¬a[3])´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p5

∧ . . .
p̄6

)

The conversion into clausal form performs some straight-forward optimizations. In particular, when
building a multiplication circuit for an expression of the form 1001 × b, where one argument is a fixed
constant (the binary representation of the numeral 9), thenthe circuit representation can be simplified by
performing standard algebraic manipulations, such asx⊗ y ⊗ 1 being simplified tox⇔ y. The number
of clauses that results from a simplified circuit is consequently drastically reduced.

Unfortunately, as the construction suggests, the general representation of multiplication and division
circuits requireO(N2) clauses and fresh atoms. The quest for efficient techniques,or techniques that
work well on applications, for solving bit-vector multiplication (and division) constraints is therefore an
important, but unsettled research area [12].

3.2.3 Bit-precise Reasoning in Practice

Modern SMT solvers use a highly optimized SAT solver core. The SAT solver core is capable of prop-
agating constraints among several thousand clauses in milliseconds using efficient indexing techniques.
Nevertheless, the scale issues with handling multiplication constraints are easily observed. Figure 8
shows the time, number of literals, and number of clauses that are created from simple circuits for mul-
tiplying twoN -bit numbers. In the figure,N ranges from 1 to 64 bits.

9
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Figure 8: Saturation time/number of literals/number of initial and generated clauses for multiplication
circuits

4 Integration

The integration ofPREfix and Z3 consisted in replacing the calls inPREfix simulation engine toPREfix
solver by equivalent calls toZ3’s C API. To get the same three-valued logic answers, we firstqueryZ3
for the satisfiability of the negated queried predicate. If the answer isunsatisfiable, then we returntrue.
Otherwise we queryZ3 for the satisfiability of the queried predicate. If the answer isunsatisfiable, then
we returnfalse. Otherwise we returndon’t know.

To express these queries inZ3, it is necessary to translatePREfix propositions intoZ3 propositions.
This involves translatingPREfix SSA variables and constants of machine integer type toZ3 terms of the
appropriate bit-vector type (meaning the number of bits). Operations on machine integers translate to
operations on bit-vectors. We also translate pointer values into bit-vectors, which is sound, and floating-
point values into reals, which is the only unsound part of thetranslation.

A not-so-easy part of the integration consisted in retrieving all the information maintained byPREfix
about a path into propositions. Indeed, the actual behaviorof the simulation engine is not as simple as the
one presented in Section 3.1. First, information about the value of variables, even partial, is not stored as
propositions in the set of facts, but rather directly in data-structures pointed to by the variable. Secondly,
the simulation engine encodes some of the properties into integer variables (e.g., the validity of pointers)
and others inad. hoc.ways (e.g., being initialized). As a starting point, we translated propositions added
to the set ofPREfix facts intoZ3 propositions and asserted them in the context maintained by Z3 along
the way. We solved the first problem by forcing the generationof Z3 propositions in those cases too. We
solved the second problem by keeping the parts ofPREfix solver which treat these special cases.

A strong requirement for our integration was to generate only ground propositions inZ3, without
quantified axioms, so that the queries can be answered without going through the expensive process of
matching and quantifier instantiation. This allowed us to keep the timeout for each query to a very low
100ms.

PREfix maintained only atomic propositions in its set of facts, in order to simplify the task of its
solver. Although the current integration follows this restriction, a promising oportunity is to handle some
disjunctions directly toZ3, instead of systematically splitting paths inside the simulation engine. As a
proof-of-concept implementation, we now handle class casts in C++ as disjunctions inZ3.

Another oportunity for efficiency gains is the rollback mechanism offered byZ3. We started sup-
porting such a mechanism at the level of the simulation engine for backtracking from failed attempts at
simulating an outcome for a call, without having to discard the path like previously.

During these experiments, where fine-tuning made a great difference, it was essential to have among
the authors of the paper one owner of each toolPREfix andZ3.

10
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5 Integer Overflow Checks

For each operation that can overflow, whether it is arithmetic or a cast, we devise an appropriatecheck,
i.e., a proposition in the theory of bit-vectors which expressesthat the operation does not overflow.
These checks are slighly different from traditional assertions, in that they cannot be easily expressed in
the source language C/C++, and, as mentioned in Section 1, they do not constrain the value of program
variables. The latter ensures that we analyze programs withan overflowing semantics. The former may
be surprising, as safe libraries, like SafeInt [39], intsafe [29] and the CERT Secure integer library [15],
do express similar checks as assertions in C/C++. Although we could choose these expressions for our
propositions, this would be very inefficient. Our propositions are more efficient, at the cost of not being
expressible in C/C++.

Although we collectively designate them as integer overflows, we distinguish overflows proper,
where the mathematical result is larger than the value represented, from underflows, where the math-
ematical result is smaller than the value represented. We denote the non-overflowing predicateJ.K+ and
the non-underflowing predicateJ.K−. They both take as term argument an operation, and return a first-
order logic proposition in the theory of bit-vectors, whichexpresses respectively the absence of overflow
or underflow during the operation.E.g., returning to the difference between signed and unsigned sub-
traction seen in Section 2, the following are valid formulasfor N > 1:

J0N −u 0N−1 ⊕ 1K+ ≃ true J0N −s 0N−1 ⊕ 1K+ ≃ true

J0N −u 0N−1 ⊕ 1K− ≃ false J0N −s 0N−1 ⊕ 1K− ≃ true

(Actually, the last formula is not true forN = 1. Our non-overflowing predicates are correct for anyN ,
includingN = 1.)

5.1 Arithmetic Operations

There are four binary arithmetic operations (addition+, subtraction−, multiplication× and division/)
and one unary arithmetic operation (negation−). Remainder operation, which can neither overflow nor
underflow, is not considered. (Signed remainder follows sign of dividend.) Bit-vector operands of each
binary arithmetic operation should have the same sizeN .

Addition

Unsigned addition can only overflow. To check the absence of overflow, we extend bit-vector operands
x andy by one zero-bit, perform the addition on the extended bit-vectors, and check that the result fits in
N bits.

Jx +u yK+ ≐ (0⊕ x + 0⊕ y)[N] ≃ 0

Signed addition can both overflow and underflow. There are three cases, depending on the sign of
x andy: (1) if x andy have opposite signs, the addition can neither overflow nor underflow; (2) if x
andy are both non-negative, the addition can only overflow, whichnecessarily leads to a negative result;
(3) conversely, ifx andy are both negative, the addition can only underflow, which necessarily leads to
a non-negative result.

Jx +s yK+ ≐ x[N − 1] ≃ 0 ∧ y[N − 1] ≃ 0⇒ (x + y)[N − 1] ≃ 0

Jx +s yK− ≐ x[N − 1] ≃ 1 ∧ y[N − 1] ≃ 1⇒ (x + y)[N − 1] ≃ 1

11
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Subtraction

Unsigned subtraction can only underflow. Checking that the subtracted operandy is smaller than the
other operandx is a necessary and sufficient condition for non-underflowing.

Jx −u yK− ≐ y ≤u x
Signed subtraction can both overflow and underflow. There arethree cases, depending on the sign of

x andy: (1) if x andy have the same sign, the subtraction can neither overflow nor underflow; (2) ifx
is non-negative andy is negative, the subtraction can only overflow, which necessary leads to a negative
result; (3) conversely, ifx is negative andy is non-negative, the addition subtraction can only underflow,
which necessary leads to a non-negative result.

Jx −s yK+ ≐ x[N − 1] ≃ 0 ∧ y[N − 1] ≃ 1⇒ (x − y)[N − 1] ≃ 0

Jx −s yK− ≐ x[N − 1] ≃ 1 ∧ y[N − 1] ≃ 0⇒ (x − y)[N − 1] ≃ 1

Multiplication

Unsigned multiplication can only overflow. To check the absence of overflow, we extend bit-vector
operandsx andy byN zero-bits, perform the multiplication on the extended bit-vectors, and check that
the result fits inN bits.

Jx ×u yK+ ≐ (0N ⊕ x × 0N ⊕ y)[2 ×N − 1 ∶ N] ≃ 0N

Signed multiplication can both overflow and underflow. Thereare two cases, depending on the sign
of x andy: (1) if x andy have the same sign, the multiplication can only overflow; (2)conversely, if
x andy are opposite signs, the multiplication can only underflow. To check respectively the absence of
overflow or underflow, we sign-extend bit-vector operandsx andy byN bits, perform the multiplication
on the extended bit-vectors, and check that the result fits inN bits.

Jx ×s yK+ ≐ x[N − 1] ≃ y[N − 1]⇒
(x[N − 1]N ⊕ x × y[N − 1]N ⊕ y)[2 ×N − 1 ∶ N − 1] ≃ 0N+1

Jx ×s yK− ≐ x[N − 1] ≄ y[N − 1]⇒
(x[N − 1]N ⊕ x × y[N − 1]N ⊕ y)[2 ×N − 1 ∶ N − 1] ≃ 1N+1

Division

Unsigned division cannot overflow or underflow. Signed division can only overflow, when performed
over the minimal integer value represented by bit-vector1 ⊕ 0N−1 and -1 represented by bit-vector1N .
This is because there is one less positive numbers than thereare negative numbers. To check the absence
of overflow, we exclude this case.

Jx /s yK+ ≐ ¬(x ≃ 1⊕ 0N−1 ∧ y ≃ 1N)
12
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Negation

Like signed division, negation can only overflow, for the same reason. To check the absence of overflow,
we exclude this case.

J−s xK+ ≐ ¬(x ≃ 1⊕ 0N−1)
5.2 Cast Operations

A cast operation converts a bit-vector operandx overN bits, seen as signed or unsigned, to anM -bits
bit-vector, also seen as signed or unsigned. We denote it as(Ns/u → Ms/u)x. Therefore, there are as
many casts as there are ordered pairs of different integer types. With 6 integer types on 32-bits machines,
there are 30 different cast operations. With 8 integer typeson 64-bits machines, there are 56 different
cast operations.

Unsigned Casts

A cast from an unsigned integer type to another unsigned integer type cannot underflow, and it can
overflow only whenM < N . In this case, checking the absence of overflow amounts to checking thatx
fits inM bits.

J(Nu →Mu)xK+ ≐ x[N − 1 ∶M] ≃ 0N−M

Casts From Unsigned to Signed

A cast from an unsigned integer type to a signed integer type cannot underflow, and it can overflow only
whenM ≤ N . In this case, checking the absence of overflow amounts to checking thatx fits inM − 1

bits (because the most significant bit should be 0).

J(Nu →Ms)xK+ ≐ x[N − 1 ∶M − 1] ≃ 0N−M+1

Signed Casts

A cast from a signed integer type to another signed integer type can both overflow or underflow only
whenM < N . It can only overflow whenx is non-negative, in which case we must check thatx fits in
M − 1 bits (because the most significant bit should be 0). It can only underflow whenx is negative, in
which case we must check thatx fits inM − 1 bits (because the most significant bit should be 1).

J(Ns →Ms)xK+ ≐ x[N − 1] ≃ 0⇒ x[N − 1 ∶M − 1] ≃ 0N−M+1

J(Ns →Ms)xK− ≐ x[N − 1] ≃ 1⇒ x[N − 1 ∶M − 1] ≃ 1N−M+1

Casts From Signed to Unsigned

A cast from a signed integer type to an unsigned integer type can overflow only whenM < N − 1 and
it can underflow for any values ofN andM (even 1). It can only overflow whenx is non-negative, in
which case we must check thatx fits inM bits. It does underflow wheneverx is negative.

J(Ns →Mu)xK+ ≐ x[N − 1] ≃ 0⇒ x[N − 1 ∶M] ≃ 0N−M

13
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J(Ns →Mu)xK− ≐ x[N − 1] ≃ 1

5.3 Sound Approximations for Multiplication Overflows

Based on initial experiments, we quickly noted that the non-overflowing checks for multiplication are too
costly in practice, leading to many timeouts ofZ3. (We set a very low timeout of 100ms.) As shown in
Section 5.1, the initial non-overflowing check we used was based on the most straight-forward approach
that consists in computing a result on2 ⋅N bits and checking if any of the leadingN bits is set. Instead,
we implemented inZ3 a far more efficient approach that does not require to compute the leadingN − 1

bits of the result. It is based on the efficient overflow checksby Gök et al. [26]. This approach still
requires to compute the lowestN + 1 bits of the result, so we devised sound approximate checks that run
even faster, at the cost of being incomplete. In this Section, we will investigate how the naı̈ve overflow
checks compare to the more efficient version as well as the approximate version.

Given a costly initial checkJ?K±, our goal is to come up with propositionsφ andψ that are cheaper
to check inZ3, such thatφ is a stronger proposition thanJ?K±, andψ is a weaker proposition.

φ⇒ J?K±⇒ ψ

Given such propositionsφ andψ, checking the validity ofJ?K± can be answered by checking the
validity of the strongerφ, and checking the unsatisfiability ofJ?K± can be answered by checking the
unsatisfiability of the weakerψ.

5.3.1 Unsigned Multiplication

Looking at unsigned multiplication first, we note that

y ≤ 2N−⌊log2(x)⌋−1 ⇒ Jx ×u yK+⇒ y < 2N−⌊log2(x)⌋.

Given that⌊log2(x)⌋ is the position of the most significant 1-bit ofx, we can rewrite propositionsφ
andψ. ψ rewrites to a cascading if-then-else proposition, with thestrict inequality translated as expected
zeros.

y < 2N−⌊log2
(x)⌋

= ite(x[N − 1] ≃ 1, y[N − 1 ∶ 1] ≃ 0N−1,

ite(x[N − 2] ≃ 1, y[N − 1 ∶ 2] ≃ 0N−2,

. . .

ite(x[0] ≃ 1, true , true) . . .)) (2)

φ also rewrites to a cascading if-then-else proposition, with the non-strict inequality translated as
equality with the bound or strict inequality, like above.

y ≤ 2N−⌊log2(x)⌋−1 = ite(x[N − 1] ≃ 1, y ≃ 0N−1 ⊕ 1 ∨ y[N − 1 ∶ 0] ≃ 0N ,

ite(x[N − 2] ≃ 1, y ≃ 0N−2 ⊕ 1⊕ 01 ∨ y[N − 1 ∶ 1] ≃ 0N−1,

. . .

ite(x[0] ≃ 1, true , true) . . .)) (3)

WhenN is a power of 2, we can build families of propositions(φ)k and(ψ)k, such that

14



Integer Overflows Moy, Bjørner, Sielaff

ψk
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x × y = 2N
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Figure 9: Approximation(φk, ψk) of the non-overflowing multiplication check

φlog2(N)
⇒ . . .⇒ φ1 ⇒ φ0 ≃ y ≤ 2N−⌊log2(x)⌋−1

y < 2N−⌊log2(x)⌋ = ψ0 ⇒ ψ1 . . .⇒ ψlog2(N)

The definitions ofψk andφk are respectively generalizations of formulas (2) and (3). We use the
shorthandK for 2k.

ψk ≐ ite(x[N − 1 ∶ N −K] ≄ 0K , y[N − 1 ∶K] ≃ 0N−K ,

ite(x[N −K − 1 ∶ N − 2 ×K] ≄ 0K , y[N − 1 ∶ 2 ×K] ≃ 0N−2×K ,

. . .

ite(x[K − 1 ∶ 0] ≄ 0K , true , true) . . .))

φk ≐
ite(x[N − 1 ∶ N −K] ≄ 0K , y ≃ 0N−1 ⊕ 1 ∨ y[N − 1 ∶ 0] ≃ 0N ,

ite(x[N −K − 1 ∶ N − 2 ×K] ≄ 0K , y ≃ 0N−K−1 ⊕ 1⊕ 0K ∨ y[N − 1 ∶K] ≃ 0N−K ,

. . .

ite(x[K − 1 ∶ 0] ≄ 0K , y ≃ 0K−1 ⊕ 1⊕ 0N−K ∨ y[N − 1 ∶ 2 ×N −K] ≃ 0K , true) . . .))
Figure 9 plots pairs of operands(x, y) on a logarithmic scale. Each pair of functions(φk, ψk)

defines a step-wise approximation of functionx × y = 2N from both sides. First, the numberN× of pairs
of operands which do not lead to an overflow is

N× =
2N−1

∑
x=0

#{y∣x × y < 2N} = 2N − 1 +
2N−1

∑
x=1

⌊2N − 1

x
⌋.
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The summation can be bounded as follows:

2N−1

∑
x=1

⌊2N − 1

x
⌋ < 2N − 1 + ∫

2N−1

1

2N − 1

x
.dx = (2N − 1) × (1 + ln(2N − 1)) ≈ 2N × (N + 1)

log2(e)
2N−1

∑
x=1

⌊2N − 1

x
⌋ > −2N + 1 + ∫

2N−1

0

2N − 1

x + 1
.dx = (2N − 1) × (−1 + ln(2N)) ≈ 2N × (N − 1)

log2(e)
This leads to approximate bounds forN×:

2N ×N
log2(e) ≲ N× ≲

2N × (N + 2)
log2(e) .

Now, the number of pairs of operandsNφ that are correctly classified as non-overflowing byφk is

Nφ =
N

K
−1

∑
X=0

(2K×(X+1) − 2K×X) × 2N−K×(X+1) =
N

K
× (2N − 2N−K)

The last summation goes fromNφ = 2N − 1 (almost no pairs) forK = N toNφ = N × 2N−1 (of the
same order asN×

2
) for K = 1.

Likewise, the number of pairs of operandsNψ that are not classified as overflowing byψk is

Nψ =
N

K
−1

∑
X=0

(2K×(X+1) − 2K×X) × 2N−K×X =
N

K
× (2N+K − 2N)

The last summation goes fromNψ = 22×N −2N (almost all pairs) forK = N toNψ = N ×2N (of the
same order asN×) for K = 1.

In particular, the most precise pair of approximation functions (φ0, ψ0) defined by formulas (2)
and (3) succeeds in correctly classifying a non-overflowingpair of operands roughly half of the time, but
more importantly, it almost always correctly classifies an overflowing pair of operands, with a probability
of 1 − 1

2N . Since we are looking for bugs, this is the side of the approximation we care most about. Our
experiments also show that, contrary to the off-by-one bugsthat are common among integer overflows
related to addition and subtraction, integer overflows related to multiplication do not tend to show only
at the fringe, which validates our approach. Notice thatφ0 is the same as the preliminary overflow flag,
V ′u, from Göket al. [26], for which they give an efficient implementation.

Figure 10 shows the time, number of literals, and number of clauses that are created from the circuits
for (1) checking for non-overflows of twoN -bit numbers as presented in Section 5, (2) checking for
non-overflows using the circuit construction described in [26], and (3) approximate checking ofN -
bit multiplication using formula (3). In the figure,N ranges from 1 to 64 bits. We observe that the
overhead of checking unsigned multiplication overflow can very quickly be dominant. The approximate
multiplication overflow checks require both linear time/space overhead and is an order of magnitude
faster.

5.3.2 Signed Multiplication

We check for approximate overflows and underflows of signed multiplication by using a reduction to
unsigned multiplication. The reduction requires to negatenegative numbers. There is a special case when
either of the multiplicands is the minimal negative integervalue, for which direct negation underflows, so
that this case needs to be treated separately. Overall, the same kind of approximations as above applies.
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Naı̈ve multiplication overflow detection using2 ⋅ n bit-vector multiplication

Optimized(n + 1)-bit multiplication based overflow detection

Approximate multiplication overflow detection

Figure 10: Saturation time/number of literals/number of initial and generated clauses for unsigned mul-
tiplication overflow circuits, and circuits approximatingsafe multiplication non-overflow

6 Practical Bug-finding

Finding integer overflows in programs, as defined in Section 5, is utterly useless by itself. The vast
majority of potentially overflowing operations, as defined by a straightforward implemention, do not
correspond to bugs. The following three developments of ourchecker were crucial in making bug-
finding successful: (1) we added checks for uses of overflown values which can lead to security issues;
(2) we identified and discarded broad categories of false positives and (3) we devised a ranking scheme
so as to present the user with the most serious warnings first.

6.1 Security Checks for Using an Overflown Value

Based on the security vulnerabilities reported so far related to integer overflows, there are mainly two
cases where an integer overflow can lead to a buffer overflow (which is the main security issue with
integer overflows.) We do not distinguish overflows proper from underflows here.

• An integer passed as size argument to an an allocation function, such asmalloc or calloc, is
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S* get_elems(
uint num)

{
uint siz = num * sizeof(S);
S* tab = malloc(siz);
return tab;

}

void load_data(
S* data, uint pos)

{
uint spos = pos - Gpos;
data[spos] = get();

}

Figure 11: Security integer overflows: allocation size and pointer offset

the result of an integer overflow.

• An integer used as offset in pointer arithmetic or pointer indexing is the result of an integer over-
flow.

Figure 11 shows an example of each vulnerability. In function get_elems, the computation of
siz could overflow, in which case the array allocated will be smaller than expected. Since the caller
has no reason to believe the array is not of the appropriate size, it will almost surely access it beyond its
bounds. In functionload_data, the computation ofspos could overflow (well, underflow here), in
which case arraydata is written beyond its bounds.

Our mechanism for detecting such dangerous uses of overflownvalues keeps track of whether a
value is the result of an integer overflow, and if so records the operation which computed this value. Like
tainting, the property of possibly being the result of an integer overflow propagates transitively from the
operands to the result of each operation. When a value is usedas an allocation size or a pointer offset, we
first check whether this value has been flagged as possibly overflown. If so, we build a proposition that
expresses that none of the (possibly overflowing) operations leading to this value can be overflowing.
Finally, we queryZ3 for the validity of this proposition in the current context, and we issue a warning
whenever the result is nottrue. Figure 12 shows three examples whereZ3 answers respectivelyfalse,
true anddon’t know.

In the case of functionex_false, siz is trivially always the result of an integer overflow and we
issue a warning.

In the case of functionex_true, siz may be the result of an integer overflow, but the test
siz < num filters all cases where an overflow occurs, therefore the allocation is safe. By querying
the validity of the non-overflowing proposition at the pointwheretab is allocated, we are able to iden-
tify that there is no problem in this function.

In the case of functionex_dont_know,sizmay be the result of an integer overflow, but we cannot
be sure of this without knowing the possible values of parameter num. As explained in Section 3.1, the
usual way this is handled inPREfix is to add the corresponding proposition to the constraints of the current
path. Then, it gets mapped back, if possible, to function parameters in order to generate a constraint that
propagates to the callers of the current function. In this process, a warning is issued only if a function
always triggers the integer overflow on some path. While system models help generating such paths in
the case of buffer overflows, this is not so easy with integer overflows, which makes it likely to miss
errors. This is why we chose instead to report these cases as warnings right-away, due to the criticity
of the associated bugs. Notice that we assume here thatsizeof(S) is greater than 1. Had it been
equal to 1, or had the allocation size been simply parameternum, the corresponding value would not
be flagged as possibly overflown, and we would not issue a warning. This does not meannum could
not be the result of an integer overflow. It simply reflects thepartially intraprocedural dimension of our
technique for detecting uses of overflown values.
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void ex_false(
uint num)

{
if (num > 0x7fffffff) {

uint siz = num * 2;
S* tab = malloc(siz);

}
}

void ex_true(
uint num)

{
uint siz =

num + sizeof(H);
if (siz < num) return;
S* tab = malloc(siz);

}

void ex_dont_know(
uint num)

{
uint siz =

num * sizeof(S);
S* tab = malloc(siz);

}

Figure 12: Using an overflown value: different results

6.2 Categories of False Positives

Most integer overflows detected by our tool are false positives, and most of these false positives fall into
one of the following categories, in decreasing order of importance:

1. casts between 32-bits signed value -1 and 32-bits unsigned value 0xffffffff, used to report an error
status

2. casts of the status value returned by a function between 32-bits signed and unsigned integer types

3. casts of variables storing status values between 32-bitssigned and unsigned integer types

4. explicit casts (introduced by the programmer, contrary to implicit casts introduced by the compiler)

5. loop decrements over an unsigned loop counter, like inwhile(i--), which cause the loop to
exit with an underflow on the loop counter (in dead code most ofthe time, meaning the counter is
not used past the loop)

By default, we do not generate warnings for integer overflowsthat correspond to cases 1, 2, 4 and 5.
These settings can be reversed individually on option. Because integer overflows corresponding to case 3
are more likely to uncover bugs, we still issue a warning for these, but we defined specific warnings for
them, so that they can be easily recognized.

The remaining false positives fall in four categories: (1) they are justified integer overflows, as shown
in Section 1; (2) they cannot arise in practice due to the somephysical limitations (e.g., the number of
processors) that our approach does not take into account; (3) they depend on an invariant of the system
(e.g., the range of values of some field) that our approach is not aware of and (4) they stem from the
imprecision of our tool.

6.3 Ranking of Warnings

Ranking is an essential component ofPREfix in making bug-finding more effective. It computes a score
for each warning, which is used to present warnings to the user in increasing order. Since the raw output
of PREfix mixes highly probable defect reports with very unlikely ones, this improves the developer
experience. Typically a cutoff score is used to separate theaccurate warnings from the false positives.

To facilitate ranking and manual filtering, we generated different warnings for all checks presented in
Section 5: 17 warnings correspond each to a different overflow/underflow check; 2 warnings correspond
to the two dangerous uses of overflown values discussed in Section 6.1; 2 warnings correspond to casts
between signed and unsigned integer types of the same size, in order to isolate the case 3 discussed
in Section 6.2.
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Figure 13: Count of bugs filed per warning (identified by a number)

Apart from the general heuristics applied byPREfix for every warning, depending on the locality, the
kind of variables involved,etc., specific rules penalize or promote warnings based on their category. We
chose to penalize the following categories of overflow warnings, in decreasing order of importance:

1. Warnings that correspond to casts between signed and unsigned integer types of the same size are
penalized most. It takes care of the case 3 discussed in Section 6.2.

2. Warnings that correspond to underflow in signed multiplication are penalized next, because
(1) there are an awful lot of them and (2) they never uncovereda bug in our experiments.

3. Warnings that correspond to various underflows/overflowsin arithmetic operations are slightly pe-
nalized, because (1) there are quite many of them and (2) theyuncovered less bugs than other
categories in our experiments. This concerns overflows on signed/unsigned addition and multi-
plication and underflow on signed subtraction. Other categories are not penalized because they
generate fewer warnings, or, in the case of underflow on unsigned subtraction, we found that the
corresponding warnings uncovered many real bugs.

7 Results on the Microsoft Product Code Base

We appliedPREfix, with Z3 inside, to a substantial part of Microsoft’s code base, consisting of over 10
million lines of C/C++ code. One of the authors spent three days reviewing integer overflow warnings,
split among a few weeks. This allowed us to gain insight into the categories of expected integer overflows
and false positive that we discuss in Section 1.1 and Section6.2. Other warnings present fluctuations
w.r.t. PREfix before the integration that are typical of even small modifications in such a complex tool
when applied on such a large code base.

Figure 13 summarizes our results. We filed 31 bugs, 17 of whichwere generated by our security
checks for uses of overflown values. Warning 150 which generates the most bugs (16) is the use of
an overflown value in an allocation size. Warning 147 which generates 7 bugs is the underflow on an
unsigned subtraction, which is why we did not penalize it along with other arithmetic checks in ranking.

Based on review from developers, the accuracy rate on these bugs is approximately 50%.
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1 LONG l_sub(LONG l_var1, LONG l_var2)
2 {
3 LONG l_diff = l_var1 - l_var2; // perform subtraction
4 // check for overflow
5 if ( (l_var1>0) && (l_var2<0) && (l_diff<0) ) l_diff=0x7FFFFFFF;
6 ...

7 iElement = m_nSize;
8 if( iElement >= m_nMaxSize )
9 {

10 bool bSuccess = GrowBuffer( iElement+1 );
11 ...
12 }
13 ::new( m_pData+iElement ) E( element );
14 m_nSize++;

15 for (UNWORD uID = 0; uID < uDevCount && SUCCEEDED(hr); uID++) {
16 ...
17 if (SUCCEEDED(hr)) {
18 uID = uDevCount; // Terminates the loop

19 ULONG AllocationSize;
20 while (CurrentBuffer != NULL) {
21 if (NumberOfBuffers > MAX_ULONG / sizeof(MYBUFFER)) {
22 return NULL;
23 }
24 NumberOfBuffers++;
25 CurrentBuffer = CurrentBuffer->NextBuffer;
26 }
27 AllocationSize = sizeof(MYBUFFER)*NumberOfBuffers;
28 UserBuffersHead = malloc(AllocationSize);

29 DWORD dwAlloc;
30 dwAlloc = MyList->nElements * sizeof(MY_INFO);
31 if(dwAlloc < MyList->nElements)
32 ... // return
33 MyList->pInfo = MIDL_user_allocate(dwAlloc);

Figure 14: Real integer overflow bug samples

Figure 14 shows a few sample code stubs containing integer overflow bugs that our tool discovered
in the code base. These bugs illustrate how integer overflowsmanifest themselves in the real code, as
opposed to select, well-known, samples from Figure 1 presented in Section 1.

Function l_sub performs safe subtraction of signed 32-bits integers by detecting over-
flows a posteriori. The problem is that the test on line 5 misses the case where
l_var1 == 0 && l_var == INT_MIN. The first test l_var1>0 should read in fact
l_var1>=0. Thus, the programmer intended to check for overflows, wrotea custom routine, but the
custom routine misses a case. Interestingly, this bug is identified usingPREfix andZ3 because a call site
is able to produce arguments that fall through the overflow check.

On lines 7-8, both fieldsm_nSize andm_nMaxSize could be equal toUINT_MAX, in which
case the argument toGrowBuffer on line 10 is 0. Later on, the placement new on line 13 writes in
unallocated memory.

On line 18,uDevCount could beUINT_MAX, in which case the attempt to terminate the loop by
settinguID to uDevCount does not work, asuID is incremented to 0 at the end of the loop, before the
testuID < uDevCount.

The test on line 21 does protect from an integer overflow in themultiplication
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sizeof(MYBUFFER)*NumberOfBuffers, but as NumberOfBuffers is incremented on
line 24 just before the loop exits, the test is ineffective.

On line 32, the test performed would be effective at detecting integer overflows on an ad-
dition, but it is unfortunately ineffective for detecting integer overflows on the multiplication
MyList->nElements * sizeof(MY_INFO).

8 Conclusion

To our knowledge, this is the first static analysis tool that seriously addresses the detection of integer
overflow bugs in large legacy code bases. Yet the problem of integer overflows has been known for at
least 30 years. Our tool addresses this challenge on programs written in C/C++, where most integer
overflows are intended or benign. This increases the difficulty of our task in two ways: first, our tool
must assume overflowing semantics for integers; secondly, our tool must distinguish intended uses of
integer overflows from bugs.

We defined 17 non-overflowing checks as properties in the theory of bit-vectors. Each check ensures
that the corresponding arithmetic or cast operation eitherdoes not overflow or does not underflow. We
showed that the encoding of these propositions into bit-level circuits by bit-blasting generated a low
number of clauses, except for checks on multiplication, forwhich we devised cheap approximate checks
that retain most of the discriminating power of the real check. A result of our work was also to make
these exact arithmetic overflow and underflow checks available as part of theZ3 API.

Apart from integer arithmetic specific checks, we defined checks for uses of overflown values which
lead to buffer overflows, with harmful consequences for security. This allowed us to generate these
warnings more aggressively, and to focus our manual review on these more critical issues.

From our experience at finding bugs in this code base, we classified the intended uses of integer
overflows as intentional, reversed and checked, and we identified 5 broad categories of intentional integer
overflows. This work lead to the definition of default settings and ranking strategies which concur to
present the user of our tool with the most serious warnings first.

Although we started this work as a research experiment, the capabilities ofPREfix with Z3 appear
sufficiently mature to be exercised on the Microsoft code base. Ongoing work is to further reduce the
number of false positives presented to the user, while retaining the most serious issues we detect with
the current version. Apart from designing additional special categories of false positives, we expect
important gains from a better use of the annotations alreadypresent in the code (originally for buffer
overflows) and from the manual addition of models for standard functions manipulating strings, buffers
or integers, both tailored towards integer overflow bug-finding.

There are many ways we could extend our tool to better detect integer overflow bugs. An obvious
extension is to consider other dangerous uses of overflown values,e.g., as the size of a call tomemcpy [7].
Another idea is to exploit the many calls in the code to functions from the safe libraries SafeInt [39] and
intsafe [29], that indicate the user intent to protect some sensitive values from otherwise possible and
harmful integer overflows. It should be possible to design a tainting mechanism, such that all values
that concur in the computation of a sensitive value, or that derive from such a value, are also marked as
sensitive. Integer overflow warnings about these values would be considered highly critical.

Overall, we are confident that our goal of presenting the userwith high-risk security bugs containing
few false positives is within reach of a practical deployment. Thanks to the carefully designed incom-
pleteness inherent toPREfix, and that we introduced in our integer overflow checks too,we managed to
get a sound, efficient, bit-precise static analysis for detecting integer overflow bugs in the large.
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