Modular Bug-finding for Integer Overflows in the
Large:
Sound, Efficient, Bit-precise Static Analysis

Technical Report
MSR-TR-2009-57

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Modular Bug-finding for Integer Overflows in the Large:
Sound, Efficient, Bit-precise Static Analysis

Yannick Moy} Nikolaj Bjgrner, and David Sielaff
Microsoft Research, Redmond, Washington, USA
yannick.moy@gmail.com{nbjorner, dsielaff@microsoft.com

Abstract

We describe a methodology and a tool for performing scalbittprecise static analysis. The
tool combines the scalable static analysis engiRdix [14] and the bit-precise efficient SMT solver
z3 [20]. Since 1999 RHix has been used at Microsoft to analyze C/C++ productiorecttdelies
on an efficient custom constraint solver, but addresseke\vet-semantics only partially. On the
other hand, the Satisfiability Modulo Theories solz8t developed at Microsoft Research, supports
precise machine-level semantics for integer arithmeteraipons.

The integration ofPREix with z3 allows uncovering software bugs that could not previously
be identified. Of particular importance are integer overfiowhese typically arise when the pro-
grammer wrongly assumes mathematical integer semantidghay are notorious causes of buffer
overflow vulnerabilities in C/C++ programs.

We performed an experimental evaluation of our integrabpmunning the modified version of
PREix on a large legacy code base for the next version of a Midtgeoduct. The experiments
resulted in a number of bugs filed and fixed related to integerftows. We also describe how we
developed useful filters for avoiding false positives basethe comprehensive evaluation.

1 Introduction

Integer overflows have received heightened attention thcdoe to the increasing number of reports
of security vulnerabilities where they can be exploitede Tirain problem with integer overflows is that
they can manifest in subtle ways in any program that manigsiliategers, which is to say every program
at all. Figuré_1 presents commonly found implementatiorS of well-known algorithms for searching

in a sorted array and converting an integer to ASCII. Boticfiams are in fact vulnerable to integer

int binary_search(void itoa(int n, char* buf)
int+ arr, int low, int high, int key) {
{ /1 Handl e negative
while (1 ow <= high) if (n <0
{ {
/1 Find mddl e val ue *buf ++ =
int md=(low+ high) / 2; n=-n;
int val = arr[md]; }
/1l Refine range /1 Qutput digits
} }

Figure 1: Some classical programs suffering from integerftewvs

overflows: in the case of functidni nary_sear ch applied tol owandhi gh both equal to-NARX:1
(0x40000000), the computatidrow + hi gh will evaluate tol NT_M Ninstead of NMBXEL - in the

“Work performed while at Microsoft Research

Integer Overflows Moy, Bjagrner, Sielaff

voi d al |l oc(

uint rest(ui nt pos)

uint sz, uint done) {
{
return sz - done

J)

int sz = f();
if (pos < sz) ...

Figure 2: Integer overflows: arithmetic and cast

case of function t oa applied ton equal tol NT_M N (0x80000000), the negatiom will evaluate to

I NT_M Ninstead ofl NT_MAX+1. Despite the publicity given to the case of binary sear¢h fgny
such programs remain vulnerable to integer overflows. The o t oa is compelling: the first edition
of The C Programming Languaga 1978 [34] contained the integer oveflow problem just noarei;
the problem was noted in the second edition in 1988 (and liiso left in exercise), but many currently
available implementations, such as the one from prajeaion sourceforge.nestill suffer from the same
problem.

1.1 Integer Overflows in Practice

Some dynamically typed languages like LISP, Python andSkay@t prevent integer overflows by using
bignumsas the default integer representation. Efficientimplemugons of bignums use machine integers
for small numbers and switch to general, and more expensypeesentations when the operations on
machine integers overflow. Most languages, however, douppat this default semantics and common
programs will be exposed to integer overflows when workinthwinachine integers. Integer overflows
occur when the result of an arithmetic operation on machitegers is different from the mathematical
result of the operation. In C/C++, this problem is exacatdby the incredible number of machine
integer types (6 on 32-bits machines, 8 on 64-bits machingsich can be freely mixed in operations
and converted one to another, with subtle rules that cakésuen expertsd.g, see conclusion i [40]).

As a result, machine integer semantics are often overloblggatogrammers who wrongly assume
mathematical integers semantics for values that are @utdfidhe range where the two semantics co-
incide. Bugs related to integer overflows are of two kindgoading to the operation that leads to the
overflow: arithmetic and cast. Figuré 2 shows an example dé& ¢or each kind. Functionest may
be called withsz < done, in which case the result of the subtraction is a large pasititeger. Func-
tion al | oc can end up executing thtehen branch ifsz is negative, due to the implicit cast st to
unsigned integer performed in the tpsts < sz.

One difficulty in finding integer overflow bugs stems from thetfthat integer overflows are perfectly
legal in C/C++. While the C and C++ standards|[30, 31] distialy cases in which integer overflows
follow a modulo semanticse(g, arithmetic on unsigned integers) from cases where integerflows
trigger undefined behavioe(g, arithmetic on signed integers), most architectures giv@dulo seman-
tics to all integer overflows. Many programs rely on such baraTherefore it is not possible to discard
integer overflows when analyzing these programs. From querénce at looking for integer overflow
bugs in Microsoft code base, there are three main cases Wwieger overflows are intended. Figlide 3
shows an example of each.

» Overflow is intentional. Typically, this is almost alway®tcase when the programmer has inserted
an explicit cast in the codek.g, this is the case in functioht ons, where the higher bits of
should be ignored.

Integer Overflows Moy, Bjagrner, Sielaff

uint i = 0;
while (i < max) {
if (sel(vect[i])) {
vect.remove(i);
__|;

ui nt 16 ht ons(
uint16 a)
{
uint x = a << 8;
uint y = a > 8;
return (uint16)(x | y); i+i'
} } ’ }

ui nt saf e_uadd(
uint a, uint b)
{
uint r = a + b;
if (r <a) error();
return r;

Figure 3: Expected integer overflows: intentional, reveied checked

» Overflow is reversed posteriori This is usually associated to increments or decrements per
formed in a loop.E.g, when an element is removed from vectarct , indexi is decremented
to compensate for the increment at the end of the loop. Ifigm@ent at index is removed, then
unsigned integeir overflows toUl NT_MAX, but the subsequent increment reverses the overflow.

» Overflow is checkedh posteriori This is either done in dedicated functions that perforne saf
operations, likesaf e_uadd, or inlined where required. In the case ©df e _uadd, the test
r < aindeed filters all cases where an overflow occurs in the dperat + b.

So, we are interested in finding bugs related to integer @vesfin large code bases written in C/C++.
Among these, we are mostly interested in finding those buagscn lead to a buffer overflow that an
attacker could exploit to craft an elevation of privilegeoHg attack, or a denial of service (DoS) attack.
Ultimately, like in most bug-finders, our tool depends on anhn reviewer to decide the inocuity or
severity of the integer overflows reported. This is all theerihe case with integer overflows due to the
subtlety of the associated bugs.

Our constraints are thus the following: (1) there are no mhannotations for integer overflows in
the code, (2) the analysis should assume overflowing secsaiati operations on integers and (3) the
user should be presented with high-risk security bugs wveithfllse positives.

1.2 Related Work

Bit-precise static analysis originates in hardware motielcking, where the bit is the natural unit of
information. Work around tools like SMV_[13] prompted thesearch for efficient solvers based on
BDDs or SAT techniques. Software model checkers like CBM&],[$atAbs([17], F-Soft [32] build on
efficient SAT solvers to analyze operations on machine ert@g Boolean circuits. However, the state
explosion problem limits those tools to bounded model cimggkvhere integers are imprecisely modeled
using only a few bits. Tools for automatic software testilkg SAGE [25] manage to accurately model
machine integers as bit-vectors by giving up on (bounded)pteteness. All these tools have been
reported to find bugs in real C/C++ programs, most of themtedlgo buffer overflows. Bug-finders
like PolySpace [43] and Coverity [35] target integer overflaugs too, based on abstract interpretation,
symbolic simulation and SMT solvers.

Interestingly, none of these tools has publicly reportedgar overflow bugs, which sustains our
claim that these bugs are more subtle than many others. Sthéabest attempt at preventing these
bugs has been the creation of safe libraries for integdrragtic operations and casts, like Safelnt [39],
intsafe [29] and the CERT Secure integer library|[15]. Oneutth keep in mind that it is sometimes
subtle to prevent integer overflows, even with these liegriThe best example of this is the allocation
of memory througmew in C++. Figure[4 presents a C++ program which is guaranteezhtse a
buffer overflow (with 32-bits integers), despite the tastr == NULL that filters failed allocations.

3

Integer Overflows Moy, Bjagrner, Sielaff

voi d main()

{ ui nt safeint_check =
uint siz = 0x40000000; siz = Saf el nt<uint>(sizeof(int));
int *xarr = new int[siz]; ui nt intsafe_check;
if (arr == NULL) return; if (FAILED(U ntMult(siz, sizeof(int),
for (int j =0; j <siz; ++) { & ntsafe_check))) ...;
arr[j] = 0; uint cert_check =
} mul tui (siz, sizeof(int));

}

Figure 4: Tricky prevention of integer overflows wittewin C++

This is because hewa zeof (i nt) =* si z evaluates to 0! Therefore the allocation returns a pointer
to an array of O elements. The current version of Microsafisial Studio C++ compiler automatically
generates defensive code to detect such integer overfloivi,i® not the case for all compilers. Itis up
to the programmer to check that the multiplication will needlow, possibly by calling a function of
the safe library, like shown in Figufé 4, where an integerfo® would raise an exception during the
computation osaf ei nt _check,i nt saf e_check orcert _check.

Recently, a flurry of interest for bit-vector solving has bexhibited in the context of SMT solvers.
Some of these are Beaver [9], Boolector|[10], Mathsat [1pge8[1], STPI[24], Sword [47] arzi3 [20].
The solvers are compared in anual competitidrist (p: / 7 www. sni conp. or g) among SMT solvers.
The bit-vector division has received strong attention kisato the number and quality of solvers that
enter.

High integrity software development is especially conedrwith integer overflows after an integer
overflow run-time error (in Ada) led to the loss of Ariane 5 i89#t. The SPARK approach![3] pro-
vides a methodology, a safer language (a subset of Ada),rastation language and automatic/manual
provers to guarantee the absence of run-time errors, iimgudteger overflows. This requires a sub-
stantial involvement of the programmer from the design édbding/proving phase. The application of
SMT solvers Yices [23], CVC3]5] and theorem prover Simp[@2] in the context of SPARK [33] has
shown some limitations of the encoding of machine integemmathematical integers: despite a suitable
axiomatization, non-linear arithmetic, division and mimdremain problematic.

Righting software[[37] deals with the task of improving theatity of existing mainstream industrial
software. The greatest industrial success of this apprtzadhte is the application of the static analysis
tools PRHEiIX and ESP to detect buffer overflows in Microsoft code ba$§h.[2

1.3 Paper Outline

Section[2 introduces some of the notation and conventioatsviill be used. It is followed with an
overview of the toolsRHix and z3 in Sectior B. Section 3.2.2 provides some background obithe
vector decision procedures in the contexz8f The work to integrate the two systems is presented in
Sectior 4. In Sectiohl5, we describe how we encoded the absdncteger overflows as propositions
in the theory of bit-vectors so that they can be handled efiity by z3. In Sectiori 6, we discuss our
treatment of security bugs, false positives and rankingasfimgs, that make our tool effective at finding
bugs in this particular code base. We report the results oégperiments on the code base in Sedfibn 7,
in particular the kind of bugs uncovered by our tool so far.aMeclude in Sectionl 8 with an examination
of the possibilities for improvement.

http://www.smtcomp.org

Integer Overflows Moy, Bjagrner, Sielaff

2 Bit-fiddling Preliminaries

In the following, uncapitalized letters like stand for bit-vectors while Capitalized Letters likestand
for constant sizes. Unless said otherwiaejs used for arbitrary, but fixed, sized bit-vectors. The zero
and one bits are called 0 and 1 respectively. SuperscrigsViin 0V stand for repetition of bits in a
bit-vector. We omit the superscript if itis 1. Thus, a siniiecan also be used as a bit-vector of length 1.
Concatenation of bit-vectors is denoted which has higher precedence than any other operator. We
represent bit-vectors with the most significant bit first,tisat integer 1 is represented By-bits bit-
vector0™ ! @ 1. We use brackets to extract single bits, likerh]. The result is a single bit. Sub-ranges
are extracted using two indices, like i1 : 0]. Finally, we distinguish equality of bit-vectorsfrom
usual equalityE.g, we always have: ~ [N - 1:0] andz[1:0] ~ z[1] & z[0].

The standard arithmetic operations are available in twm$oon bit-vectors, signed and unsigned.
We use subscripts to distinguish the two forms. For examples signed less-than comparison angs
unsigned less-than comparison. Raand other comparison operations, this simply reflects tbietffiat
signed and unsigned comparisons do not have the same sesn&ntj, the bit-vectors that represent
zero and NT_M Nare ordered differently when interpreting them as unsignesigned integersd” <,

1o 0™ butl @ 0V~! <, 0. We extend this notation to these arithmetic operationtsttage the same
semantics on signed and unsigned integers: additiosubtraction— and multiplicationx. Indeed,
the resulting bit-vector is the same, only the interpretawf this bit-vector as an integer changes. For
example, distinguishing subtraction on unsigned integefsom subtraction on signed integers helps

us expressing non-overflowing propositions, which depentthe signedness of the subtracti@hg., for

N > 1, there is an overflow in the expressiofi —, 0! @ 1, but not in the expressioi” —, 0V ! & 1.
When simply evaluating the result of a bit-vector arithrmeperation, where this distinction is useless,
we will omit the subscript.

We use the special equality symbsito denote a definition, ande(x,y, z) to denote a conditional
expression. Whep andz are Booleans, it is equivalent @ A y) v (-z A 2).

Although it is not prescribed by the C and C++ standard$[[3]),\8e assume machine integers are
encoded in 2-complement notation. (Otherwise, there ismath more to say.)

3 PREfixand z3

3.1 ThePRrEfix Static Analysis Engine

PREiX [14] is a bug-finding tool based on symbolic simulationtially developed at Intrinsa between
1994 and 1999, and at Microsoft since 1999. Since 2000, mgnPREix analysis on the Microsoft
codebase, as well as on many other Microsoft products, hers &eequirement for every new release.
During development of the new version of the product codelasanalyzed, PREfix reported over 2500
bugs, of which 72% have been fixed. The remaining 28% are fais#ives, dead code or innocuous
bugs.

The architecture oPRHix is that of a static analysis engine, allowing to quicklydatew checking
capabilities. It traverses the call-graph bottom-up, yriaf one function at a time. The result of this
analysis is a set abutcomedor each function (a.k.a. eode), that comprise each a set gbards
constraintsandresults[14]. In the terminology of a specification language like JI88], Spec#[[4] or
ACSL [6], PRHix generates behaviors for each function, whgmardsare assumes clausegnstraints
are requires clauses anesultsare ensures clauses. Or equivalently, the fornguiards=-constraints
is part of the function precondition, and the formulial(guards)A b =resultsis part of the function
postcondition, wherb is a fresh Boolean variable expressing the fact that sontetipadugh the function
(but not all) satisfying tguardsleads toresults

Integer Overflows Moy, Bjagrner, Sielaff

As expectedpRrHix only analyzes a subset of the paths through a function,itamddels aliasing
with unsound heuristics. For each path it analyeegfix maintains three sets of propositions.

» The set ofguardscollects the tests from if-statements and loops, as welhagtiards from the
selected outcomes of the functions called.

» The set oftonstraintscollects checks which are not known to toee or false
» The set offactsincludes the set of guards, together with the equalitiedigd oy assignments.

As it unrolls a pathprHix creates an SSA equivalent path, whose variables are ndbd propositions
just mentioned.

At every branching in the function, be it caused by a test oalh the simulation engine queries
the solver to know if the test or the guard (correspondingnto@come of the function called) is valid
(always true), unsatisfiable (always false) or none of tlipseause both branches are feasible). The
solver’s three-valued logic answer cantbge, meaning the query is validalse meaning the query is
unsatisfiable odon’t knowif the query is provably neither valid or unsatisfiable, dhe solver could not
determine the correct answer. The simulation engine ugsesmfbrmation to avoid analyzing unfeasible
paths.

All safety properties targeted BREix are encoded as assertions in the code (possibly involving
instrumentation variables) whose violations are conslers bugs. For each one of thebecks the
simulation engine also queries the solver, with the saneethialued logic answer.

» The answer isrue: the check is valid on this path.
» The answer ifalse the check is invalid on this pati®PREix issues a corresponding warning.
» The answer islon’t know PREix adds the check to the set of constraints for this path.

At the end of a path, the sets @fiards constraintsandfactsare mapped, if possible, to values reachable
from the parameters, return value and global variables baedme theyuards constraintsandresults
of a new outcome for the function.

Figure[® shows an example of path selectedrhgix, consisting in the lines 3, 6, 7, 8 and 11 in
functionget _nane. We illustrate now howRHix analyzes this path, although this simplification does
not do justice to the more complex and efficient actual amalyat line 3, propositions ni t (buf ()
andi ni t (si zey) are added to the set of facts, to denote that parameters ezesaeily initialized.
At line 6, propositiond ni t (st at usg) andst at usy == 0 are added to the set of facts. At line 7,
assuming outcome inhameO is chosen here, the solver cannot determine whethee, == 0 is
valid or unsatisfiable. Therefore the corresponding pribposis added to the set of guards and result
i nit(status;) andstatus; == 0 are added to the set of facts. The solver determines that test
I status; >= 0 at line 8 is false on this path, therefore the simulation magiroceeds with the
(empty) else-branch. At line 11, upon reading the value ofatde nane, PREiIX issues a query for
checki ni t (naneg) , which the solver is able to determine is false. So the sitiulangine issues a
warning that functiorget _nane is using uninitialized memomgame on the path analyzed.

A very carefully crafted part oPRHix is the ranking of warnings that allows discarding falssipo
tives. PREix keeps metrics on each warning issued, so that these sietiitbe used later on to compute
a score. This way, a user needs only look at the warnings a#dbwcore, which should be of higher
quality, i.e., with fewer false positives.

Overall,PREix static analysis engine is both modular and interprocadtimanks to its syntax-driven
splitting of paths.

© 00 N o g b~ W N P

R
2 W N B O

Integer Overflows Moy, Bjagrner, Sielaff

NTSTATUS i nit_name(char =*+*outnane, uint n); |mode| for function ni t_narm|
NTSTATUS get _nane(char* buf, uint size) outcome initnameO:
guardsin == 0
resultsrresult == 0

NTSTATUS st at us = STATUS_SUCCESS;
status = init_nane(&nane, size);
if (! NT_SUCCESS(status)) {

strcpy(buf, nane);

Figure 5: Path selection iPREix

3.2 The SMT Solverz3

z3 [20] is a state-of-the-art Satisfiability Modulo Theor(&MT) solver. An SMT solver is a theorem
prover that can establish theorems for formulas that coenbite or moreheories where a theory is
given by a sets of sorts, functions over those sorts and axaivout these functions. One such theory
is the theory of bit-vectors; other theories commonly foundSMT solvers are the theories of real
arithmetic and linear integer arithmetic, the theory ofgsra la McCarthy [41], and the theory of tuples
and algebraic datatypes [44]. All of these theories areddde in the quantifier-free case, that is, there
are special purpose algorithms, also known as decisioredtoes, that decide satisfiability of constraints
over each of the theories. To decide the validity of a formuolze typically shows the unsatisfiability
of the negated formula. Formulas are free to mix functiorf;dd from one of the respective theories;
decidability is preservedz3 integrates a modern DPLL-based SAT solver, a core thedwersthat
handles ground equalities over uninterpreted functionsl, satellite solverdor the theories. PRHix
requires almost exclusively the theory of bit-vectors. \Wigently encode constraints over floating points
using a rough approximation with arithmetic over reals.

Currently, z3 is used in several projects related to Microsoft Reseanchyding Spec#/Boogie [4,
21], Pex[45], HAVOCI[36], Vigilante[[18], a verifying C conilpr (VCC), SLAM/SDV [2], SAGE [42],
and Yogi [27].

3.2.1 Interfacing with z3

Users interface witlz3 using one of the available API<3 supports three different text formats and
exposes programmatic APIs for C, OCaml, and .NET. Our iattign withPREix uses the C-based API.
The main functionality exposed by the programmatic API®ibuild expressions, assert expressions of
Boolean type, and check for consistency of the asserte@dssipns. It is also possible pushandpop
local scope such that assertions insigriahcan be retracted after a matchipgp. A sample C program
using the APl is shown in Figufé 6. It checks that bath, a x b and-(a <,, a x b) are satisfiable.

3.2.2 Bit-precise Reasoning iz3

The implementation of bit-level reasoning in the currentsian of z3 uses a preprocessor based on
rewriting rules followed by an eager reduction of bit-leweinstraints into propositional constraints.

7

Integer Overflows Moy, Bjagrner, Sielaff

Z3_sort* bv32 = Z3_nk_bv_sort(ctx, 32); /] create the sort bv32
Z3_synbol a_s = Z3_nk_string_synbol (ctx, "a"); /! create the nane 'a’

Z3_ast* a = Z3_nk_const(ctx, a_s, bv32); /! create a 32-bit constant 'a’
Z3_synbol b_s = Z3_nk_string_synbol (ctx, "b"); /1 create the nane 'b’

Z3_ast* b = Z3_nk_const(ctx, b_s, bv32); /! create a 32-bit constant 'b’
Z3_ast* ab = Z3_nk_bvmul (ctx, a, b); /]l create a * b

Z3_ast* e = Z3_nk_bvul e(ctx, a, ab); /] create e :=a<=a=* Db
Z3_push(ctx); /1 push a scope
Z3_assert_cnstr(ctx, e); /1 assert e

Z3_| bool resultl = Z3 check(ctx); /Il e is sat, resultl = Z3 true
Z3_pop(ctx, 1); /1 pop one scope | evel
Z3_push(ctx); /1 push a scope

Z3_ast* ne = Z3_nk_not(ctx, e); /] create ne :=1!(a <= a * b)
Z3_assert_cnstr(ctx, ne); /1 assert ne

Z3 | bool result2 = Z3 _check(ctx); /1l "ne’ is sat, result2 = Z3_true
Z3_pop(ctx, 1); /1 pop one scope | evel

Figure 6: Samplg3 APl usage

Al0] & B[3] Al0] & B2) Al0] & B[1] A[D] & BIO]:

e~ A&B] A[1]&B[1] _~~—— Al1]&B[0]
e Alll o s S

oula) outi2] Outf1) ouo] |

Figure 7: A circuit for multiplying two 4-bit vectors

This reduction is calledbit-blasting The propositional constraints are then handled by the SMNes

component. We illustrate the encoding of bit-level muitiation for two vectors of length in Figurel 7.
Each gate represents one or more propositional connectg@sssociates with each gate in the

multiplication circuit one or more propositional subforiast For example, the expressiof : 0] xb[3 :

0] is represented by four bit-level expressions we will egli, 21 1, 22,2, 23 3, where:

0,0 = a[0] A b[0] zi1,u110 = ha(a[0] AD[1],a[1] AD[O])
iy = ha(af0] ab2)al] nb1)) T ?;((52[?2?[3;][7263[?1;?1?[)2])
zo2,u22 = fa(ui,221,a[2] AD[0]) z373:u373 = fa(u272223’2:a[3] A b[0])

andz,u = ha(x,y) = (z®y,x Ay) assigns te, u the result of a half-adder, andu = fa(z,y,w) =

8

Integer Overflows Moy, Bjagrner, Sielaff

(reoy®w,(zAry)Vv(zArw)v(yAw)) assigns ta, u the result of a full-adder. In Figufé 7 variables
are represented by vertical results andariables by oblique carries.
If a x bis used in an atom of the form<,, a x b, then the atom is equivalent to the formula:

(z33 A =a[3]) v ((z33 Vv -a[3]) A ((222 A=a[2]) v ((22,2 vV -a[2]) A
((z1,1 A =a[1]) v ((211 v —a[1]) A (200 v =a[0])))))) 1)

wherezg o, 21,1, 22,2, andzz 3 are shorthands for the formulas defined using the gates.

Propositional formulas are finally clausified using a T$ei{f46] style conversion algorithm. The al-
gorithm replaces nested Boolean connectives by fresh pitigrual atoms and adds clauses that constrain
the fresh atoms to encode the connectives. Ternz8inse maximal structure sharing, such that com-
mon sub-expressions are represented using a unique noele, dmmon sub-expressions are clausified
only once, so if the CNF conversion encounteres a sub-farmnnat has already been clausified, it pro-
duces the fresh predicate that was produced as a result fifthiéime clausification was invoked on the
sub-expression.

We illustrate clausification using formulal (1). In a top-dotvaversal of the formula, we introduce
fresh atomspy, po, ... for every unique sub-formula. Clauses for the top four subtdas are listed
below.

(pr=>p2vp3)A(p2=p1)A(p3=D1)A i.e,p1 = (z33A-a[3])v(...A...)
P2 p3
(p2 = 2z33) A (P2 = —a[3]) A (a[3] vV —z33VDp2) A l.e,py = z33 A -al3]

(233 = Uu22V 232V Ds) A (233 AU22 A 232 = D) A

(233 AUu22 APy = 232) A (233 A232 APy = U22) A €255 = U2 ® 20 ® (a[3] AB[0])

(pa = 233V 232V uz2) A (232 = 233V PpaVug2)A N
(u2,2 = 233V 232V Pa) A(PaAz32 AUz = 233) A P4
(p3 = p5) A(p3 = pe) A (Ps5 AP = p3) i.e,p3 = ((z33V -a[3]) A;;L)
—_—

Ps Pe

The conversion into clausal form performs some straightnd optimizations. In particular, when
building a multiplication circuit for an expression of therin 1001 x b, where one argument is a fixed
constant (the binary representation of the numeral 9), teircuit representation can be simplified by
performing standard algebraic manipulations, such @3/ ® 1 being simplified tar < y. The number
of clauses that results from a simplified circuit is consediyedrastically reduced.

Unfortunately, as the construction suggests, the gengpatsentation of multiplication and division
circuits requireO(N?) clauses and fresh atoms. The quest for efficient techniqueischniques that
work well on applications, for solving bit-vector multiption (and division) constraints is therefore an
important, but unsettled research arleg [12].

3.2.3 Bit-precise Reasoning in Practice

Modern SMT solvers use a highly optimized SAT solver coree BAT solver core is capable of prop-
agating constraints among several thousand clauses iseudhds using efficient indexing techniques.
Nevertheless, the scale issues with handling multipboationstraints are easily observed. Figure 8
shows the time, number of literals, and number of clausdsatigacreated from simple circuits for mul-
tiplying two N-bit numbers. In the figurey ranges from 1 to 64 bits.

9

Integer Overflows Moy, Bjagrner, Sielaff

bvmul time bvmul literals bvmul clauses
025 160000 40000

140000 35000
02 h 120000 / 30000 ,
015 PY1).8 100000 /_ﬂ” 25000 //
LY
N
N
o1 P o~

vy s0000 "l 15000 o
2000 10000

005 1 o o
o0 o o el

0 0 0

1 4 7 1013 16 19 22 75 28 31 34 37 40 43 46 49 52 55 58 61 64 1 4 7 101316 19 22 25 28 31 34 37 40 43 46 49 52 55 58 6164 1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Figure 8: Saturation time/number of literals/number ofi@iand generated clauses for multiplication
circuits

4 Integration

The integration oPRHix and z3 consisted in replacing the calls mREfix simulation engine t®REix
solver by equivalent calls to3's C API. To get the same three-valued logic answers, wedustyz3
for the satisfiability of the negated queried predicatehdf answer isinsatisfiablethen we returrrue.
Otherwise we query3 for the satisfiability of the queried predicate. If the aasig unsatisfiablethen
we returnfalse Otherwise we returdon’t know

To express these queries4B, it is necessary to translakReix propositions intoz3 propositions.
This involves translatingreix SSA variables and constants of machine integer typ8tterms of the
appropriate bit-vector type (meaning the number of bitspeKations on machine integers translate to
operations on bit-vectors. We also translate pointer ini® bit-vectors, which is sound, and floating-
point values into reals, which is the only unsound part oftthaslation.

A not-so-easy part of the integration consisted in retrig\all the information maintained BREix
about a path into propositions. Indeed, the actual behafibie simulation engine is not as simple as the
one presented in Sectibn B.1. First, information about #heevof variables, even partial, is not stored as
propositions in the set of facts, but rather directly in esttaictures pointed to by the variable. Secondly,
the simulation engine encodes some of the properties itegén variablesd.g, the validity of pointers)
and others irad. hoc.ways €.g, being initialized). As a starting point, we translatedpmsitions added
to the set ofPRHix facts intoz3 propositions and asserted them in the context maintaipea8 lalong
the way. We solved the first problem by forcing the generadiorn3 propositions in those cases too. We
solved the second problem by keeping the parwsrafix solver which treat these special cases.

A strong requirement for our integration was to generatg gnbund propositions iz3, without
guantified axioms, so that the queries can be answered wigiwdng through the expensive process of
matching and quantifier instantiation. This allowed us tegkéhe timeout for each query to a very low
100ms.

PREiX maintained only atomic propositions in its set of facts,order to simplify the task of its
solver. Although the current integration follows this ragton, a promising oportunity is to handle some
disjunctions directly t@3, instead of systematically splitting paths inside theusation engine. As a
proof-of-concept implementation, we now handle classsdasC++ as disjunctions in3.

Another oportunity for efficiency gains is the rollback mantsm offered by3. We started sup-
porting such a mechanism at the level of the simulation enfpn backtracking from failed attempts at
simulating an outcome for a call, without having to discdrel path like previously.

During these experiments, where fine-tuning made a grdatelifce, it was essential to have among
the authors of the paper one owner of each roaifix and z3.

10

Integer Overflows Moy, Bjagrner, Sielaff

5 Integer Overflow Checks

For each operation that can overflow, whether it is arithenetia cast, we devise an appropriateck

i.e., a proposition in the theory of bit-vectors which exprestes the operation does not overflow.

These checks are slighly different from traditional asses, in that they cannot be easily expressed in
the source language C/C++, and, as mentioned in Sedtioeyl dthnot constrain the value of program

variables. The latter ensures that we analyze programsanitiverflowing semantics. The former may

be surprising, as safe libraries, like Safe[nt/[39], intsXS] and the CERT Secure integer library[[15],

do express similar checks as assertions in C/C++. Althouglcauld choose these expressions for our
propositions, this would be very inefficient. Our propasis are more efficient, at the cost of not being
expressible in C/C++.

Although we collectively designate them as integer overlowe distinguish overflows proper,
where the mathematical result is larger than the value septed, from underflows, where the math-
ematical result is smaller than the value represented. \Wetedehe non-overflowing predicafd .. and
the non-underflowing predicafe]_. They both take as term argument an operation, and retursta fir
order logic proposition in the theory of bit-vectors, whigkpresses respectively the absence of overflow
or underflow during the operatiork.g, returning to the difference between signed and unsignbd su
traction seen in Sectidd 2, the following are valid formutasN > 1:

[N -, 0Nt @ 1], = true [0N — 0Nt @ 1], = true
[N -, 0Vt @ 1]_ ~ false [0N 0Nt @ 1]_ = true

(Actually, the last formula is not true fa¥ = 1. Our non-overflowing predicates are correct for any
includingN =1.)

5.1 Arithmetic Operations

There are four binary arithmetic operations (additigrsubtraction-, multiplication x and division/)
and one unary arithmetic operation (negatign Remainder operation, which can neither overflow nor
underflow, is not considered. (Signed remainder follows sifjdividend.) Bit-vector operands of each
binary arithmetic operation should have the same &ize

Addition

Unsigned addition can only overflow. To check the absencevefflow, we extend bit-vector operands
x andy by one zero-bit, perform the addition on the extended liters, and check that the result fits in
N bits.

[+ +.y]s = (0@z+0@y)[N] =0

Signed addition can both overflow and underflow. There ametleases, depending on the sign of
x andy: (1) if z andy have opposite signs, the addition can neither overflow ndedtow; (2) if z
andy are both non-negative, the addition can only overflow, winiebessarily leads to a negative result;
(3) conversely, itz andy are both negative, the addition can only underflow, whiclessarily leads to
a non-negative result.

z[N-1]~0Ay[N-1]=20=> (z+y)[N-1]~0

[z +sy]+

[N-1]21Ay[N-1]~21=(z+y)[N-1] =1

[z +sy]-

11

Integer Overflows Moy, Bjagrner, Sielaff

Subtraction

Unsigned subtraction can only underflow. Checking that th#racted operang is smaller than the
other operand: is a necessary and sufficient condition for non-underflowing

[[x_uy]]— = Y<u T

Signed subtraction can both overflow and underflow. Ther¢haee cases, depending on the sign of
z andy: (1) if z andy have the same sign, the subtraction can neither overflowmaertlow; (2) if x
is non-negative ang is negative, the subtraction can only overflow, which nemgskeads to a negative
result; (3) conversely, it is negative ang is non-negative, the addition subtraction can only underflo
which necessary leads to a non-negative result.

[N-1]20Ay[N-1]~21=(z-y)[N-1]~0

[z -syl+

[N-1]21Ay[N-1]20=(z-y)[N-1]~1

[[l’ —s y]]*

Multiplication

Unsigned multiplication can only overflow. To check the adugeof overflow, we extend bit-vector
operands: andy by N zero-bits, perform the multiplication on the extendedueittors, and check that
the result fits inV bits.

[zxuy]s = (VN @zx0N@y)[2x N-1:N]=0"

Signed multiplication can both overflow and underflow. Thee two cases, depending on the sign
of z andy: (1) if x andy have the same sign, the multiplication can only overflow;o@)versely, if
x andy are opposite signs, the multiplication can only underfloa.cfieck respectively the absence of
overflow or underflow, we sign-extend bit-vector operan@ndy by N bits, perform the multiplication
on the extended bit-vectors, and check that the result fidé bits.

[z xsy]+ = 2[N-1]~y[N-1] =
@[N-1Neozxy[N-1]Vey)[2x N-1: N -1] ~0"*!

[txsy]- = 2[N-1]2y[N-1] =
@N-1]" ez xy[N-1]"ey)[2x N-1: N-1] = 1V
Division
Unsigned division cannot overflow or underflow. Signed dionscan only overflow, when performed
over the minimal integer value represented by bit-vetter0’ ! and -1 represented by bit-vectb?'.

This is because there is one less positive numbers thandheregative numbers. To check the absence
of overflow, we exclude this case.

[x/sy]+ = ﬁ(leéBONfl/\yle)

12

Integer Overflows Moy, Bjagrner, Sielaff

Negation
Like signed division, negation can only overflow, for the samason. To check the absence of overflow,
we exclude this case.

[-sz]+ = ~(x~ 1€BON_1)

5.2 Cast Operations

A cast operation converts a bit-vector operandver N bits, seen as signed or unsigned, toldrbits
bit-vector, also seen as signed or unsigned. We denote(iVgg — M,,,) z. Therefore, there are as
many casts as there are ordered pairs of different integestywith 6 integer types on 32-bits machines,
there are 30 different cast operations. With 8 integer tyges4-bits machines, there are 56 different
cast operations.

Unsigned Casts

A cast from an unsigned integer type to another unsignedy@nteype cannot underflow, and it can
overflow only whenM < N. In this case, checking the absence of overflow amounts ttkaigethatz
fits in M bits.

[(Ny - My)x], = 2[N-1: M] ~ VM

Casts From Unsigned to Signed

A cast from an unsigned integer type to a signed integer tgpeaat underflow, and it can overflow only
whenM < N. In this case, checking the absence of overflow amounts tkatgethatz fits in M — 1
bits (because the most significant bit should be 0).

[(Ny - My)x], = 2[N-1:M-1]~0N"M*1

Signed Casts

A cast from a signed integer type to another signed integex tan both overflow or underflow only
whenM < N. It can only overflow whern: is non-negative, in which case we must check théts in
M -1 bits (because the most significant bit should be 0). It cag onterflow whene is negative, in
which case we must check thafits in M - 1 bits (because the most significant bit should be 1).

[(N, > M)z], = 2[N-1]~0= [N -1: M - 1] ~ (N-M+!

Z[N-1]=1=z[N-1: M -1]~1V"M*!

[(Ns — M)]

Casts From Signed to Unsigned

A cast from a signed integer type to an unsigned integer tameoverflow only when/ < N -1 and
it can underflow for any values @g¥ and M (even 1). It can only overflow when is non-negative, in
which case we must check thafits in M bits. It does underflow whenevetis negative.

[(Ny - My)z], = 2[N-1]~0=z[N-1: M]~0""M

13

Integer Overflows Moy, Bjagrner, Sielaff

[(Ns > My)z]- = 2[N-1]~1

5.3 Sound Approximations for Multiplication Overflows

Based on initial experiments, we quickly noted that the neerflowing checks for multiplication are too
costly in practice, leading to many timeoutsa¥. (We set a very low timeout of 100ms.) As shown in
Sectior 5.1, the initial non-overflowing check we used wasetaon the most straight-forward approach
that consists in computing a result 2AN bits and checking if any of the leadig bits is set. Instead,
we implemented irz3 a far more efficient approach that does not require to comniat leadingV — 1
bits of the result. It is based on the efficient overflow cheoksGok et al. [26]. This approach still
requires to compute the loweat+ 1 bits of the result, so we devised sound approximate cheeksuh
even faster, at the cost of being incomplete. In this Sectanwill investigate how the naive overflow
checks compare to the more efficient version as well as theriopate version.

Given a costly initial checK?].., our goal is to come up with propositiogsand that are cheaper
to check inz3, such that is a stronger proposition thdi].., and« is a weaker proposition.

¢p=["N:=

Given such propositions and+, checking the validity of[?]. can be answered by checking the
validity of the strongerp, and checking the unsatisfiability §?]. can be answered by checking the
unsatisfiability of the weakep.

5.3.1 Unsigned Multiplication
Looking at unsigned multiplication first, we note that

y < 2N7[10g2(x)J—1 - [[x Xy yﬂ+ =y< 2N*UO€2($)J.

Given that|log, ()| is the position of the most significant 1-bit of we can rewrite propositions
andq. v rewrites to a cascading if-then-else proposition, withdtnet inequality translated as expected
zeros.

y<2Vloea@®] _ jre(x[N-1]=1,y[N -1:1] =0V,
ite(z[N -2] ~1,y[N -1:2] =~ 0N "2,

ite(z[0] ~ 1, true, true) ...)) 2

¢ also rewrites to a cascading if-then-else propositionhwite non-strict inequality translated as
equality with the bound or strict inequality, like above.

y <2V losa@I-t — e ([N -1] 21,y 20V T e 1vy[N-1:0] =0V,
ite(z[N -2]~1,y~0" 20100 vy[N-1:1] =0V,

ite(x[0] ~ 1, true, true) ...)) (3)

WhenN is a power of 2, we can build families of propositiofs),, and (), such that

14

Integer Overflows Moy, Bjagrner, Sielaff

log, (y)
K
N
K I I | |
‘§ \777\777\777\
wk I I I
| G
| Q)k | | |
of 0 Nrxw=2h
14 --+- -4 - - - L
o log, (2)
0 \ ! ‘ 2
0o 1 2 K

Figure 9: Approximation ¢y, ;) of the non-overflowing multiplication check

qblogz(N) =>... =201 =>¢g2y< 2N—[1og2(q;)J_1

y < oN-[logy ()] _ Bo = 1 .. = Viog, (V)

The definitions ofy,, and ¢, are respectively generalizations of formulak (2) ddd (3 W the
shorthandk for 2%,

Y = dte(@[N-1:N-K]205 y[N-1:K]~0VEK,
ite(z[N-K-1:N-2xK] 05 y[N-1:2x K] ~0V"2*K

ite(z[K —1:0] 2 0%, true, true) ...))

bk =
ite(x[N-1:N-K]#0%,y~0""1e1vy[N-1:0]~0",
ite(z[N-K-1:N-2xK] 205 y~0" K 1lo1008 vy[N-1:K]~0N K,

ite(z[K -1:0]20%,y=05 10100V K vy[N-1:2x N - K] ~0% true)...))

Figure[9 plots pairs of operands:,y) on a logarithmic scale. Each pair of functioy, vy)
defines a step-wise approximation of functior y = 2V from both sides. First, the numhgf, of pairs
of operands which do not lead to an overflow is

oN_1 2N _q oN _q
NX=Z#{y|mxy<2N}=2N—1+Z{ J
z=0 z=1 Z

15

Integer Overflows Moy, Bjagrner, Sielaff

The summation can be bounded as follows:

2N-1| 9N N_1 9N N

2% -1 27-128 -] 2 N+1

D <2N—1+f .dx=(2N—1)x(1+1n(2N—1))mM
x 1 x log,(e)

=1

2N-1| 9N _ oaN_1 9N _ N _
D 2 -1 >-2N+1+f 2 1.dm=(2N—1)x(—1+ln(2N))wM
x 0 x+1 log,(e)

=1

This leads to approximate bounds o :
N N
XN o 2 x (N +2)

logy(e) © © logy(e)
Now, the number of pairs of operand$; that are correctly classified as non-overflowingdyis

Iz

N _ 1{221 (2K><(X+1) _2K><X) x 2N—K><(X+1) — E x <2N _2N—K)
¢ X=0 K
The last summation goes froid, = 2V _ 1 (almost no pairs) foi = N to Ny =N x 2N=1 (of the
same order a&*) for K = 1.
Likewise, the number of pairs of operanti§, that are not classified as overflowing by is

N_1
K

Nw — Z (2K><(X+1) _2K><X) x 2N—K><X — % x (2N+K _2N)
X=0

The last summation goes fran, = 22N _ 9N (almost all pairs) foX = N to Ny =N x 2N (of the
same order a8/, for K = 1.

In particular, the most precise pair of approximation fiows (¢, o) defined by formulas[{2)
and [3) succeeds in correctly classifying a non-overflovgiaiy of operands roughly half of the time, but
more importantly, it almost always correctly classifies aariowing pair of operands, with a probability
of 1 - ZLN Since we are looking for bugs, this is the side of the appnaxion we care most about. Our
experiments also show that, contrary to the off-by-one lthgsare common among integer overflows
related to addition and subtraction, integer overflowsteeldo multiplication do not tend to show only
at the fringe, which validates our approach. Notice thais the same as the preliminary overflow flag,
V., from Goket al.[26], for which they give an efficient implementation.

Figure[10 shows the time, number of literals, and numberafs#s that are created from the circuits
for (1) checking for non-overflows of twdv-bit numbers as presented in Sectidn 5, (2) checking for
non-overflows using the circuit construction described26]] and (3) approximate checking of-
bit multiplication using formula[{3). In the figurey ranges from 1 to 64 bits. We observe that the
overhead of checking unsigned multiplication overflow cannquickly be dominant. The approximate
multiplication overflow checks require both linear timelsp overhead and is an order of magnitude
faster.

5.3.2 Signed Multiplication

We check for approximate overflows and underflows of signettipfication by using a reduction to
unsigned multiplication. The reduction requires to negagative numbers. There is a special case when
either of the multiplicands is the minimal negative integalue, for which direct negation underflows, so
that this case needs to be treated separately. Overallathe kind of approximations as above applies.

16

Integer Overflows Moy, Bjagrner, Sielaff

bvumul_noovfltime bvumul_noovfl literals bvumul_noovfl clauses
13 700000 100000
S 500000 b 20000 i 4
I I " 80000 7
500000 L+ Y
r 70000 ¥
60000
400000 + N
3 50000 A
300000 | 40000 | W dd
2]
200000 { 30000
.] 20000 "
10000 I 10000 W@
0 0 o
14 7 1013 1619 22 25 25 31 34 37 40 43 45 49 52 55 58 61 54 14 7 1013161922 25 28 3134 37 40 43 46 49 52 55 58 6164 14 7 101316 1922 2528 3134 37 40 43 46 49 52 55 58 6164

Naive multiplication overflow detection usirdg n bit-vector multiplication

bvumul_noovfl Time bvumul noovfl Literals bvumul_noovfl Clauses

006 160000 0000
005 140000 35000

’_‘f/ 120000 30000 <

004 /_/" 100000 25000 G
003 4N./\J 80000 20000
002 60000 15000
001 \VA 20000 5000

0 [0 tTTTTeT
14 7 1013 151922 25 28 31 34 37 40 43 45 49 52 55 58 51 64 1 4 71013161922 25 28 31 34 37 40 43 46 49 52 55 58 61 64 14 7 101316 13 22 25 28 31 34 37 40 43 45 48 52 55 56 61 64

Optimized(n + 1)-bit multiplication based overflow detection

bvumul_noovfl_approxtime bvumul_noovfl_approxliterals bvumul_noovfl_approx clauses

004 3500 500

0035 3000 450
200

00 | i
H I N

2000 300
o0z | I 20 |
oots | LA,
001 e uuay N
A" ad
0005 - 500 7 50

0 0 0
1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Approximate multiplication overflow detection

=

Figure 10: Saturation time/number of literals/number dfahand generated clauses for unsigned mul-
tiplication overflow circuits, and circuits approximatisgfe multiplication non-overflow

6 Practical Bug-finding

Finding integer overflows in programs, as defined in Sedtiors bitterly useless by itself. The vast

majority of potentially overflowing operations, as defingd@straightforward implemention, do not

correspond to bugs. The following three developments ofat@cker were crucial in making bug-

finding successful: (1) we added checks for uses of overflaiuweg which can lead to security issues;
(2) we identified and discarded broad categories of falsdiyes and (3) we devised a ranking scheme
S0 as to present the user with the most serious warnings first.

6.1 Security Checks for Using an Overflown Value

Based on the security vulnerabilities reported so far edldb integer overflows, there are mainly two
cases where an integer overflow can lead to a buffer overfldwctwis the main security issue with
integer overflows.) We do not distinguish overflows propenfrunderflows here.

» An integer passed as size argument to an an allocationidtnauch asral | oc orcal | oc, is

17

Integer Overflows Moy, Bjagrner, Sielaff

S+ get _el ens(
ui nt nun

t {
uint siz = num=* sizeof(S);
S+ tab = mall oc(siz);
return tab;

} }

voi d | oad_dat a(
S+ data, uint pos)

uint spos = pos - Gpos;
dat a[spos] = get();

Figure 11: Security integer overflows: allocation size aomier offset

the result of an integer overflow.

» Aninteger used as offset in pointer arithmetic or pointefeixing is the result of an integer over-
flow.

Figure[11 shows an example of each vulnerability. In fumcti@t el ens, the computation of
si z could overflow, in which case the array allocated will be derahan expected. Since the caller
has no reason to believe the array is not of the appropria¢e isiwill almost surely access it beyond its
bounds. In functiol oad_dat a, the computation o§pos could overflow (well, underflow here), in
which case arraglat a is written beyond its bounds.

Our mechanism for detecting such dangerous uses of overflalues keeps track of whether a
value is the result of an integer overflow, and if so recorésojperation which computed this value. Like
tainting, the property of possibly being the result of arger overflow propagates transitively from the
operands to the result of each operation. When a value isassad allocation size or a pointer offset, we
first check whether this value has been flagged as possibiflava. If so, we build a proposition that
expresses that none of the (possibly overflowing) operatieading to this value can be overflowing.
Finally, we queryz3 for the validity of this proposition in the current conteahd we issue a warning
whenever the result is ndtue. Figure[12 shows three examples wheBanswers respectivelalse
true anddon’t know

In the case of functioex_f al se, si z is trivially always the result of an integer overflow and we
issue a warning.

In the case of functiorex_true, si z may be the result of an integer overflow, but the test
si z < numfilters all cases where an overflow occurs, therefore theaiion is safe. By querying
the validity of the non-overflowing proposition at the poiviteret ab is allocated, we are able to iden-
tify that there is no problem in this function.

In the case of functioex_dont _know,si z may be the result of an integer overflow, but we cannot
be sure of this without knowing the possible values of patanmmeum As explained in Section 3.1, the
usual way this is handled PRrREix is to add the corresponding proposition to the constsasfithe current
path. Then, it gets mapped back, if possible, to functiommaters in order to generate a constraint that
propagates to the callers of the current function. In theeess, a warning is issued only if a function
always triggers the integer overflow on some path. Whileesganodels help generating such paths in
the case of buffer overflows, this is not so easy with intege@rftows, which makes it likely to miss
errors. This is why we chose instead to report these casesm@sngs right-away, due to the criticity
of the associated bugs. Notice that we assume heresthi¢of (S) is greater than 1. Had it been
equal to 1, or had the allocation size been simply parammatern the corresponding value would not
be flagged as possibly overflown, and we would not issue a n@grnrhis does not meamumcould
not be the result of an integer overflow. It simply reflects pletially intraprocedural dimension of our
technique for detecting uses of overflown values.

18

Integer Overflows Moy, Bjagrner, Sielaff

voi d ex_fal se(voi d ex_true(.
. - . - voi d ex_dont _know(
{ uint num { ui nt nun uint nun
if (num> Ox7fffffff) { uint siz = { gint siz =
uint siz = num= 2; num + si zeof (H); num * si_zeof(S)'
S+ tab = malloc(siz); if (siz < num return; Sk tab = Ol N
} S+ tab = malloc(siz); } ab = malloc(siz);
} }

Figure 12: Using an overflown value: different results

6.2 Categories of False Positives

Most integer overflows detected by our tool are false passtiand most of these false positives fall into
one of the following categories, in decreasing order of inmwe:

1. casts between 32-bits signed value -1 and 32-bits urdigglae Oxffffffff, used to report an error
status

casts of the status value returned by a function betwedit82igned and unsigned integer types
casts of variables storing status values between 3&igited and unsigned integer types

explicit casts (introduced by the programmer, contraiiyiplicit casts introduced by the compiler)

a > W DN

loop decrements over an unsigned loop counter, likehinl e(i - -), which cause the loop to
exit with an underflow on the loop counter (in dead code moghetime, meaning the counter is
not used past the loop)

By default, we do not generate warnings for integer overflthas correspond to cased 1[2, 4 ahd 5.
These settings can be reversed individually on option. Bezateger overflows corresponding to ddse 3
are more likely to uncover bugs, we still issue a warning lfase, but we defined specific warnings for
them, so that they can be easily recognized.

The remaining false positives fall in four categories: Byt are justified integer overflows, as shown
in Sectior(1; (2) they cannot arise in practice due to the sphysical limitations €.g, the number of
processors) that our approach does not take into accoyrthgy depend on an invariant of the system
(e.g, the range of values of some field) that our approach is noteankand (4) they stem from the
imprecision of our tool.

6.3 Ranking of Warnings

Ranking is an essential componentrafefix in making bug-finding more effective. It computes a score
for each warning, which is used to present warnings to theinsecreasing order. Since the raw output
of PRHEiX mixes highly probable defect reports with very unlikelpes, this improves the developer
experience. Typically a cutoff score is used to separatad¢hbarate warnings from the false positives.

To facilitate ranking and manual filtering, we generatefedint warnings for all checks presented in
Sectior[b: 17 warnings correspond each to a different owefdlederflow check; 2 warnings correspond
to the two dangerous uses of overflown values discussed iio8Ec1; 2 warnings correspond to casts
between signed and unsigned integer types of the same sipedér to isolate the cagé 3 discussed
in Sectior 6.P.

19

Integer Overflows Moy, Bjagrner, Sielaff

count

15 1

12

131 141 142 143 147 149 150 151 152

Figure 13: Count of bugs filed per warning (identified by a nemb

Apart from the general heuristics applied byeix for every warning, depending on the locality, the
kind of variables involvedetc, specific rules penalize or promote warnings based on th&gory. We
chose to penalize the following categories of overflow wagsj in decreasing order of importance:

1. Warnings that correspond to casts between signed angheakinteger types of the same size are
penalized most. It takes care of the clake 3 discussed iro8Eca.

2. Warnings that correspond to underflow in signed muliglan are penalized next, because
(1) there are an awful lot of them and (2) they never uncovarkdg in our experiments.

3. Warnings that correspond to various underflows/overfiovesithmetic operations are slightly pe-
nalized, because (1) there are quite many of them and (2)uhegvered less bugs than other
categories in our experiments. This concerns overflows gmesiunsigned addition and multi-
plication and underflow on signed subtraction. Other categare not penalized because they
generate fewer warnings, or, in the case of underflow on nadigubtraction, we found that the
corresponding warnings uncovered many real bugs.

7 Results on the Microsoft Product Code Base

We appliedPrHix, with z3 inside, to a substantial part of Microsoft’s code basesistimg of over 10
million lines of C/C++ code. One of the authors spent thregsdaviewing integer overflow warnings,
split among a few weeks. This allowed us to gain insight ihtodategories of expected integer overflows
and false positive that we discuss in Secfiod 1.1 and Set@n Other warnings present fluctuations
w.r.t. PRHEix before the integration that are typical of even small rfiodtions in such a complex tool
when applied on such a large code base.

Figure[I3 summarizes our results. We filed 31 bugs, 17 of wiviete generated by our security
checks for uses of overflown values. Warning 150 which geesrthe most bugs (16) is the use of
an overflown value in an allocation size. Warning 147 whichagates 7 bugs is the underflow on an
unsigned subtraction, which is why we did not penalize ihglwith other arithmetic checks in ranking.

Based on review from developers, the accuracy rate on thagei® approximately 50%.

20

Integer Overflows Moy, Bjagrner, Sielaff

LONG | _sub(LONG | _var1, LONG | _var?2)
{
LONG | _diff =1_varl - | _var2; // perform subtraction
/'l check for overflow
if ((I_var1>0) && (Il _var2<0) && (I_diff<0)) |_diff=0x7FFFFFFF;

o o0 h W N P

7 i Element = mnSize;

g if(iEl ement >= mnMaxSi ze)

o {

10 bool bSuccess = GrowBuffer(iElement+l);
11

12 }

13 ::new(mpData+i El ement) E(el enent);

14 m.nSi ze++;

15 for (UNWORD ulD = 0; ulD < uDevCount && SUCCEEDED(hr); ulD++) {
16 PR

17 i f (SUCCEEDED(hr)) {

18 ul D = ubDevCount; // Term nates the | oop

19 ULONG Al | ocationSi ze;

20 while (CurrentBuffer !'= NULL) {

21 if (NunberOfBuffers > MAX_ULONG / si zeof (MYBUFFER)) {
22 return NULL;

23 }

24 Nunber O Buf f er s++;

25 Current Buffer = Current Buf fer->NextBuffer;

26}

27 Al l ocationSi ze = sizeof (MYBUFFER) * Nunber O Buf f er s;
28 UserBuffersHead = nal |l oc(Al |l ocationSi ze);

29 DWORD dwAl | oc;

30 dwAl |l oc = MyLi st->nEl enents * sizeof (MY_I NFO ;
31 if(dwAlloc < MLi st->nEl ements)

32 ... [l return

33 MyList->plnfo = M DL_user_al |l ocat e(dwAl | oc);

Figure 14: Real integer overflow bug samples

Figure[14 shows a few sample code stubs containing integeflow bugs that our tool discovered
in the code base. These bugs illustrate how integer overfioarsfest themselves in the real code, as
opposed to select, well-known, samples from Fidure 1 ptegen Section 1.

Function | _sub performs safe subtraction of signed 32-bits integers byediely over-
flows a posteriori The problem is that the test on line 5 misses the case where
| varl == 0 & & | _var == INT_MN. The first test| var1>0 should read in fact
| _var 1>=0. Thus, the programmer intended to check for overflows, waotestom routine, but the
custom routine misses a case. Interestingly, this bug itk usingPREix and z3 because a call site
is able to produce arguments that fall through the overflogckh

On lines 7-8, both fieldsn nSi ze and m nMaxSi ze could be equal tdJl NT_MAX, in which
case the argument @ owBuf f er on line 10 is 0. Later on, the placement new on line 13 writes in
unallocated memory.

On line 18,uDevCount could beUl NT_MAX, in which case the attempt to terminate the loop by
settingul Dto uDevCount does not work, aal Dis incremented to 0 at the end of the loop, before the
testul D < ubDevCount .

The test on line 21 does protect from an integer overflow in thmltiplication

21

Integer Overflows Moy, Bjagrner, Sielaff

si zeof (MYBUFFER) * Nunber O Buf f ers, but as Nunber Of Buf f ers is incremented on
line 24 just before the loop exits, the test is ineffective.

On line 32, the test performed would be effective at detgciimeger overflows on an ad-
dition, but it is unfortunately ineffective for detectingitéger overflows on the multiplication
MyLi st ->nEl enments * si zeof (MY_I NFO).

8 Conclusion

To our knowledge, this is the first static analysis tool theriausly addresses the detection of integer
overflow bugs in large legacy code bases. Yet the problemtefién overflows has been known for at
least 30 years. Our tool addresses this challenge on pregnaitien in C/C++, where most integer
overflows are intended or benign. This increases the difficafl our task in two ways: first, our tool
must assume overflowing semantics for integers; secondlytoml must distinguish intended uses of
integer overflows from bugs.

We defined 17 non-overflowing checks as properties in theyr@dit-vectors. Each check ensures
that the corresponding arithmetic or cast operation eitloess not overflow or does not underflow. We
showed that the encoding of these propositions into biteircuits by bit-blasting generated a low
number of clauses, except for checks on multiplicationwibich we devised cheap approximate checks
that retain most of the discriminating power of the real éhe& result of our work was also to make
these exact arithmetic overflow and underflow checks availabpart of the3 API.

Apart from integer arithmetic specific checks, we definecckhdor uses of overflown values which
lead to buffer overflows, with harmful consequences for sgcuThis allowed us to generate these
warnings more aggressively, and to focus our manual reviethese more critical issues.

From our experience at finding bugs in this code base, weifitabshe intended uses of integer
overflows as intentional, reversed and checked, and weifiger broad categories of intentional integer
overflows. This work lead to the definition of default setirend ranking strategies which concur to
present the user of our tool with the most serious warnings fir

Although we started this work as a research experiment, dpalslities ofPREix with z3 appear
sufficiently mature to be exercised on the Microsoft codeeba3ngoing work is to further reduce the
number of false positives presented to the user, whilemeigithe most serious issues we detect with
the current version. Apart from designing additional spkechtegories of false positives, we expect
important gains from a better use of the annotations alrgmelgent in the code (originally for buffer
overflows) and from the manual addition of models for staddanctions manipulating strings, buffers
or integers, both tailored towards integer overflow bug#figd

There are many ways we could extend our tool to better detéager overflow bugs. An obvious
extension is to consider other dangerous uses of overfloluesa.g, as the size of a call twencpy [7].
Another idea is to exploit the many calls in the code to fuordifrom the safe libraries Safelnt [39] and
intsafe [29], that indicate the user intent to protect soemeskive values from otherwise possible and
harmful integer overflows. It should be possible to desigaiating mechanism, such that all values
that concur in the computation of a sensitive value, or tlesivd from such a value, are also marked as
sensitive. Integer overflow warnings about these valueddimelconsidered highly critical.

Overall, we are confident that our goal of presenting the witérhigh-risk security bugs containing
few false positives is within reach of a practical deploymeFhanks to the carefully designed incom-
pleteness inherent ®RHix, and that we introduced in our integer overflow checks te® managed to
get a sound, efficient, bit-precise static analysis foratatg integer overflow bugs in the large.

22

Integer Overflows Moy, Bjagrner, Sielaff

Acknowledgments

We would like to thank Tom Ball, Leonardo de Moura, Mei Zhabgyvid Nanninga, Masood Siddiqi,
Patrice Godefroid, Tim Fleehart, Mac Manson and DennisrCiaitheir help and feedback.

References

[1] Domagoj Babit and Frank Hutter. Spear theorem proveProc. of the SAT 2008 Rac2008.

[2] T. Ball and S. K. Rajamani. The SLAM project: debugging®m software via static analysiSIGPLAN
Not, 37(1):1-3, 2002.

[3] John BarnesHigh Integrity Software: The SPARK Approach to Safety aroiffty. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2003.

[4] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# pargming system: An overview. IBASSIS
2004 LNCS 3362, pages 49-69. Springer, 2005.

[5] C. Barrettand C. Tinelli. CVC3. I'€AV '07, 2007. to appear.

[6] Patrick Baudin, Jean-Christophe Filliatre, Claude rbke#, Benjamin Monate, Yan-
nick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification Language?2008.
http://frama-c.cea.fr/downl oad/ acsl 1. 4. pdfl

[7] blexim. Basic integer overflows. Phrack Magazine December 2002.
http://ww. phrack. com'i ssues. ht M ?i ssue=60& d=10.
[8] Joshua Bloch. Extra, extra - read all aboutit: Nearlypallary searches and mergesorts are broken. June 2006.
htt p://googl er esear ch. bl ogspot . con’ 2006/ 06/ extra-extra-read-all -about-it-nearly. htnl

[9] Bryan A. Brady and Sanjit A. Seshia. The Beaver SMT solver
http://uclid.eecs.berkeley.edu/wiki/index.php/UCLID

[10] Robert Brummayerand Armin Biere. Boolector: An effldi&MT solver for bit-vectors and arrays. In Stefan
Kowalewski and Anna Philippou, editorBACAS volume 5505 of_ecture Notes in Computer Scienpages
174-177. Springer, 2009.

[11] Roberto Bruttomesso, Alessandro Cimatti, Anders EeanAlberto Griggio, Ziyad Hanna, Alexander Nadel,
Amit Palti, and Roberto Sebastiani. A lazy and layered SMA)(Bolver for hard industrial verification
problems. In Damm and Hermanns|[19], pages 547-560.

[12] Randal E. Bryant. A view from the engine room: Compuiaéil support for symbolic model checking. In
Orna Grumberg and Helmut Veith, edito2§ Years of Model Checkingolume 5000 ofLecture Notes in
Computer Scieng@ages 145-149. Springer, 2008.

[13] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillana@d L. Dill, and L. J. Hwang. Symbolic Model
Checking:10%° States and Beyondnf. Comput, 98(2):142-170, 1992.

[14] William R. Bush, Jonathan D. Pincus, and David J. Sfelafstatic analyzer for finding dynamic program-
ming errors.Softw., Pract. Exper30(7):775-802, 2000.

[15] CERT. Secureinteger library, 200t p: // www. cert . or g/ secur e- codi ng/ I nt eger Li b. zi pl

[16] Edmund Clarke, Daniel Kroening, and Flavio Lerda. Altfmw checking ANSI-C programs. In Kurt Jensen
and Andreas Podelski, editorBpols and Algorithms for the Construction and Analysis aft&ys (TACAS
2004) volume 2988 of_ecture Notes in Computer Scienpages 168—176. Springer, 2004.

[17] Edmund Clarke, Daniel Kroening, Natasha Sharyginal, idaren Yorav. SATABS: SAT-based predicate
abstraction for ANSI-C. InTools and Algorithms for the Construction and Analysis oft&yns (TACAS
2005) volume 3440 ot ecture Notes in Computer Scienpages 570-574. Springer Verlag, 2005.

[18] M. Costa, J. Crowcroft, M. Castro, A. I. T. Rowstron, Lh@u, L. Zhang, and P. Barham. Vigilante: end-to-
end containment of internet worms. 8OSP pages 133-147, 2005.

[19] Werner Damm and Holger Hermanns, editd@amputer Aided Verification, 19th International Conferenc
CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedingdume 4590 ol ecture Notes in Computer Sci-
ence Springer, 2007.

[20] Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficieM® solver. INTACAS 082008.

23

http://frama-c.cea.fr/download/acsl_1.4.pdf
http://www.phrack.com/issues.html?issue=60&id=10
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://www.cert.org/secure-coding/IntegerLib.zip

Integer Overflows Moy, Bjagrner, Sielaff

[21] R. DeLine and K. R. M. Leino. BoogiePL: A typed proceddemguage for checking object-oriented pro-
grams. Technical Report 2005-70, Microsoft Research, 2005

[22] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theoprover for program checking. ACM 52(3):365—
473, 2005.

[23] B. Dutertre and L. de Moura. A Fast Linear-Arithmetich& for DPLL(T). In CAV’06, LNCS 4144, pages
81-94. Springer-Verlag, 2006.

[24] Vijay Ganesh and David L. Dill. A decision procedure fuit-vectors and arrays. In Damm and Hermanns
[19], pages 519-531.

[25] Patrice Godefroid, Michael Y. Levin, and David A MolnaAutomated whitebox fuzz testing. Metwork
Distributed Security Symposium (NDSB}ernet Society, 2008.

[26] Mustafa Gok, Michael J. Schulte, and Mark G. Arnoldtelger multipliers with overflow detectioEEE
Trans. Computer$5(8):1062—-1066, 2006.

[27] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori,a8. K. Rajamani. Synergy: a new algorithm for
property checking. II8IGSOFT FSEpages 117-127, 2006.

[28] Brian Hackett, Manuvir Das, Daniel Wang, and Zhe Yangoddlar checking for buffer overflows in the
large. InICSE '06: Proceedings of the 28th international confereaneSoftware engineeringpages 232—
241, New York, NY, USA, 2006. ACM.

[29] Michael Howard. Safe integer arithmetic in C, February 2002.
http:/ /bl ogs. nedn. com m chael howar d/ ar chi ve/ 2006/ 02/ 02/ 523392. aspx.

[30] ISO-IEC. Programming Languages—C, ISO/IEC 9899:1990 Internati@andard 1990.
[31] ISO-IEC. Programming Languages—C++, ISO/IEC 14882:1998 Interoiadil Standard1998.

[32] Franco Ivancic, llya Shlyakhter, Aarti Gupta, and IedaK. Ganai. Model checking ¢ programs using F-
SOFT. InICCD '05: Proceedings of the 2005 International ConferelmceComputer Desigrpages 297—
308, Washington, DC, USA, 2005. IEEE Computer Society.

[33] Paul B. Jackson, Bill J. Ellis, and Kathleen Sharp. sBMT solvers to verify high-integrity programs. In
AFM '07: Proceedings of the second workshop on Automateddbmethodspages 60—68, New York, NY,
USA, 2007. ACM.

[34] Brian W. Kernighan and Dennis M. Ritchighe C Programming Languag®@rentice Hall PTR, Englewood
Cliffs, NJ, USA, first edition, 1978.

[35] Sumant Kowshik. How to defend against deadly integerflow attacks eweek.com blgd-ebruary 2009.

[36] S. K. Lahiriand S. Qadeer. Back to the Future: Revigifitecise Program Verification using SMT Solvers.
In POPL’2008 2008.

[37] James R. Larus, Thomas Ball, Manuvir Das, Robert DeLiianuel Fahndrich, Jonathan D. Pincus, Sri-
ram K. Rajamani, and Ramanathan Venkatapathy. Rightirtgvacé. IEEE Software21(3):92-100, 2004.

[38] Gary T. Leavens, Clyde Ruby, K. Rustan, M. Leino, EriklPand Bart Jacobs. JML: notations and tools
supporting detailed design in Java. @OPSLA '00: Addendum to the 2000 proceedings of the corderen
on Object-oriented programming, systems, languages, aplications (Addendumpages 105-106, New
York, NY, USA, 2000. ACM.

[39] David LeBlanc. Safelnt, 200t t p: /7 www. codepl ex. com Saf el nt.

[40] David LeBlanc. Integer handling with the C++ Safelntagd. MSDN Library January 2004.
http://nmsdn. mcrosoft.conmien-us/Ilibrary/ ns972705. aspx.

[41] John McCarthy. Towards a mathematical science of cdatfmn. InIFIP Congresspages 21-28, 1962.

[42] D. Molnar P. Godefroid, M. Levin. Automated Whitebox#aiTesting. Technical Report 2007-58, Microsoft
Research, 2007.

[43] PolySpace Client for C/C++ 7.0.1. 2008tt p: / / www. mat hwor ks. coni'|

[44] S. Ranise and C. Tinelli. The Satisfiability Modulo Thies Library (SMT-LIB). www. SMT- LI B. or g,
2006.

[45] N. Tillmann and W. Schulte. Unit Tests Reloaded: Paramized Unit Testing with Symbolic Execution.
IEEE software 23:38-47, 2006.

[46] G. S. Tseitin. On the complexity of derivation in proimnal calculus. InAutomation of Reasoning 2:

24

http://blogs.msdn.com/michael_howard/archive/2006/02/02/523392.aspx
http://www.codeplex.com/SafeInt
http://msdn.microsoft.com/en-us/library/ms972705.aspx
http://www.mathworks.com/

Integer Overflows Moy, Bjagrner, Sielaff

Classical Papers onComputational Logic 1967-19F8ges 466—483. Springer-Verlag, 1983.

[47] Robert Wille, Gorschwin Fey, Daniel Gro3e, Stephagé&rggluf3, and Rolf Drechsler. SWORD: A SAT like
prover using word level information. MLSI-SoCpages 88-93. IEEE, 2007.

25

	Introduction
	Integer Overflows in Practice
	Related Work
	Paper Outline

	Bit-fiddling Preliminaries
	prefix and z3
	The prefix Static Analysis Engine
	The SMT Solver z3
	Interfacing with z3
	Bit-precise Reasoning in z3
	Bit-precise Reasoning in Practice

	Integration
	Integer Overflow Checks
	Arithmetic Operations
	Cast Operations
	Sound Approximations for Multiplication Overflows
	Unsigned Multiplication
	Signed Multiplication

	Practical Bug-finding
	Security Checks for Using an Overflown Value
	Categories of False Positives
	Ranking of Warnings

	Results on the Microsoft Product Code Base
	Conclusion

