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Abstract—Changing source code in large software systems
is complex and requires a good understanding of dependencies
between software components. Modification to components
with little regard to dependencies may have an adverse impact
on the quality of the latter, i.e., increase their risk to fail.
We conduct an empirical study to understand the relationship
between the quality of components and the characteristics of
their dependencies such as their frequency of change, their
complexity, number of past failures and the like. Our study
has been conducted on two large software systems: Microsoft
VISTA and ECLIPSE. Our results show that components
that have outgoing dependencies to components with higher
object-oriented complexity tend to have fewer field failures for
VISTA, but the opposite relation holds for ECLIPSE. Likewise,
other notable observations have been made through our study
that (a) confirm that certain characteristics of components
increase the risk of their dependencies to fail and (b) some
of the characteristics are project specific while some were
also found to be common. We expect that such results can
be leveraged for use to provide new directions for research
in defect prediction, test prioritization and related research
fields that utilize code dependencies in their empirical analysis.
Additionally, these results provide insights to engineers on the
potential reliability impacts of new component dependencies
based upon the characteristics of the component.

Keywords-software quality; defects; dependency; empirical
software engineering

I. INTRODUCTION

Dependencies between software components are widespread
in software systems and are crucial for their successful
operation. They are sometimes formed for strategic reasons
such as to realize certain functionalities in the system and
enable software reuse, or they can simply be side effects
of the organizational structure [1]. Dependencies essentially
paint a picture of information flow within a software system
and exert at least some influence on the overall success and
quality of the product. In the past, researchers have leveraged
them for defect prediction [2], test prioritization [3] and
investigating the intersection of social and technical con-
gruence factors [4] and the like.

In this paper, we seek to extend our understanding of
dependencies between software components by investigating
the impact on the quality of a component (i.e., its likelihood
to have a defect) by the state of its neighborhood (dependents
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Figure 1. Illustration of dependency relationships between Components
A and B

and dependees, see below for definitions). For instance,
consider two components A and B where A is dependent
on B. If component B undergoes significant amount of
code churn (added, deleted, or modified code) between
revisions, it is reasonable to expect that component A will
also undergo some change to be kept in sync with B. Thus,
the effects of churn may propagate across dependencies and
in turn, impact their quality by introducing new faults in
them. Our conjecture is that the quality of a component
may be influenced by the following characteristics of its
dependencies: size, code churn, complexity, test coverage,
and organizational structure.

Our conjecture was strengthened by a preliminary survey
on developers at Microsoft whose views on the influence
of neighboring components conformed to ours (Section II).
Recognizing the importance of the role of dependencies in
overall software quality, we thus conducted a systematic
quantitative investigation on the relationship between the
quality of a component and the characteristics of its neigh-
boring components — this is the main contribution of our
paper. But before presenting the details of our study, we
define some of the terminology used henceforth in the paper:

● Failure-proneness: We consider failure-proneness as a
measure of quality of a software component. Failure-



Table I
RESPONSES FROM A SURVEY ON MICROSOFT DEVELOPERS ON THE RISK OF FAILURE OF A BINARY BECAUSE OF THE CHARACTERISTICS OF ITS

NEIGHBORING BINARIES.

Risk of failure of binary

Characteristics Binary has a dependency with another that Increases Has no effect Decreases No opinion Score

Size has many methods 36 65 1 7 0.34

Churn has churned a lot (quantity of LOC) 91 12 0 6 0.88
has been changed many times 88 18 1 2 0.81

Code metrics is complex 91 14 0 3 0.87
calls many methods of other binaries 84 20 0 5 0.81
is tightly coupled to other binaries 74 26 1 7 0.72
has deep inheritance structures 57 31 3 18 0.59
is called by many methods in other binaries 27 36 39 7 -0.12

Code coverage has high test coverage 1 20 84 4 -0.79

People measures has no clear owner 86 19 0 2 0.82
was developed by ex-engineers 72 32 1 4 0.68
has been developed by many engineers 60 34 3 12 0.59
is not owned by your team 58 46 0 5 0.56
is owned by your team 3 39 65 2 -0.58

Post-release failures failed many times in the past 99 7 1 2 0.92

proneness is the probability that a component will
fail in operation in the field. The higher the failure-
proneness, the higher is the probability of experiencing
a post-release failure. For our purposes, we treat all
components known to have at least one post-release
failure as failure-prone (FP).

● Component Characteristics: Component characteris-
tics are descriptive attributes of a component that can
differentiate it from other components. In this paper,
the component characteristics of interest are size, churn,
complexity, test coverage, and organizational attributes
as shown in Figure 1 for component B.

● Incoming dependency: A component has an incoming
dependency if syntactically another component utilizes
its data or functionality. In Figure I, component B has
an incoming dependency from component A.

● Outgoing dependency: A component has an outgoing
dependency if syntactically it utilizes data or function-
ality of another component. In Figure I, component A
has an outgoing dependency on component B.

● Dependant: A component is a dependent with respect
to another component if it has an outgoing dependency
on that component. In Figure I, component A is a
dependant of component B.

● Dependee: A component is a dependee with respect to
another component if it has an incoming dependency
from that component. In Figure I, component B is a
dependee of component A.

Our investigation involved the study of the relationship
between the failure-proneness of components and the follow-
ing characteristics of dependent and dependee components:

size, frequency and degree of churn, complexity metrics,
test coverage, and organizational attributes (e.g., number
of developers involved). Additionally, we also investigated
whether there is any relation between post-release failures of
a component and the post-release failures of its dependants
and dependees.

We conducted our study on two large software projects:
Windows VISTA and ECLIPSE (versions 2.0, 2.1, and 2.2).
The choice of projects allowed us to reflect on the gener-
ality of the relationship across different types of projects.
While VISTA is written in the .NET framework, ECLIPSE
is developed in the JAVA programming language. Also,
the former is a commercial software and follows markedly
different development processes in comparison to ECLIPSE,
which is free and open-source. In the following sections, we
present the details regarding collecting the necessary data
from these two projects for our investigation (Section III),
the experimental methodology (Section IV), followed by the
results and their discussion (Section V). Next, we present
some related work (Section VI) and conclude our paper
with discussing the threats to validity (Section VII) and
consequences and ideas for future work (Section VIII).

II. SURVEY AT MICROSOFT

In order to gauge whether developers share our opinion
about the influence of neighboring components on a com-
ponent’s quality, we undertook a survey and invited 700
developers at Microsoft to participate in it. The questions
in the survey were formulated in alignment to the charac-
teristics mentioned above (or see column one in Table I).
The complete list of questions are presented in the second
column of Table I.



It is important at this point to note that when talking
of components in Microsoft products, we are essentially
referring to binaries. A binary comprises of several files
complied together and is the lowest level to which post-
release failures can be accurately mapped. When a post-
release fix is performed, it usually involves changing several
files that are complied into one binary. In the case of
ECLIPSE, post-release failures can be mapped to files and
hence we conduct our investigation at the file-level for the
project, but refer to them as components in the paper.

We received 110 (15.7%) responses to our survey. The
experience of the responders in terms of time spent in the
software industry was ten years, while the median time spent
at Microsoft was seven years, which is overall a very experi-
enced population. The responses are compiled and presented
in Table I. The third column in the table indicates the number
of responders who consider that the characteristic (in the
second column) increases the risk of failure of a depending
binary. Likewise, the fourth and fifth columns indicate the
number of developers who consider the characteristics to
pose no risk or even decrease risk respectively. Column
six presents the number of developers who had no opinion
regarding the corresponding characteristic, while the last
column is the overall score for each characteristic computed
as ratio of the absolute difference between columns three
and five to the sum of columns 3–5.

The responses suggest that few developers regard com-
ponent size to have any bearing with the failure-proneness
of depending components, while a substantial majority re-
garded degree of code churn to have a strong influence.
Complexity metrics such as complexity, number of calls
to other binaries, and coupling were regarded by many to
increase the risk of failure, but incoming calls to binaries
were to reduce the risk. Most developers also believe that
better tested components put depending components at lower
risk. A strong agreement was also noted on the influence
of organizational measures on failure-proneness — lack of
clear or self-team ownership and development by many or
even ex-engineers increase failure-proneness. Lastly, nearly
all developers considered that components with a number of
past failures increase risk in the future.

We were encouraged by the survey responses to carry out
further investigation in this direction of work. The remainder
of the paper is dedicated towards quantitatively investigating
the relationships by examining two software projects.

III. DATA COLLECTION

In this section, we discuss our data collection process and
delineate the metrics collected for the study.

A. Process

Figure 2 illustrates the process used to collect data for our
study. In both projects, we first identify the dependents and

Figure 2. For Binary B we identify the binaries it has a dependency with
(neighborhood), compute metrics on the neighbors, compute the median
values and assign them to Binary B.

dependees for each component; we call this the neighbor-
hood of the component. The neighborhood strictly contains
only the direct dependants and dependees. For example
in Figure 2, component B has outgoing dependencies on
components X, Y, Z, W, and U, i.e., the latter are depen-
dees of component B and together comprise the outgoing
neighborhood of B. Vice versa, component B also may
have incoming dependencies which comprise its incoming
neighborhood. For simplicity sake, Figure 2 only illustrates
outgoing dependencies on component B. Together, incoming
and outgoing dependencies of component B comprise its
entire neighborhood.

Once the neighborhoods for each component have been
identified, we compute the relevant metrics for each neighbor
(see Section III-C for the list of metrics). To exemplify,
in order to compute the values for two metrics – churn
and complexity – for component B, we first compute the
metrics each outgoing neighboring component and then
compute the median of the values. We favored the median
over the mean because it is more robust in the presence
of outlier values. We then assign the median to component
B as a characterization of B’s outgoing neighborhood. The
same data collection process is repeated for all metrics and
incoming dependencies as well.



B. Tools and Methods

Microsoft Vista. The differences in the two projects required
us to collect data using different tools and methods. To iden-
tify dependencies in VISTA, we used the Max tool [5] that
generates a system-wide dependency graph from both native
x86 and .NET managed binaries. Max tracks dependency
information at the function level and includes dependencies
that result from calls, imports and exports, remote procedure
calls (RPC), COM, and accesses to the Windows Registry.

Eclipse. In the case of ECLIPSE, we first tracked class de-
pendencies using Java byte code analysis to detect incoming
and outgoing method calls and object usages. Collecting
dependency data on byte code profits from type resolution
performed by the Java compiler and thus is more accurate
than analyzing source code. But this gain in accuracy comes
at a cost – compiled class files do not necessarily have
the same name as the source file in which the class was
declared. Declaring two top-level classes A and B in one
source file A.java and compiling it will result in two class
files A.class and B.class. Hence, the dependencies
are computed at the class level and not at the file level;
we require the latter since post-release failures are mapped
to files and not classes. Hence, in order to map classes
to the files in which they have been declared, we parsed
source code to detect which classes were declared in which
source file. With this mapping in hand, we could reconstruct
dependencies between files in the ECLIPSE project.

The metrics for ECLIPSE were obtained project from the
publicly available data repository [6].

C. Computed Metrics

The metrics computed from the neighborhood components
covered a variety of characteristics such as size, churn met-
rics, code metrics, coverage metrics, organizational metrics,
and failure metrics. In our study, we separately analyzed
each metric for both incoming and outgoing neighborhoods.

Below, we list the metrics collected from the two projects.
Due to the differences between the projects and the avail-
ability of data, some metrics were specific to either project.
Also, recall that the metrics were computed for VISTA at
the binary level, while they were computed for ECLIPSE at
the file level. This explains for many of the differences in
the set of metrics computed from the projects. In the list
below, we indicate whether the metric was computed only
for VISTA, ECLIPSE, or for both.

Size. For each component, we determined the number of
executable, non-commented lines of code (LOC) for VISTA
and several more metrics for ECLIPSE (see Table III).

Churn. The churn metrics were collected relative to the
previous released version, that is, for VISTA the baseline
used for churn measurement was Windows Server 2003 SP1.

Similarly for ECLIPSE, the churn metrics were computed
using the previous releases as a benchmark. We computed
the following churn metrics:

● Frequency total: We counted the total number of
edits/check-ins that account for all the added, modified,
and deleted LOC.

● Churn size total: We summed up the added, modified,
and deleted LOC.

● Relative churn size: We derive relative churn of the
extracted metrics (added, deleted, and modified LOC)
as normalized values obtained during the development
process. This measure quantifies the extent of overall
work done in a file/binary per check-in. Prior work
by Nagappan and Ball [7] showed that relative code
churn measures are significantly stronger predictors of
defect density in the Windows Server 2003 system
than absolute code measures. They found that 89% of
defect-prone binaries in Windows Server 2003 can be
identified using relative code churn measures.

Code metrics. Several procedural and object-oriented com-
plexity metrics were collected from the projects. In our
analysis, we include both the total and maximum value for
each of these metrics for VISTA. In the case of ECLIPSE,
also computed the average of the metrics.

● FanIn: FanIn is the number of other functions calling
a given function in a module (VISTA only).

● FanOut: FanOut is the number of other functions being
called from a given function in a module (both VISTA
and ECLIPSE).

● Cyclomatic complexity: The cyclomatic complexity
metric [8] measures the number of linearly indepen-
dent paths through a program unit (both VISTA and
ECLIPSE).

● Methods: Number of methods in a class including
public, private and protected methods (both VISTA and
ECLIPSE).

● Inheritance Depth: Inheritance depth is the maximum
depth of inheritance for a given class (VISTA only).

● Coupling: This metric signifies coupling to other
classes through (a) class member variables; (b) function
parameters; (c) classes defined locally in class member
function bodies; (d) immediate base classes; and (e)
return type (VISTA only).

● No. of classes: This is the count of the number of
classes in the component (ECLIPSE only).

● No. of interfaces: This is the count of the number of
interfaces in the component (ECLIPSE only).

● No. of parameters: This is the count of the total num-
ber of parameters in the component (ECLIPSE only).

● No. of fields: This is the count of the total number of
fields in the component (ECLIPSE only).

● No. of static methods and fields: This is the count of
the total number of static methods and static fields in



the component (ECLIPSE only). The two metrics were
counted separately.

● Nested block depth: This is the measure of the depth
of code blocks found in the component (ECLIPSE only).

Code Coverage. The following two metrics reflect the extent
of test coverage in VISTA. Note that this data could not
be reliably computed for ECLIPSE given the data publicly
available and hence was only computed and used for VISTA.
● Block coverage: A (basic) block is a set of contiguous

instructions (code) in the physical layout of a binary
that has exactly one entry point and one exit point.
Calls, jumps, and branches mark the end of a block.
A block typically consists of multiple machine-code
instructions. The number of blocks covered during
testing constitutes the block coverage measure.

● Arc coverage: Arcs between blocks represent the trans-
fer of control between basic blocks due to conditional
and unconditional jumps, as well as due to control
falling through from one block to another. Similar to
block coverage the proportion of arcs covered in a
binary constitute the arc coverage. Arc coverage can
also be called branch coverage.

People measures. The following metrics relate to the orga-
nizational structure and developers of the product. Again,
note that this data could not be reliably computed for
ECLIPSE given the data publicly available and hence was
only computed and used for VISTA.
● Organizational Level: The level in the organization

structure of an organization at which the ownership
of a binary is determined/attributed to a particular
engineer [9].

● Engineers: The number of engineers to
wrote/contributed code to a binary.

● Ex-engineers: The number of engineers who wrote/
contributed code to a binary who are no longer working
for Microsoft.

Post-release failures. Post-release failures is the count of the
number of fixes that were mapped back to components after
the products were released for a time period of the first six
months. We mapped post-release failures to the respective
components associated with the failure.

In total, we computed 22 metrics from components for
VISTA and each metric was computed for outgoing and
incoming dependencies separately giving us a total of 44
metrics. In the case of ECLIPSE (2.0, 2.1, and 3.0) , we
computed 252 distinct metrics and a total of 504 metrics
accounting for both outgoing and incoming dependencies.

IV. EXPERIMENTAL SETUP

Our experiments involves checking whether each metric
(size, churn, code metrics, coverage, people attributes, and
post-release failures) for neighboring components is signifi-
cantly higher (or lower) for FP components compared to not

Figure 3. We statistically test for each metric (for example Churn median)
to determine if its values are significantly higher or lower for FP binaries
compared to NFP binaries.

failure-prone binaries (NFP, see Figure 3 for illustration in
the VISTA context). For this we create two groups: the FP
group that contains the values of the metrics for failure-prone
components; and the NFP group that contains the values for
components without any known failures. We then compare
the distributions of the metrics in the two groups separately
for incoming and outgoing neighborhoods using a one-tailed
Mann Whitney-U test with the significance level was set to
.05. Our motivation to examine the neighborhoods separately
was to allow observation of any effects of each class of
neighborhoods on the metrics. We ran two tests for each
component with the following two hypotheses:
● Hypothesis 1 Metric values for the FP group are

significantly greater than for the NFP group.
● Hypothesis 2 Metric values for the FP group are

significantly lower than for the NFP group.
Given our experimental design, we accounted for multiple

hypotheses testing using the Bonferroni correction. Com-
pared to other correction techniques such as Benjamini-
Hochberg, the Bonferroni correction is more conservative
(less likely to reject null hypotheses) and thus less likely to
accidentally accept incorrect results [10]. In total, we ran 88
tests for VISTA (two tests for each of the 44 metrics) and
504 for ECLIPSE (two tests for each of the 252 metrics).
Upon applying Bonferroni correction, the significance values
for the tests were revised to .00055 (.05/88) for VISTA and
.00001 (0.05/504) for ECLIPSE.

V. RESULTS

The results of our experiments are presented in Tables II
and III. We compare the distributions of the median values
for each metric for both incoming and outgoing depen-
dencies separately. In the tables, the symbol ▽ indicates



Table II
RESULTS FROM MICROSOFT VISTA INDICATING SIGNIFICANT

DIFFERENCES IN THE DISTRIBUTION OF METRICS ACROSS FP AND NFP
COMPONENTS.

Neighboring medians

Metric Incoming Outgoing

Size ▽

Churn
Churn Frequency ▲ ▽

Churn Size ▽

Relative Churn

Code metrics
Fan in (max) ▽

Fan in (total) ▽

Fan out (max) ▽

Fan out (total) ▽

Cyclomatic complexity (max) ▽

Cyclomatic complexity (total) ▽

Class methods (max)
Class methods (total) ▲

Inheritance depth (max) ▲

Inheritance depth (total) ▲

Class coupling (max) ▲

Class coupling (total) ▲

Code coverage
Block coverage (total)

Arc coverage (total)

People measures
Org. level ▲

Editing engineers ▲

Editing ex-engineers ▲

Post-release failures

that median values of the corresponding metric for FP
components are statistically significantly lower than those
for NFP components. Likewise, the symbol ▲ indicates
that medians for the metric are significantly higher for FP
components than for NFP components. Where neither ▽ or
▲ is plotted, no statistical difference between the two groups
was observed.

A. Microsoft Vista

Table II presents the results from our investigation of VISTA.
We noted that the sizes of components with outgoing depen-
dencies for FP components are relatively smaller, however
no such difference was found for incoming dependencies.
Also number of methods in the classes was higher in the
outgoing neighborhood of FP components. In the survey
responses, only few developers linked size of depending
components and failure-proneness.

The survey responses also indicated that most developers
consider high degree of churn to increase failure-proneness.
Our results supported their viewpoint in that we noted churn
frequency for both incoming and outgoing dependencies to
be higher for FP components, but in different directions.

Churn frequency was lower for outgoing dependencies and
lower for incoming ones. Size of churn was also lower for in-
coming dependencies. These observations suggest that when
changing a component, it’s vital to review all depending
components as part of completing the task.

Code metrics such as fan in, fan out, and cyclomatic
complexity are also lower in the outgoing neighborhoods
of FP components. This suggests that depending on com-
plex components is not necessarily risky, while depending
on simple components is not necessarily safe either. Also
noteworthy is that the dependees of FP components tend to
have larger values for number of class methods, inheritance
depth and class coupling. This suggests that the complexity
of the API rather than code complexity increases the chances
of having failures. Many of these results are opposite to
the responses in the survey such as most developers consid-
ered high complexity and method-calls to increase failure-
proneness. Also, all significant differences were noted only
for outgoing dependencies.

To our surprise, we observed no significant differences
for coverage and organization metrics. It appears that the
likelihood of a component to fail is not related to how
well its neighborhood is tested, possibly because failures are
unlikely to propagate across dependencies and they remain
local to the FP component — also, quite the opposite to the
survey responses.

People measures seem to matter only for incoming de-
pendencies. All three metrics were significantly higher for
FP components and support findings in another study in
which organizational structure [9] was found be to a strong
predictor of the failure-proneness of a component. However,
this seems to not hold only for incoming dependencies. Only
a little over half the number of developers who responded
in the survey considered people measures to be influential
in failure-proneness.

Most surprisingly, we found that the number of past
failures in the neighborhood of a component bears no
relationship on its failure-proneness. Recall that nearly all
developers from the survey believed such a link to be
present!

It is noteworthy that only people measures were signifi-
cantly different for incoming dependencies as compared to
outgoing dependencies where we found more number of
differences. Also, only one metric is common between both
neighborhoods: churn frequency, and that too in opposite
directions. These differences suggest treating the two types
of dependencies separately and with caution. Combining the
two metrics will likely mislead interpretations.

B. Eclipse

Our results from comparing the distributions of the medians
of the metrics across FP and NFP components for ECLIPSE
versions 2.0, 2.1, and 3.0 are presented in Table III. Size
related metrics of incoming neighboring components have



Table III
RESULTS FROM ECLIPSE INDICATING SIGNIFICANT DIFFERENCES IN THE DISTRIBUTION OF METRICS ACROSS FP AND NFP COMPONENTS FOR

INCOMING DEPENDENCIES. COMPONENTS.

Incoming medians Outgoing medians

Category Metric E 2.0∗ E 2.1∗ E 3.0∗ E 2.0 E 2.1 E 3.0

Size Method lines of code (max) ▲ ▲ ▲

Method lines of code (total) ▲ ▲ ▲

Total lines of code ▲ ▲ ▲

Churn Churn (added lines) ▲ ▲ ▲ ▲ ▲

Churn (deleted lines) ▲ ▲ ▲ ▲

Churn (changed lines) ▲ ▲ ▲ ▲ ▲

Churned (total lines) ▲ ▲ ▲ ▲ ▲

No. of commits ▲ ▲ ▲ ▲ ▲

Code metrics Fan Out (max) ▲ ▲ ▲

Fan Out (total) ▲ ▲ ▲

Nested block depth (max) ▲ ▲ ▲ ▲

Nested block depth (total) ▲ ▲ ▲ ▲

Cycolmatic Complexity (max) ▲ ▲ ▲

Cycolmatic Complexity (total) ▲ ▲ ▲

No. of fields (max)
No. of fields (total) ▽

No. of interfaces ▽ ▽ ▽

No. of methods (max) ▲

No. of methods (total) ▲

No. of classes ▲ ▲ ▲

No. of static fields (max) ▽ ▽ ▲

No. of static fields (total) ▽ ▽ ▲

No. of static methods (max) ▲

No. of static methods (total) ▲

No. of parameters (max) ▲ ▲ ▲

No. of parameters (total) ▲ ▲ ▲

Post-release failures Count of Post-release failures ▲ ▲ ▲ NA ▲ ▲

∗ Note that E 2.0 stands for ECLIPSE 2.0; E 2.1 for ECLIPSE 2.1; and E 3.0 for ECLIPSE 3.0.

significantly higher values for FP components for version
2.0, but not for other versions. Whereas the metrics are also
significant for the outgoing neighborhood for versions 2.0
and 2.1. This means that larger depending components tend
to increase the failure proneness of a component, which
could be an effect of the open-source development model
where several developers are involved and not all changes
are strictly coordinated by a central group.

Churn metrics of neighboring components also seem to
have higher values for FP components, i.e., larger number
of changes in components may introduce errors that may
propagate to depending components. This could also be an
effect of incomplete changes in that depending components
were not updated to sync with the intended changes. Inter-
estingly, values for both size and churn metrics were lower
for FP components in VISTA, but are higher in ECLIPSE.

The distributions of code metrics of neighboring com-
ponents vary a lot across the FP and NFP components. For
instance, fan out, nested block, and complexity measures are
significantly higher for incoming dependencies in version
2.0 and outgoing dependencies in versions 2.0 and 3.0.

Hence, higher complexity of the neighboring components
for ECLIPSE tends to increase the failure-proneness of com-
ponents, as opposed to VISTA in which we noted the very
opposite. We suspect that the underlying reason for this
difference lie in the development process models of the two
projects. Having a large number of interfaces in outgoing
dependencies also seems to be not an issue in the ECLIPSE
project — to our surprise, the medians of the neighboring
components have fewer interfaces for FP components, which
means that using a larger number of services or data from
other components is not risky. In the case of the incoming
neighborhood, we observed no differences at all. In case of
number of methods and classes, the outgoing neighborhood
of FP components has larger medians meaning that the
depending components undertake relatively a larger number
of functions. Several other metrics such as static fields,
static methods, and number of parameters were found to be
significantly different, but the varied across versions (and
also in direction in the case of static fields).

Lastly, past number of failures of neighboring components
were signficantly higher for FP than NFP components for



all our comparisons except for outgoing dependencies in
ECLIPSE 2.0.

The results show that there is some discrepancy in the
results between the different versions of ECLIPSE; results
for ECLIPSE 2.1 were more markedly different than the
other versions. A likely explanation for this is the nature
of changes that may have been made to release ECLIPSE
2.1 in that changes may have less substantial in number
of new functionalities or files added in comparison to
ECLIPSE 2.0 and 3.0 (likewise, it is possible that there
may be differences in the results when comparing different
versions of Windows). There is also a greater degree of
overlap between the metrics found to significantly differ
across incoming and outgoing dependencies for ECLIPSE,
while the overlap for VISTA was at best marginal. The
results also differ from that of VISTA in that the metrics
found to be significantly different in their distributions were
often lower for FP components in VISTA and higher for
ECLIPSE. Interestingly, the results from ECLIPSE appeared
more compatible with the responses from the survey in
comparison to VISTA.

VI. RELATED WORK

In this section we discuss research that has used dependency
metrics in empirical studies related to quality. Most prior
work in this area has been done in the area of program-
ming languages. Podgurski and Clarke [11] proposed a
formal model for program dependences to evaluate several
dependence-based software testing, debugging, and mainte-
nance techniques. They also propose the notion of semantic
dependence that models the ability of a program statement
to affect the execution behavior of other statements. This
notion is very similar in spirit to our underlying idea of
the ability of dependencies to influence related components.
Significant research has also focused on the generation of
program dependence graphs [12]. Harrold et al. [13] have
proposed techniques to generate program dependence graphs
that contain the programs control flow as the program is
being parsed .

Such program dependence information has been used to
optimize and improve testing [14], debugging and mainte-
nance [3], [11]. Rothermel and Harrold [3], for regression
test selection, construct control flow graphs for a procedure
or program and its modified version to use these graphs
to select regression tests that execute changed code from
the original test suite. Bates and Horwitz [14] propose the
use of program dependence graphs with test adequacy data
to reduce the time required to create new test files, and
to avoid unproductive retesting of unaffected components.
Dependences have also been used extensively in the program
slicing [15], [16].

Dependencies have also been used in the STC to under-
stand software development. Cataldo et al. [4] argue the
importance of logical dependencies rather than call and data

dependencies that have less impact on coordination require-
ments. Field studies performed by Cleidson de Souza et al.
also indicate the importance of dependencies in coordination
of work between teams of engineers [17].

Importantly, dependencies have been used for defect pre-
diction. Schröter et al. [2] showed that import dependencies
can be used to predict defects. Rather than looking at
the complexity of a class, they looked exclusively at the
components that a class uses. For Eclipse, the open source
IDE they found that using compiler packages results in a
significantly higher failure-proneness (71%) than using GUI
packages (14%). Prior work at Microsoft [18]–[20] at Mi-
crosoft and more specifically on the Windows Server 2003
system [18] illustrates that code dependencies can be used
to successfully identify failure-prone binaries with precision
and recall values of around 73% and 75%, respectively. Shin
et al. [21] observed that adding the calling structure infor-
mation provided a marginal improvement (0.6%) increase
in prediction accuracy compared to models based on non-
calling structure code and historical attributes. Most prior
research use dependencies to answer interesting research
questions in the context of program analysis, testing, slicing,
debugging and in the socio-technical area. None of the stud-
ies look at what characteristics in (or amongst) dependencies
cause problems. To the best of our knowledge this is a
problem that is still an open question that we hope our study
forms the first step towards addressing. Also the prior work
on using dependencies [2], [18], [19], [21] for prediction
uses the dependency metrics as a metric in a larger set of
predictors (with churn, complexity etc.) to predict failure-
proneness. Our study involves leveraging the relationship
(dependents, dependees) between the various code artifacts
in analyzing the implications of dependencies. Additionally,
prior research does not consider the characteristics of the
component dependencies as is done in the study discussed
in this paper.

VII. THREATS TO VALIDITY

● External validity: The results of this study are from
two software systems, both very large with many
components, but also different in their development
languages and model. As stated by Basili et al., drawing
general conclusions from empirical studies in software
engineering is difficult because any process depends
on a potentially large number of relevant context vari-
ables [22]. For this reason, we cannot assume a priori
that the results of a study generalize beyond the specific
environment and projects for which it was conducted.
While overall the results showed several commonalities
across the two projects, generalizing them for smaller
projects will require further investigation.

● Internal validity: In our study internal validity issues
primarily deal with the experimental bias of our results.
These concerns are addressed to some extent due to



the fact that the engineers at Microsoft had no knowl-
edge that this study was being performed for them
to artificially modify their behavior/coding practices or
dependencies and the analysis was post-hoc (after the
release of VISTA) to affect our results.

● Construct validity: Construct validity issues arise
when there are errors in measurement. These issues
are also alleviated to some extent by using the median
values in our analysis, and by the large size and
diversity of our dataset. Also, the components identified
as non-failure prone may have defects that have never
surfaced and therefore are not possible to account for.

VIII. CONCLUSIONS AND CONSEQUENCES

In this paper, we report an empirical study that analyzes the
relationship between post-release failures and characteristics
of incoming and outgoing call and data dependencies among
components. The specific characteristics analyzed were size,
churn, code complexity, code coverage, organization infor-
mation, and failure-proneness. Our empirical results from
the two investigated projects in some cases confirm often
believed assumptions about dependent pieces of code and in
many other cases, they are counterintuitive.

Tables II and III present the results of our experiments on
the two projects. The intention behind using projects with
marked differences was to be able to reflect on the generality
of the findings. We found several commonalities in the
results, but also some differences. For instance, contrary
to common belief, we found that frequency of change and
complexity of components reduces failure proneness of their
dependencies in VISTA, while on the other hand these met-
rics were found to increase risk in ECLIPSE. Further in-depth
investigation into these projects will help us understand the
causes for these differences, which we plan to accomplish
in future work.

Some of the noteworthy counter-intuitive results, as in
divergent from the survey results are:
● Depending on a component that has failures does not

have an effect on failures of the dependent component
(in VISTA).

● Depending on a binary with higher coverage (implying
more testing) does not have an effect on failures of the
dependent component (in VISTA).

● Being dependent on a component that has more engi-
neers (or ex-engineers) contributing code to it does not
relate to the number of failures. Being a dependee has
an opposite and adverse relationship (in VISTA).

● It appears that the complexity of the API rather than
code complexity increases the chances of having fail-
ures (for VISTA).

● Being dependent on components with fewer interfaces
increases the risk of failure proneness (in ECLIPSE).

● The responses from the survey on Microsoft developers
were more in sync with the results from ECLIPSE than

with VISTA.
Other surprising observations include size, churn metrics,

and code metrics like fan in, fan out, and cyclomatic
complexity are related to fewer failures; but in the case
of ECLIPSE, we observed that such metrics are indicative
of more failures. To some degree most prior work [23]–
[25], including work at Microsoft [26] has focused primarily
on looking at the relationship between code metrics and
failures. This contrast between VISTA and ECLIPSE raises
questions regarding which properties of the projects deter-
mine or influence the relationship between the dependencies
and software quality.

We expect that many of the observations made from
our work is insightful and can be used to assist design
and develop software and aid engineers in assessing the
risk of forming new or supporting existing dependencies.
We also believe that our results can be leveraged in the
defect prediction [2] and test prioritization [3] domains to
provide an additional dependency factor in the analysis of
large systems. Additionally our results are useful to provide
empirical evidence on an important problem in software
engineering: the impact of dependencies on failures. Our
results also provide additional empirical evidence on the
importance of dependencies to researchers in the socio-
technical congruence [4] domain.

Our future work plans have two main avenues: first is to
collaborate with other researchers and replicate the study in
more domains and contexts, both in the open source and
closed source communities. As this is the first study in this
area we will collect such results to aggregate them to build
an empirical body of knowledge to aid engineers. Secondly
we plan to leverage this data to collaborate with visualization
researchers to build tools that will add context and provide
domain knowledge to engineers working on these systems
to understand the associated risks with the projects. We plan
to conduct an empirical evaluation on the efficacy of such a
visualization tool on the software development environment.
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