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Abstract. We describe the design, implementation, and
evaluation of Popcorn, a media delivery system that hides
clients’ consumption (even from the content distributor).
Popcorn relies on a powerful cryptographic primitive: pri-
vate information retrieval (PIR). With novel refinements
that leverage the properties of PIR protocols and media
streaming, Popcorn scales to the size of Netflix’s library
(8000 movies) and respects current controls on media
dissemination. The dollar cost to serve a media object in
Popcorn is 3.87× that of a non-private system.

1 Introduction and motivation
This paper describes a Netflix-like media delivery system,
Popcorn, that provably hides what is consumed by its
users, at scale and at low (dollar) cost.

Popcorn is motivated by a fundamental tension in the
ecosystem of online media consumption. In one camp
are people deeply uncomfortable with exposing their me-
dia diet, in particular to a centralized media server that
can be targeted by either hacking or subpoena. They ar-
gue that, philosophically, freedom requires the ability to
consume privately [94] and that, practically, access to
a person’s consumption profile can reveal the person’s
sexual orientation, political leanings, cultural affiliations,
etc. [80, 81, 96].1 And although many people may in fact
want to expose their consumption to gain recommenda-
tions, there may still be content that they want to consume
without others’ knowledge. Another camp counters that
media often exists within a commercial framework, and
that people who create it and services that distribute it
need to be compensated to sustain the ecosystem.

Our work advances a new design point in the realm of
private media consumption. Specifically, this paper asks
the question, Is it possible to build a system that hides
content consumption while respecting current commercial
arrangements, and if so, what would that system cost?

No answer is likely to apply to all media delivery sys-
tems, as they differ widely. YouTube’s library, for instance,
is large, continuously updated, freely distributed, and sup-
ported by advertising. Netflix’s library is comparatively
small, updated infrequently [7], subject to strict content
protection, and supported by paid subscriptions. This pa-
per explicitly targets Netflix-like systems, and adopts the
following requirements:

1To be clear, we are not challenging the trustworthiness of commercial
media services. The issue is that collecting the information in the first
place creates the risk of exposure.

1. Hide requests comprehensively and provably. We
want to hide consumption from both a network eaves-
dropper [9, 46] and the content distributor, and avoid
the risk of heuristic solutions [20].

2. Make it affordable even at scale. Our system should
dispense privacy at an attractive price point. The cost
should be within a small multiple of what customers
pay to access content today.

3. Respect current controls on content dissemination.
Our solution must be compatible with the existing
commercial, legal, and policy regime (copyright, con-
trols on content dissemination, etc.) so as not to fun-
damentally reorient digital rights.

At first blush, Tor [41] and other anonymity systems [3,
72] (which conceal who consumes content) satisfy the
above requirements. However, these solutions conflict
with commercial media delivery: now Netflix would have
to rely on the altruism of Tor nodes. Moreover, the capac-
ity, latency, and reliability on a Tor network is unlikely to
match the requirements of Netflix.

Thus, Popcorn turns to a large body of cryptographic
protocols known as Private Information Retrieval, or
PIR (§2.2). These protocols [31, 47, 69, 84, 109] al-
low clients (content consumers) to request content from
servers (content distributors) without the servers being
able to infer which items the clients requested.

Applying these protocols, however, raises several chal-
lenges (§3): the linear overhead of PIR (to respond to a
request, the server must compute over its entire library,
or else it would learn what the client was not interested
in); the strict deadlines of media delivery; variable object
sizes (PIR assumes all objects are the same size); and
a tension surrounding PIR protocol choice (one type of
PIR, called CPIR [69], needs only one server, but the
overhead is high; another, called ITPIR [31], involves
lightweight operations but demands non-colluding servers
and hence separate administrative domains, which, among
other things, threatens content protection). There is a large
and inspiring body of work (§7) addressing some of these
issues [14, 15, 27, 33, 35, 37–39, 45, 51, 52, 56, 57, 60,
74, 76, 78, 86, 104, 106, 110], but prior implementations
suitable for media delivery at the scale we target levy
prohibitive demands on I/O and CPU resources.

Popcorn eases these demands substantially. It provably
hides media consumption, scales to the size of Netflix,
and respects current controls on media dissemination—
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with resource overhead that translates to a manageable
dollar cost. To do so, Popcorn cherry-picks techniques
from the literature on PIR and media on demand, and
works through the “systems” ramifications of tailoring
them to the context at hand.

Three techniques are central to Popcorn’s design (§4).
First, Popcorn combines both types of PIR. Media objects,
encrypted for content protection, are stored at multiple
servers from distinct administrative domains and retrieved
using the lighter-weight ITPIR. The much smaller crypto-
graphic keys needed to decrypt those objects are stored
at a single server and retrieved using the heavier-weight
CPIR. Second, Popcorn amortizes the cost of PIR by
batching requests from the large number of concurrent
users retrieving content at any given time; by leverag-
ing the properties of media streaming, Popcorn forms
large batches without introducing playback delays or in-
terruptions. Third, Popcorn exploits the ability to encode
a media object in multiple ways (e.g., by changing its
bitrate) to meet the fixed-size-object requirement of PIR.

We experimentally evaluate Popcorn for a Netflix-like
workload (10,000 concurrent clients, each streaming dif-
ferent content at 4 Mbps from a library of 8192 movies [1]
with an average length of 90 minutes). Popcorn’s over-
heads are high when compared to a non-private baseline:
for each request, Popcorn consumes 1080× more compu-
tational resources, about 14× more I/O bandwidth, and
2× longer network transfers. However, since CPU is cheap
and Popcorn is engineered to conserve the more expensive
resources (I/O and network), these overheads, when trans-
lated to dollars, are manageable: Popcorn’s per-request
cost, in terms of dollars, is 3.87× that of the baseline.

Though promising, Popcorn has several limita-
tions (§8). It requires non-colluding servers. Its overheads
grow with the library size; this precludes scaling to media
libraries that have more than a few tens of thousands of
media files (YouTube, for example, has millions [30]). It
does not support forward seeking. In addition, the cur-
rent prototype lacks features that would be required in a
full-fledged deployment: online library updates, deploy-
ment via CDNs, elasticity, adaptive streaming, royalty
payments, and advertising and recommendations. Some
of these have natural solutions; others require research.

2 Setting and background on PIR
2.1 Scenario and threat model

The media delivery ecosystem has three principals: a con-
tent creator, a content distributor, and a content consumer.
The creator (e.g., a movie studio), delegates to the distrib-
utor (e.g., an online streaming service like Netflix) the
tasks of disseminating content and charging consumers.

We model the content kept by the distributor as a collec-
tion L of n objects; we call L the library. We assume that

a mapping, between the integers 1, . . . , n and the names
of the objects in L, is known to the distributor and the
consumers. Therefore, a consumer can select a specific
object by supplying the corresponding integer.
Threat model. We consider an attacker (for example,
the content distributor or a network eavesdropper) trying
to infer what object the consumer is accessing. The at-
tacker has full access to the network and to the content
of the consumers’ requests, but for two restrictions. First,
we do not consider side-channel attacks that, for exam-
ple, use knowledge of where individual consumers pause
playback, or of their concurrent web browsing activity.
Second, we assume the existence of two non-colluding
servers that the distributor can use to serve content. To
satisfy this assumption in practice, one can pick servers
from separate administrative domains (e.g., from different
CDNs [13]). We discuss this topic further in Section 8.

We assume, as do today’s media delivery systems [17,
42], that the client-side media decode and display environ-
ment can defeat content consumers intent on copying and
redistributing content beyond what the distributor allows.

Finally, we treat content integrity as an orthogonal prob-
lem that undermines correctness (§2.2) but not privacy.
The literature offers standard solutions to guarantee con-
tent integrity (content hashing, etc.).

2.2 Private Information Retrieval (PIR)

The high-level goal of PIR protocols aligns with that of
Popcorn: they allow a client to use an integer between
1 and n to retrieve any object from a library L of n `-bit
objects kept by a set of k servers (k ≥ 1) without leak-
ing to the servers any information about which object
was retrieved. A PIR protocol is structured around three
procedures: Query, Answer, and Decode. To privately re-
trieve object Ob = L[b], the client invokes Query(b) to
produce k query vectors q1, . . . , qk, one for each server,
and forwards qj to server Sj (1 ≤ j ≤ k). Each Sj

replies with aj = Answer(qj, L). Finally, the client com-
putes Ob = Decode(a1, . . . , ak) by applying the decode
algorithm to the servers’ responses.

We want three properties from a PIR protocol:
• Correctness. If a client requests the object in library L

with index b, then the protocol indeed provides it with
object L[b].

• Privacy. After the server sees a query vector, its prob-
ability of guessing the client’s requested index is no
better than if the server had not seen the query in the
first place. This property can be generalized to coali-
tions of t < k servers, requiring that any t out of k
servers jointly do not learn any information about the
index of the requested object.

• Communication efficiency. The size of a server’s re-
ply must not be much larger than `, and the size of
a client’s request must be far smaller than ` (though
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Query (index b):
for i = 1 to n do

f ← (i == b) ? 1 : 0
ci ← Enc(pk, f )

return q = (pk, c1, . . . , cn)

Answer (query vector q, library L):
// Represent L as a matrix of y-bit integers:
// L ∈ ({0, 1}y)n×(`/y)

for j = 1 to `/y do
rj ←

∏n
i=1 ci

Li,j

return a = (r1, . . . , r`/y)

Decode (answer a, secret key sk):
return Dec(sk, r1), . . . , Dec(sk, r`/y)

Figure 1—A computational PIR (CPIR) protocol based on an
additively homomorphic cryptosystem (Gen, Enc, Dec) and
due to Stern [101]. (pk, sk) is a (public, private) key pair gener-
ated using Gen. n is the number of objects in the library L, and
` is the length of each object.

it is acceptable if there is some overhead above the
minimum query size of log2 n bits).

We discuss below two such PIR protocols.

2.3 Computational PIR (CPIR) protocols

CPIR protocols [69] require only a single, computation-
ally bound server (k = 1). They are commonly con-
structed using additively (not fully [48]) homomorphic
public key cryptosystems. A cryptosystem is additively
homomorphic if Dec(sk, Enc(pk, m1) · Enc(pk, m2)) =
m1 + m2, where m1, m2 are plaintext messages, + rep-
resents addition of two plaintext messages, · is a binary
operation (for example, addition, multiplication, etc.) on
the ciphertexts, (pk, sk) is a (public, private) key pair gen-
erated using the key generation algorithm Gen, Dec is the
decryption algorithm, and Enc is the encryption algorithm.
Note that Enc is randomized; thus, repeatedly encrypting
the same plaintext produces different ciphertexts. Exam-
ples of cryptosystems used in CPIR are the Paillier [85]
and the lattice-based Ring-LWE [22].

Figure 1 depicts a CPIR protocol, due to Stern [101],
that meets the three properties (§2.2):
• Correctness. Dec(sk, rj) = Dec(sk,

∏n
i=1 ci

Li,j), which
equals

∑n
i=1 Dec(sk, ci) · Li,j after the application

of the additively homomorphic property. But ∀i ∈
{1, . . . , n} \ b, Dec(sk, ci) = 0, by construction of ci.
Similarly, Dec(sk, cb) = 1. Therefore, Dec(sk, rj) =
Dec(sk, cb) · Lb,j = Lb,j.

• Privacy. The guarantee that server S does not learn b
hinges on S being computationally bounded. All S sees
is q = (pk, c1, . . . , cn). If S could systematically guess
b (that is, guess which ciphertext is cb = Enc(pk, 1)),
then S could likewise guess which entry is the encryp-
tion of 1 (versus 0)—which would contradict the prop-
erties of the underlying encryption scheme.

Query (index b):
// Generate the first k − 1 query vectors randomly
for j = 1 to k − 1 do

select qj ∈R {0, 1}n

eb ← an n-bit string with all zeros except at b-th position
qk ← eb ⊕ q1 ⊕ · · · ⊕ qk−1 // ⊕ is bit-wise XOR
return q1, . . . , qk

Answer (query vector q, library L):
// q is one of the outputs of Query
// L has n objects; each is ` bits
// q is a row vector, L a logical matrix: L ∈ {0, 1}n×`

return q · L // product over the two-element field F2

Decode (answers a1, . . . , ak):
// aj is the output of Answer
return a1 ⊕ · · · ⊕ ak

Figure 2—The ITPIR protocol of CGKS [31]. n is the number
of objects in library L, and ` is the length of each object. k is the
total number of servers. (In Popcorn, k=2.)

• Communication efficiency. The length of the server’s
reply is (`/y) · |c| bits, where `/y is the number of ci-
phertexts in the reply and |c| is the size (in bits) of a
ciphertext. (`/y) · |c| is comparable to `, the size of ob-
ject Ob, if the expansion ratio, |c|/y, of the underlying
additively homomorphic cryptosystem is small.2 The
client’s request contains n ciphertexts and is thus |c| · n
bits. When ` � n (as will be the case in our context)
and |c| is a small constant (e.g., 2048 in many Paillier
implementations), |c| · n is much smaller than `.

2.4 Information-theoretic PIR (ITPIR) protocols

ITPIR protocols [31] use more than one server (k > 1),
and assume that they do not collude; thus, in practice, the
servers must belong to different administrative domains.

Figure 2 shows the CGKS [31] ITPIR protocol. It meets
the three properties of PIR (§2.2):
• Correctness. The output of Decode is

⊕k
j=1 aj, which

equals
⊕k

j=1(qj · L). By properties of the field F2 (that
addition is XOR and that multiplication distributes over
addition),

⊕k
j=1(qj ·L) = (

⊕k
j=1 qj) ·L = eb ·L = L[b].

• Privacy. Each server in S1, . . . , Sk−1 sees a randomly
generated query vector, and therefore each server (and
all of them combined) cannot learn any information
about b. Server Sk sees qk, which is constructed by
XORing unit vector eb with the one-time pad q1⊕· · ·⊕
qk−1. By the properties of one-time pads, Sk can learn
information about eb only by learning the one-time pad
(or by colluding with all other servers).

• Communication efficiency. The combined length of
the servers’ reply is k · ` bits. In Popcorn, we set k = 2
to keep this comparable to `, the size of an object. A
client’s request consists of k n-bit-long query vectors,
which is much smaller than ` when k is small.

2The Paillier cryptosystem has a message expansion ratio of ≥ 2.
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RAID-PIR [35] G#
Percy++ [51] G# G# G# G#  
Popcorn  G#  G#

Figure 3—Prior PIR-oriented works (rows) and which media-
related challenges they address (columns), assuming two servers
for ITPIR-based works.  means that the work addresses the
challenge; G# means that it partially addresses the challenge.

3 Challenges of applying PIR
Though PIR is promising, there are a number of chal-
lenges in applying it to large-scale media consumption:
• Resources. The I/O and CPU resources required to

serve a single request are proportional to the size of the
library. Batching requests should help amortize some
of this overhead, but it is in tension with the next issue.

• Strict deadlines. Media delivery has stringent latency
requirements: initial delay must be small, and the de-
livery must obey real-time constraints.

• Variable object sizes. Object sizes vary as a function
of encoding or playback time. However, PIR assumes
objects of identical size.

• Content protection in ITPIR vs. CPIR. Content cre-
ators may be loath to disseminate the content beyond
its original distribution channel. Yet ITPIR requires
multiple non-colluding servers, and hence multiple ad-
ministrative domains, necessitating such dissemination.
CPIR, on the other hand, requires only a single server;
however, its computational cost is significantly higher.3

• Billing, access control, recommendations. For business
reasons, media services may need to support access con-
trol, pricing policies (tiers, etc.), targeted advertising,
and recommendations. Yet, private retrieval conflicts
with all of this functionality.
Subsets of these challenges have been addressed before

(Figure 3). Popcorn aims mainly at the resource consump-
tion issue, via the architecture and design described next.

4 Architecture and design of Popcorn
Figure 4 depicts Popcorn’s architecture. A primary con-
tent distributor creates an encrypted version of the library,
LEnc, using per-object keys, and replicates LEnc to two
secondary content distributors, each in separate adminis-
trative domains. The primary content distributor maintains
a key server. Each secondary content distributor maintains
an object server that is distributed over multiple physical
machines.

3The state of the art CPIR implementation is XPIR, which is based
on the Ring-LWE cryptosystem. XPIR can process data at 22 Gbps
on a machine with 4 physical (and 8 virtual) cores [14], while the
CGKS ITPIR implementation in Percy++ [51], based on cheaper XOR
operations, can process data at 152 Gbps on comparable hardware.
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Figure 4—Popcorn’s architecture. Popcorn uses two servers
for ITPIR. Each object server stores all of the columns in the
library (Figure 5), and is distributed over multiple physical
machines.
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Figure 5—Popcorn terminology. Each column is stored by two
ITPIR instances (one from each object server). Columns are
divided into slices, which are assigned to physical machines.

The key server delivers the per-object keys using
CPIR; the object servers deliver encrypted objects us-
ing ITPIR (§4.1). The distinction between key and object
servers maps to today’s DRM implementations [2, 4, 88],
where clients contact two separate servers, one for en-
crypted video and one for decryption keys.

Media objects are split into segments—contiguous
pieces of media containing, for example, a few seconds
or minutes of a video. Segment sizes vary (§4.3). Each
object is presumed to have the same decomposition into
segments (we revisit this assumption in §4.4). The library
is partitioned into columns (Figure 5); a column is a union
of corresponding segments, across all objects. Therefore,
a column’s size is n times that of any segment it contains.

Each column is stored and served by two independent
ITPIR instances (one for each object server); different
instances use separate physical machines. Columns are
further sub-divided into slices, which are the work units
assigned to physical machines. A slice is 1 MB “wide”
and n items “high”; we sometimes refer to 1 MB as a
chunk. Each machine is responsible for one or more slices.

To retrieve an object, the client fetches a decryption
key from the key server and the encrypted object from
the object servers. The latter step proceeds in two over-
lapping phases. In the first phase, the client sends, in
parallel, a query vector to all machines in both object
servers. On receiving a request, a machine adds the query
vector to a request queue. Each machine services its queue
by: looping over its slices, computing chunk-sized ITPIR
replies for every pending request, and pushing the result-
ing chunks to a file server (one per object server; Figure 4)
that retains the chunks until they are requested by clients.
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In the second phase, the client downloads these ITPIR-
encoded chunks at the appropriate playback times, and
applies Decode (Figure 2). This phase overlaps with the
server-side generation of replies.

4.1 Composing ITPIR and CPIR

As stated earlier, Popcorn combines CPIR and ITPIR: the
heavier-weight CPIR, which requires only one server, is
used to serve per-object keys, while the lighter-weight
ITPIR is used to serve the large encrypted objects. As a
result, both keys and objects are served privately (because
PIR is applied to them both), CPIR is not a performance
bottleneck (because it is used only for small keys), and
current controls on content protection are respected (be-
cause the plaintext content and keys are stored only at the
primary content distributor).

As an alternative to CPIR, the key server could use
Symmetric PIR (SPIR) or 1-out-of-n Oblivious Transfer
(OT). Section 7 discusses these alternatives.

4.2 Batching

Popcorn uses the CGKS ITPIR scheme described in §2.4,
as its inexpensive operations (XORs) keep its compu-
tational overhead low (by the standards of PIR). Still,
because ITPIR queries are dense—on average, half of
the entries are set to 1 (Figure 2)—responding to a query
requires the machine serving a slice to read from stor-
age and XOR, on average, n/2 chunks. This taxes I/O
bandwidth, memory bandwidth, and CPU cycles.

To reduce costs, Popcorn’s machines, which are oblivi-
ous to the content of queries, process queries in batches,
and perform a single I/O pass over a slice for all of the
queries in a batch. Batching thus amortizes I/O overhead
and lets Popcorn exploit sequential transfer bandwidth.

Batching also reduces computational (not just I/O) over-
head by leveraging the observation that the PIR compu-
tation required for a batch of requests can be expressed
as matrix multiplication (q · L in Figure 2 can be replaced
by Q · L, where Q is a matrix whose rows are query vec-
tors). Previous work [21, 74] (covered by the Percy++
row in Figure 3) has used this observation to incorporate
sub-cubic algorithms [32, 61] that reduce the total num-
ber of operations required by PIR. Popcorn, by contrast,
chooses block matrix multiplication [71], which, though
it does not affect the total number of operations, leverages
cache locality. One can view the resulting access pattern
as batching at the CPU-memory interface.

4.3 Specializing batching for media delivery

Given the considerations in the previous subsection, Pop-
corn has an interest in increasing batch sizes (at least up
to a point).4 However, there is a tension between large

4Above a certain batch size, there is no advantage: I/O is no longer a
bottleneck, and the CPU benefits of using matrix multiplication stop

Client A 

Client B 

ITPIR instance 
for first column

ITPIR instance 
for a later column

 A sends query vectors 
for all columns

flush request 
queue

time

batching requests process requests A,B

batching requests

 B sends query vectors 
for all columns

process request A process request B

Figure 6—Batching at an object server in Popcorn. Requests to
the initial column from two clients A,B are in separate batches
as the processing cycle for this column is short. The requests
to a later column (sent alongside the requests to the first) can
be batched. This arrangement is inspired by Pyramid Broadcast-
ing [105].

batch sizes, which seem to require synchronizing clients,
and meeting the deadlines of real-time media delivery.
Popcorn resolves this tension as follows.

To begin with, each ITPIR instance loops over its as-
signed column (§4) continuously. Since a client can begin
playback only after decoding the response for the first
column, Popcorn uses a “narrow” first column to keep
this initial delay short. Column width, however, increases
quickly in Popcorn, making later columns wide. The cru-
cial intuition is that wide columns imply good batching
opportunities: a batch comprises all requests that reached
an ITPIR instance during its previous loop interval, and
wider columns imply longer loop intervals.

Figure 6 depicts this arrangement. It is inspired by Pyra-
mid Broadcasting (PB) [105] (see also [8, 58]), wherein
an object is divided into increasingly-sized pieces, each
served on a separate broadcast channel that loops over
the piece. Differences are as follows. Whereas PB targets
network bandwidth efficiency (and clients must buffer),
Popcorn aims to reduce server-side I/O (and the buffer
is at the server); one can view Popcorn’s arrangement as
the I/O subsystem using PB to “broadcast” to the next
layer in the pipeline (the XORs). Furthermore, in Popcorn,
a server’s work (the XORs) depends on the number of
clients (unlike in a broadcast setting). Finally, in Popcorn,
each instance is distributed over multiple physical ma-
chines. These differences lead to a design and analysis
that owe a debt to PB but are specific to our context.

Details. We start with two simplifying assumptions,
which we revisit later: that a single ITPIR instance is
handled by a single machine, and that there is no network
delay or loss. Define an instance processing cycle as the
duration of one iteration of an instance’s loop. Within this
cycle, an instance traverses each slice in turn, performing
Answer for all queries that arrived during the prior cycle.

We want all clients to experience smooth playback. To

increasing. However, there is also no disadvantage, so for simplicity,
Popcorn does not bound batch sizes.
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this end, suppose that we are willing to impose startup
delay d. Suppose further that T1 ≤ d−ε, where T1 denotes
the processing cycle for the first instance, and ε is the time
for the instance to handle a single slice. Likewise, define
Ti as the processing cycle for the ith instance (i > 1), and
suppose that for all such instances, Ti ≤ d − ε+

∑i−1
j=1 tj,

where tj is the playback time of segment j.
Under these conditions, we claim that any client, re-

gardless of when it joins, experiences smooth playback.
Why? Consider only instance 1: in the worst case, a client
initiates consumption just after instance 1 begins its pro-
cessing cycle. The client cannot download until the cur-
rent processing cycle has terminated (which takes time
T1) and the first slice of the next cycle is processed (for
an additional ε). Smooth playback simply requires the
overall delay (T1 + ε) to be less than d, matching our con-
ditions. Once playback begins, the client has t1 additional
time before it needs the second segment. Generalizing,
in the worst case for instance i (i.e., the client’s initial
request arrives just as a processing cycle begins), as long
as Ti is no larger than d − ε+

∑i−1
j=1 tj (which is exactly

what our conditions guarantee), then the first slice of the
ith instance will be ready, and playback will be smooth.

But how should the {ti} be set? Recall that, for more
effective batching, Popcorn needs segment widths to in-
crease: we are then seeking the maximum ti for each
instance i .

Let µ be the playback rate, Pi the rate at which XOR
operations are processed by the ith instance, Ri the I/O
bandwidth available to the instance, and bi the batch size
(the number of requests accumulated in a cycle of time Ti).
To upper-bound ti, we match load to capacity, for both I/O
and CPU. For I/O, the column’s data (n segments, each of
size ti ·µ) is upper-bounded by the amount of data that the
instance can read in one cycle: ti ·µ · n ≤ Ti ·Ri. For CPU,
the picture is similar, except that the total work scales with
bi, the number of clients being served: ti ·µ ·n ·bi ≤ Ti ·Pi.
These inequalities lead to:

ti ≤ Ti ·
(

min {Ri, Pi/bi}
µ · n

)
.

Assume that for all i, min{Ri, Pi/bi} ≥ µ · n (we will
arrange for this in “Provisioning,” below). Then, the fore-
going bounds (on the {Ti} and on load) imply that for all
i, we can set:

ti = Ti = 2i−1 · (d − ε)

(see Appendix A). Note that the {ti} increase exponen-
tially in size, as desired. In particular, approximately half
of the file is covered by the final segment.

Provisioning is driven by the earlier assumption that
min{Ri, Pi/bi} ≥ µ · n for all i. To meet the requirements
on Ri and Pi, Popcorn uses multiple machines per instance
and aggregates their resources, by striping slices across

them. If ri is the per-machine I/O bandwidth for the ma-
chines used for the ith instance, then the I/O for instance
i can be handled with Ri/ri = µ · n/ri machines. Pi, the
XOR processing throughput for instance i, increases with
i because so does the batch size bi; specifically, if λ is the
overall rate at which clients initiate requests for objects,
then bi = λTi. Moreover, the per-machine XOR process-
ing throughput for the ith instance, pi(·), is a function
of the batch size because cache locality in block matrix
multiplication (§4.2) (and hence throughput) improves
with a a bigger batch size. Thus, the task of processing
the XOR operations for instance i can be handled by
Pi/pi(bi) = µ · n · bi/pi(bi) machines.

To account for the striping, we need to modify the
earlier analysis of startup delay, smooth playback, etc.:
if resources from ki machines are aggregated for the ith
instance, then each machine takes ε · ki time instead of ε
to handle a slice. As a result, the inequality Ti ≤ d − ε+∑i−1

j=1 tj becomes Ti ≤ d − ε · ki +
∑i−1

j=1 tj, and both the
{Ti} and {ti} are computed accordingly.5

The total number of machines, across all I instances,
is: µ · n ·

∑I
i=1 max{1/ri, λTi/pi(λTi)}. Notice that if the

max is controlled by the first term, then the given instance
is bottlenecked by I/O (and the CPU resource is sometimes
idle); if by the second, then the instance is bottlenecked
by CPU work (and the I/O resource is sometimes idle).
Later (§6.1) we will obtain estimates empirically for ri

and pi(·).
Popcorn must also provision for the file server ma-

chines (§4). The file server requires the buffer space for
each instance to equal the number of requests in service
times the size of a segment, i.e.,

∑I
i=1 bi · (ti · µ). The

file server also requires I/O bandwidth equal to the rate at
which reply data is produced and consumed: 2·

∑I
i=1 bi ·µ

(assuming ti = Ti).
Finally, we have been assuming no burstiness or delay

in the network. To account for network fluctuation, we
must allow for clients to build up a playback buffer, of
some time length β. To this end, Ti should be upper-
bounded by d−ε ·ki−β+

∑i−1
j=1 tj, and the {ti} computed

to be consistent with Ti.

Discussion. To understand the savings and amortiza-
tion from Popcorn’s batching, consider a naive batching
scheme, in which time is divided into epochs of length
Tepoch. Let a cohort denote the set of clients who initi-
ate a request (for the first chunk of a media file) in an
epoch. Then, the entire cohort moves through the slices,
as it were, together. Each cohort needs enough machines
to meet two requirements: (a) µ · n I/O bandwidth, and

5The computation must resolve a circular dependency as Ti is expressed
in terms of ki, which itself depends on the segment size, with a big-
ger segment requiring more machines. We resolve this circularity by
repeating the process of speculatively setting a ki, calculating Ti, and
then refining the speculated value of ki using the obtained value of Ti.
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(b) µ · n · λ · Tepoch XOR processing throughput (here
λ · Tepoch is the cohort’s batch size). If H = T/Tepoch
is the total number of cohorts (where T is the total
playback time), then the total number of machines is
µ · n ·

∑H
i=1 max{1/r, λ · Tepoch/p(λ · Tepoch)}, where

r is the per-machine I/O bandwidth, and p(λ · Tepoch)
is per-machine XOR processing throughput for a batch
size of λ · Tepoch. Here, Tepoch must be upper-bounded by
d− ε ·k−β to meet the startup delay requirements, where
k is the number of machines for a cohort.

To compare the cohort batching scheme to Popcorn,
we make the simplifying and optimistic assumption that
both schemes use machines that make the two terms of
the respective maxes equal, so that no resources are idle
(we will revisit this assumption in §6.2 and §6.4). Then,
the total I/O bandwidth required by the cohort scheme is
H · µ · n, which is considerably larger than what Popcorn
needs (I · µ · n, where I � H).

In terms of computational resources, the cohort scheme
needs µ·n·λ·T/p(λ·Tepoch) = µ·n·λ·

∑I
i=1 Ti/p(λ·Tepoch)

machines; Popcorn requires instead µ·n·λ·
∑I

i=1 Ti/pi(λ·
Ti) machines. Neither scheme is the clear-cut winner;
however, if we assume that p(·) = pi(·) for all i, then
Popcorn has lower computational demands, because
(a) Ti ≈ 2i−1 · Tepoch (by our earlier analysis) and (b)
p(·) is monotonically increasing. In essence, Popcorn has
larger batches, so (holding machine type configuration
constant) the benefit of locality is more pronounced (§4.2),
lowering Popcorn’s computational requirements relative
to the naive batching scheme.

4.4 Handling variable-sized objects

The design has so far assumed equally sized objects. A
naive solution would be to pad all objects to the size of
the longest one. However, this would, for Netflix, cause
a 4× increase in network transfers: the average movie
is approximately 1.5 hours while the longest is 6, and
clients would have to download the padding in full (doing
otherwise would reveal the true object size).

Popcorn’s solution instead chooses a representative ob-
ject Oavg from the library (for example, the object closest
to the average media length) and pads smaller objects to
that size. Longer objects, up to a cutoff, are compressed
down to Oavg’s size, by reducing the bitrate;6 the longest
objects are split into several files.

We note that reducing the bitrate is likely to be tolerable,
as variations of up to 30% (roughly) in video bitrate have
a limited impact on user satisfaction [43, 67, 97]. (Other
factors, such as playback interruptions and startup times,
instead have substantial impact.) Objects that cannot be

6Regardless of an object’s bitrate, a client must issue chunk download
requests at a constant rate (e.g., one request every 1 MB/µ seconds,
where 1 MB is a chunk’s size and µ is Oavg’s bitrate); otherwise, chunk
download patterns would leak information.

tolerably compressed must be divided up (as in other
systems [35, 56]). However, the client would then have
to download each division as if it were a separate movie,
which means delaying consumption or downloading far
ahead of time (if the separate divisions were downloaded
all at once, then an attacker could guess that a longer
object is being consumed).

The Netflix catalog [1] indicates that the majority of
movies have a similar size: 85% of the objects are between
60 and 120 minutes, with the majority clustered around
the average movie length of 92 minutes. Movies between
92 and 120 minutes will require 23% compression in the
worst case and 10% on average; similarly, the padding
for objects between 60 and 92 minutes will be small to
moderate. The impact of objects at either extreme will be
limited: 8% of the movies are shorter than 60 minutes,
and will require significant padding; 5% are between 120
and 135 minutes, making them candidates for aggressive
compression (32% in the worst case and 27% on average)
though potentially at the cost of lowering user satisfaction;
and 2% are over 135 minutes, making them candidates for
splitting. We think that splitting is not a huge limitation,
because we hypothesize that people usually plan ahead to
watch long movies.

5 Implementation
Our prototype implements the design in Section 4, except
for large file splitting (§4.4). It leverages existing PIR im-
plementations: the key server uses the XPIR [14] imple-
mentation of the CPIR protocol in Figure 1. For the object
servers, we borrow the CGKS ITPIR implementation of
Percy++ [51]7 and modify it to support the techniques in
Section 4. The total server-side code is 11K lines of C++.
We implement two versions of the client-side library: one
in C++ (2500 lines), which we use for experiments (§6.2),
and one in JavaScript (500 lines), which we use to show
compatibility with modern web browsers (§6.5).

6 Evaluation
Our evaluation answers the following questions:
1. When is Popcorn affordable?
2. What is the price of Popcorn’s privacy guarantees?
3. Can we use Popcorn to watch a movie encoded using

an existing DRM scheme on a modern web browser?
Figure 7 summarizes our evaluation results.

Method and setup. We compare Popcorn to three base-
lines. NoPriv, BaselinePIR, and BaselinePIR++. NoPriv
serves object chunks from an Apache web server, mod-
eling modern media delivery systems that use HTTP

7Percy++’s CGKS ITPIR implementation is one of the fastest imple-
mentations for two-server ITPIR. An alternative is the CGKS imple-
mentation from RAID-PIR [35] (§7).
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Popcorn is affordable when it serves large media files to many
concurrent clients. §6.2

Popcorn’s per-request dollar cost is 3.87× of a system
without privacy for workloads with ≥10K concurrent clients. §6.3

Popcorn integrates well with existing web technology. It can
play DRM-encoded media within modern web browsers. §6.5

Figure 7—Summary of main evaluation results.

RAM SSDs
type vCPUs (GB) (# × GB) cost/hr

c3.8xl 1 32 60 2 × 320 $0.6281
i2.4xl 2 16 122 4 × 800 $0.8451
i2.8xl 3 32 244 8 × 800 $1.6902

Figure 8—Hourly cost of reserved Amazon EC2 machines used
in our experiments. Machines starting with “c” are compute-
optimized; those starting with “i” are I/O-optimized.

caching at CDN edge servers [13]. BaselinePIR is a mod-
ified version of Percy++ [51] CGKS: the servers store the
library L as slices and process ITPIR queries directed at
them. This is essentially Popcorn without the techniques
of §4. BaselinePIR++ additionally batches requests us-
ing cohort batching (§4.3) to reduce both I/O and CPU
costs. For all PIR systems, we experiment with one object
server and multiply the measurements by two (to reduce
the financial cost of our experimental evaluation).

Our workload is modeled on existing media delivery
services [102]: clients arrive according to a Poisson pro-
cess (e.g., C=10K clients arrive in T=90 minutes). All
clients in NoPriv request the same (average-size) object,
giving this baseline the maximum benefit of server-side
caching. The server’s work in Popcorn, BaselinePIR, and
BaselinePIR++ is oblivious to the request distribution (we
select a Zipfian distribution with θ=0.8).

For the four systems, we measure server- and client-
side resource usage in terms of CPU time (by instrument-
ing code with clock()), I/O transfers and storage (using
iostat), and network transfers (via /proc/net/dev).

Our experimental testbed is a single availability zone
within Amazon’s EC2, and is described in Figure 8.

6.1 Provisioning resources using microbenchmarks
Popcorn. Machine provisioning for Popcorn involves
two steps: (1) benchmarking the basic operations (details
in Figure 9), and (2) combining the results with the provi-
sioning analysis in §4.3.

Consider, for example, provisioning the first ITPIR
instance of a Popcorn object server for a Netflix-like
workload: C=10,000 clients streaming from a library
of n=8192 media files with average playing time of
T=90 minutes, playback rate of µ=4 Mbps, and startup
delay of d=15 seconds.8 The processing cycle of this

8We think that 15 seconds of delay before playing a long video is tolera-
ble. During this time the server could display a generic advertisement
or public service announcement (existing services commonly display

Throughput (Gbps)

c3.8xl i2.4xl i2.8xl

Sequential read 6.4 12.6 23.3
Random mixed rw 2.1 8.0 16.0
block matrix multiplication 488–4968 488–2512 432–4608

Figure 9—Throughput of basic operations in Popcorn—reading
a column slice (§4.3), reading and writing 1 MB sized chunks,
and computing block matrix multiplication on a slice (§4.2)—on
machines listed in Figure 8. The latter value depends on the size
of the query matrix (§4.2, §4.3), so we report a range: from
a query matrix consisting of a single query vector to one that
contains 4096 query vectors.

instance must be T1≤ d−ε·k1 (§4.3). For our example,
ε=2 (the time to process or consume a 1 MB chunk at
µ=4 Mbps), and we speculatively set k1=3, which gives
T1≤ 15−2·3= 9 seconds. Thus, the instance is given a
segment of t1=T1=9 seconds and has a batch size of b1=
(C/T)·T1=17. Furthermore, it requires storage capacity
of n·t1·µ=36 GB, read bandwidth R1=n·µ=32 Gbps, and
XOR processing throughput P1=b1·n·µ=544 Gbps.

Our microbenchmarks (Figure 9) indicate that these
requirements can be met by three i2.4xl machines. If the
microbenchmarks had indicated a different number, then,
as described in §4.3, we would have had to adjust k1
(which was speculatively set) and repeat the provisioning
process described above.

BaselinePIR. To use the fewest possible machines, we
stripe the approximately 21 TB library of our Netflix-like
workload across machines with highest storage capacity
(that is, i2.8xl in our testbed).

To reduce the financial cost of our experimental eval-
uation, we measure the number of requests that can be
serviced by this setup, along with each request’s resource
consumption, and extrapolate the results to workloads
with a larger number of requests (e.g., to support 2×
concurrent clients, we double resource costs).

BaselinePIR++. As in Popcorn, we use the microbench-
marks in Figure 9 and the provisioning analysis for the
cohort batching scheme (§4.3).

6.2 Per-request overheads of Popcorn

To understand when Popcorn is affordable, we run experi-
ments varying the number of concurrent requests (C); the
number of objects (n); and the playing time of objects
(T). We find that Popcorn incurs modest costs when the
library size is moderate (≈8K media files), object sizes
are large (≈90 minutes), and there are many concurrent
clients (≥10,000). Fortunately, these settings are consis-
tent with the workloads of Netflix-like systems (§8).

Before proceeding, we note that Popcorn’s provisioning
method can leave resources idle (§4.3), so we report both
the consumed and provisioned resources. We focus on the

15 or 30 second advertisements [12]).
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Figure 10—Per-request server-side resource use (log-scaled) of Popcorn and the baselines with varying concurrent requests C. If
I/O is the bottleneck, there are idle CPU cycles and vice versa (§4.3). For Popcorn, we depict both the provisioned and consumed
resources; for the baselines, we depict only the latter. We do not depict I/O usage for NoPriv as it is always zero (see text).

consumed resources in this subsection and account for the
idle resources in the next subsection.

Overhead versus number of concurrent requests. We
run Popcorn and its baselines with C={1, 1K, 10K}
while keeping n=8192, T=90 min, µ=4 Mbps, and
d=15 seconds. Figure 10 summarizes the per-request
server-side resource costs.

I/O overheads. When C=1, the I/O bandwidth
Popcorn consumes matches that of BaselinePIR and
BaselinePIR++, as there is no opportunity to batch re-
quests. However, as the request rate increases, batch-
ing lets Popcorn amortize its I/O transfers (§4.3): the
per-request amortized I/O bandwidth decreases from
≈ 63 Gbps (for C=1) to 53 Mbps (for C=10K), a re-
duction of 1190×. Surprisingly, concurrent requests, by
hitting the file system cache, also reduce BaselinePIR’s
per-request I/O bandwidth (by 16×). As expected,
BaselinePIR++’s per-request I/O bandwidth reduces by
the cohort batch size. Finally, there are no I/O transfers in
NoPriv as all requests hit the same (cached) object.

CPU overheads. For a single request, Popcorn con-
sumes 50% more CPU than BaselinePIR, as the overhead
of parallelizing block matrix multiplication (over multiple
cores) in Popcorn (§4.2) is charged to a single request. As
the number of concurrent requests increases, Popcorn’s
CPU overheads decrease; the per-request CPU consump-
tion decreases by ≈11× when the number of concurrent
requests increases from 1 to 10,000. We hypothesize that
this stems from the increase in cache locality from block
matrix multiplication over bigger batch sizes.9 Further-
more, the 36 minutes of per-request CPU time for C=10K
matches the performance of the matrix multiplication mi-
crobenchmark (42 TB of data processed in 36 minutes
gives a throughput of 159 Gbps for a single CPU, consis-
tent with the throughputs reported in Figure 9).

However, Popcorn’s per-request CPU consumption is

9In a separate experiment, we measured the percentage of cache misses
for block matrix multiplication (§4.2) using CPU performance counters,
and found that it reduces from 48% for a query matrix with a single
request to less than 2% for a query matrix with 210 requests.

much higher than NoPriv (1080× for C=10K): for a sin-
gle object, the Apache web server in NoPriv serves 1 MB
chunks and requires almost no server-side processing,
whereas Popcorn XORs n objects on average.

Network and storage overheads (not depicted in the
figures). BaselinePIR, BaselinePIR++, and Popcorn incur
a two-fold network overhead over NoPriv because clients
download from two servers. With respect to storage, each
instance of an object server in Popcorn needs buffer space
equal to its segment size times its batch size (§4.3). Across
all instances, this equals ≈15.4 TB, or ≈1.6 GB per con-
current request, which is 0.6× the size of an object.

Overhead versus number of objects. In Figure 11(a),
we change the size of the library (n={2048, 4096, 8192})
while keeping the other parameters fixed (C=10K,
T=90 min, µ=1 Mbps,10 and d=15 seconds). As ex-
pected, Popcorn’s per-request CPU and I/O bandwidth
consumption, even though amortized, is proportional to
n. Network downloads and server-side storage overheads
(not shown) do not change with n.

Overhead versus playing time of objects. In Fig-
ure 11(b), we change the playing time of objects
(T={10, 60, 90} minutes) while keeping the other pa-
rameters fixed (n=2048, µ=1 Mbps, d=15 seconds, and
C=10K). As T increases, the per-request CPU consump-
tion is unaffected. Also, with increasing T , the per-request
I/O consumption decreases; on the other hand, idle I/O
bandwidth (not depicted in the figure) increases (§4.3).

Overheads of the key server. Recall that Popcorn uses
XPIR [14] as its CPIR implementation (§5). Since XPIR
does not batch requests, the per-request overheads of the
key server depend only on the number of keys (and not
on the number of concurrent requests C). We use a single
machine of type c3.8xl for the key server. For a library
with 8192 keys, it takes three seconds of server-side CPU
time to privately retrieve a key; there are no I/O transfers

10To reduce the financial cost of EC2 experiments, this and subsequent
experiments set µ=1 Mbps instead of 4 Mbps. The change scales
down the experiments; the qualitative results are unaffected.
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Figure 11—Popcorn per-request resource use (log-scaled) as a function of the number (left) and length (right) of objects.

experimental configuration per-request costs ($)

#reqs #1 #2 #3 machine network total

NoPriv 10K – – – – 0.016 0.016
Popcorn 1 2 60 0 77.943 0.032 77.975
Popcorn 1K 17 50 4 0.09 0.032 0.122
Popcorn 10K 185 32 32 0.03 0.032 0.062

Figure 12—Estimated per-request dollar cost for NoPriv and
Popcorn. #1, #2, and #3 refer to the type of AWS EC2 machines
from Figure 8.

because the 128 KB library fits in memory. Thus, as ex-
pected, the key server is not a performance bottleneck for
Popcorn. Moreover, the end-to-end time to retrieve a key
is much less than the startup delay of d=15 seconds.

Client-side overheads. Compared to NoPriv, Popcorn’s
client consumes additional CPU and network bandwidth
(because it has to generate and decode PIR queries,
and download content from two object servers). For
n=8192 objects, T=90 minutes, and µ=4 Mbps, we find
that Popcorn’s client (run on a single vCPU of c3.8xl
type machine) consumes 10 CPU seconds (compared to
NoPriv’s 1.7 CPU seconds), and 25 MB of network upload
bandwidth (compared to NoPriv’s 11 MB).

6.3 Dollar-cost analysis

The previous subsection showed that Popcorn signifi-
cantly reduces CPU and I/O consumption over the base-
line PIR systems, at least for large objects and high load.
These improvements provide the foundation for achieving
privacy at low cost, a cost that we now quantify.

Method. We use the pricing model of Amazon EC2 (Fig-
ure 8) to estimate the per-request machine cost, and the
pricing model of CDNs ($0.006 per GB) [90] to compute
per-request network cost. We choose these pricing models
because they are public—though, in an actual deployment,
a service could receive wholesale, bulk, or negotiated
prices. We use a Netflix-like workload in our calculations:
n=8192 media files, T=90 minutes, µ=4 Mbps with vary-
ing number of concurrent clients. Figure 12 summarizes
our results. We find that Popcorn’s per-request cost is
within a small multiple of NoPriv for a workload with
C=10K concurrent clients.

NoPriv. To give NoPriv the maximum benefit, we disre-
gard its machine cost. The per-request cost is then deter-

mined solely by the network transfer cost, and is≈$0.016
(i.e., 90 minutes × 4 Mbps × $0.006/GB).

Popcorn. We provision EC2 machines as described in
§6.1 and §4.3. The total per-request cost is derived by
combining (1) the per-request machine cost, computed
by dividing total machine cost by the total number of re-
quests, and (2) the per-request network cost. This method
charges Popcorn for both consumed and idle resources
(Figure 10). For the Netflix-like library and C=10K, the
per-request cost is $0.062 (the per-request machine cost
is $0.03; the per-request network cost is $0.032).11 Pop-
corn thus increases dollar cost 3.87× over NoPriv, in
line with our initial affordability requirement (§1). Impor-
tantly, Popcorn’s low cost is premised on many clients
accessing the system concurrently: the per-request ma-
chine cost decreases with the number of concurrent clients.
It is $78 for C=1 and $0.09 for C=1K.

BaselinePIR and BaselinePIR++. Since we might have
provisioned these systems wastefully, we do not estimate
their dollar cost using the machine-based pricing model,
which charges for both the consumed and idle resources.
Instead, we use a per-resource pricing model to estimate
the dollar cost of these systems, as described next.

6.4 Further comparisons

In this subsection, we estimate the dollar cost of
BaselinePIR, BaselinePIR++, XPIR [14], and XPIR++,
a hypothetical extension to XPIR that uses cohort batch-
ing (§4.2) to reduce I/O costs (but does not use matrix
multiplication). Figure 13 summarizes these alternatives.

The estimates for BaselinePIR, BaselinePIR++, and
Popcorn are based on experimental data from §6.2; for
XPIR and XPIR++, we calculate CPU resource consump-
tion using XPIR’s reported performance and I/O band-
width consumption from the expression 2·(n·µ)/bcohort
(the factor of two is due to XPIR’s preprocessed library
being twice the size of the original [14]).

We compare these systems for the Netflix-like work-
load of §6.3. We set the startup delay d to 15 seconds,
except for the systems using cohort batching scheme, for
which we vary d.

11The network cost can be reduced for a pricing model in which network
transfers between (ITPIR) servers is cheaper than server to client
transfers, by using the techniques of Riffle [70, Section 4.4] (§7).
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system description

XPIR [14] fastest CPIR implementation
XPIR++ XPIR with naive batching (§4.2)
BaselinePIR XPIR composed with CGKS ITPIR (§4.1)
BaselinePIR++ BaselinePIR with naive batching (§4.2)
Popcorn §4.1+ §4.2+ §4.3

Figure 13—Comparison points. “Naive batching” refers to an
instantiation of batching, as described in Section 4.2, with the
cohort batching scheme described in Section 4.3.

I/O Dollar cost

# vCPUs
bandwidth

(Gbps)
relative to

NoPriv

X [14]/X++ (C=1) 11.6 64 265×
X++ (C=1K) 11.6 26.6 118×
X++ (C=1K, d=60) 11.6 5.96 37×
X++ (C=1K, d=600) 11.6 0.58 16×
X++ (C=10K) 11.6 2.66 24×
X++ (C=10K, d=60) 11.6 0.59 16×
X++ (C=10K, d=600) 11.6 0.058 13.5×

B/B++ (C=1) 3.1 64 256×
B (C=1K) 2.4 4 19×
B (C=10K) 2.5 4 19×

B++ (C=1K) 1.7 16 66×
B++ (C=1K, d=60) 1.26 9.15 39×
B++ (C=1K, d=600) 0.49 0.54 4.5×
B++ (C=10K) 0.65 3 14×
B++ (C=10K, d=60) 0.49 0.59 4.7×
B++ (C=10K, d=600) 0.41 0.058 2.5×

P (C=1) 4.6–992 63–781 253×–4873×
P (C=1K) 0.5–1.47 0.43–0.83 4×–7.6×
P (C=10K) 0.4–0.74 0.053–0.23 2.5×–3.87×

Figure 14—Per-request resource consumption and estimated
dollar-cost of XPIR (X), XPIR++ (X++), BaselinePIR (B),
BaselinePIR++ (B++), and Popcorn (P). Network transfers are
not shown; they are 5× NoPriv for X and X++, and 2× NoPriv
for the other systems. For Popcorn, we present a range: the
smallest value considers only the consumed resources, while
largest value includes both consumed and idle resources. Startup
delay d is 15 seconds unless specified otherwise.

We use a per-resource pricing model (derived in Ap-
pendix B) based on Amazon EC2’s machine cost (Fig-
ure 8) and on the network cost of CDNs [90]. Our
model charges CPU at $0.0076/hour, I/O bandwidth at
$0.042/Gbps-hour, and network transfers at $0.006 per
GB. Multiplied by each system’s consumption of the
corresponding resources, these values determine the per-
request dollar cost (Figure 14).
• The costs of XPIR are high (265× NoPriv), though

adding a naive batching scheme (XPIR++) significantly
reduces them (by ≈11× for C=10K, d=15).

• Using ITPIR for object delivery (in conjunction with
CPIR (§4.1)) reduces the costs further (by ≈ 2× for
C=10K, d=15). The disadvantage is that ITPIR re-
quires non-colluding servers.

• Increasing the startup delay (and thus the batch size
of the cohort) can further reduce costs. For example,

increasing d from 15 to 60 seconds reduces costs by
3× (a reduction from 14× NoPriv to 4.7× NoPriv).

• BaselinePIR++ matches the cost of Popcorn (when
C=10K) but requires a 40× higher startup delay (d=10
minutes in BaselinePIR++ vs. 15 seconds for Popcorn).

6.5 Compatibility study of Popcorn

To verify Popcorn’s compatibility with modern Web
browsers and DRM technology, we implemented a Pop-
corn client in JavaScript and used it to watch short videos
in the WebM format [10] (protected using WebM En-
cryption [11]). Our prototype works on Chrome (version
45.0.2454), and makes use of the HTML5 video tag and
extensions: the decoded ITPIR content is passed into the
Media Source Extension interface, which forwards media
chunks to the video player; the decoded CPIR response
is passed into the Encrypted Media Extension interface,
which decrypts the protected content.

7 Related Work
Alternatives to PIR for privacy. Obfuscation [20, 44,
91] protects clients’ privacy by cloaking traffic with
dummy requests. This approach requires less processing
than PIR at clients and servers, but significantly higher
network cost: matching PIR’s degree of privacy (the num-
ber of objects among which a request is hidden) would
require downloading the entire library.

Rather than the content being consumed, anonymity
hides the identity of the consumer [41, 72]. This could
be used to hide metadata (login times, download fre-
quency, etc.), which is complementary to PIR. However,
anonymity-based solutions can reveal access patterns that,
combined with other background information, may dis-
close a user’s media consumption [80].

Oblivious RAM (ORAM) [53, 75, 77, 100] algorithms
conceal a client’s access patterns from a storage server.
Similarly, searchable symmetric encryption (SSE) (sur-
veyed in [28, 29]) offers yet another solution for private
data retrieval from a remote database. However, these
solutions target a setup where the client outsources its
encrypted data to a server.

Recent results [64, 87] enhance the above setup: they
let clients privately retrieve data from a remote database
owned by a different entity. Unlike PIR, these protocols
allow for a controlled amount of leakage in the form of
data-access and query patterns. Unlike us, they assume
that the server does not collude with clients (e.g., in Pop-
corn the server can pretend to be a new customer of the
streaming service). If the server can collude with a client,
it can issue queries for each media file in the system, mon-
itor access patterns, and decode all other clients’ queries.
Improving the performance of PIR. The computa-
tional challenges of PIR have been obvious since its intro-
duction, and have since been mitigated in several ways.
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Distributing the work, either by moving it to the cloud
or by dividing it among clients [37, 76, 86], reduces la-
tency but not the total computational burden.

GPUs [33, 78] and cheaper cryptographic opera-
tions [14, 15, 45, 104, 110] have reduced the computa-
tional load of CPIR, refuting the notion [98] that CPIR
is likely to be more expensive than the naive solution of
transferring the entire library. However, the single request
cost for media delivery in XPIR [14], the fastest system
employing these techniques, is still higher than desirable
(see §6.4 and Figure 14 for a comparison with Popcorn).

Another path to better performance is to limit the pri-
vacy guarantees to only a portion of the library [82, 83,
106]. For example, bbPIR [106] allows users of libraries
that can be thought of as a matrix to specify a submatrix
(called a bounding box) from which bits can be privately
retrieved using CPIR. This approach can be useful for ef-
ficiently implementing privacy-preserving location-based
services: the larger the bounding box, the higher the pri-
vacy, but also the higher the processing and network costs.

Perhaps the most direct way to reduce the overhead
of PIR is to genuinely reduce the work that servers need
to perform. Lueks and Goldberg [74], building on ear-
lier theoretical work by Beimel et al. [21] and Ishai et
al. [63], show that one can achieve sub-linear server-side
computation by efficiently processing batches of requests
from multiple clients. Popcorn is inspired by this work:
it uses batching at multiple stages of its protocol, but
tailored for media delivery. Another recent system, RAID-
PIR [35], based on the implementation of upPIR [27],
reduces server-side work, first, by storing and processing
only a fraction of the library at each ITPIR server and, sec-
ond, by encoding multiple requests from the same client
in a single query. Popcorn’s performance could potentially
benefit from these techniques, but only when using more
than two servers, or when clients issue multiple simulta-
neous requests. Currently, Popcorn assumes exactly two
servers and that clients request objects sequentially.

Finally, performance can be improved with dedicated
hardware [18, 62, 73, 99, 108], at the price of having to
trust its manufacturer: a client can connect to a secure
coprocessor that (obliviously to the server hosting the
library) retrieves and delivers the requested object.

A large body of literature focuses on instead reducing
the communication overhead of PIR [47, 84]. Unlike Pop-
corn, these protocols target an environment in which n�`.
In that context, Devet et al. [38] propose a technique that,
like Popcorn, composes CPIR and ITPIR. Unlike Pop-
corn, the composition is hierarchical (ITPIR selects a
sub-library, and iterations of CPIR select an object) and
minimizes communication costs.

In very recent work, Riffle [70], like Popcorn, targets
the case `�n. Unlike Popcorn, Riffle focuses on peer-
to-peer file transfers (as opposed to centralized stream-

ing media). Riffle uses ITPIR, with k> 2, and focuses
on reducing server-to-client network transfers (§2.4), by
adding server-to-server transfers; this could potentially be
composed with Popcorn.

Protecting library content in PIR. The tension be-
tween ITPIR and content protection has been noted before.
Gertner et al. [49] introduce the problem and propose two
solutions, both of which, at a high level, protect the con-
tent by storing at untrusted servers independent random
data (e.g., two servers store random data that XORs to
the library content). Goldberg’s ITPIR protocol [52] has
a similar protection property as [49], but it uses fewer
servers. Huang et al. [60] protect library content kept at
untrusted servers by first encrypting it, and then using
a threshold signature scheme [36] to serve keys for the
encrypted object. In all the above schemes, the library con-
tent can be disclosed if more than a threshold of untrusted
servers collude. By composing CPIR and ITPIR (§4.1),
Popcorn instead keeps content protection collusion-proof.

Symmetric PIR (SPIR) schemes add an additional facet
to content protection by preventing dishonest clients from
learning information about the content of a database be-
yond what is contained in the records they retrieved [50].
Popcorn currently assumes an honest client (§2.1) and
thus does not use SPIR to privately download keys from
the key server; however, it can reduce that trust by trans-
forming its CPIR protocol into an SPIR protocol [40, 79].

1-out-of-N oblivious transfer (OT) [23, 79] provides
the same content protection property as SPIR but, unlike
SPIR, can have network overhead linear in the size of the
library. In our experiments, this overhead would not be
costly: WebM Encryption (§6.5) sets our keys to 128 bits,
which, for n=8192 objects, yields a library of only 128
KB. However, the linear overhead can in general be large
(e.g., if the key server embeds keys within DRM licenses);
for this reason, Popcorn’s key server does not use OT.

Handling variable-sized objects in PIR. A naive solu-
tion is to pad every object to the size of the longest, and
download (the equivalent of) the longest object from each
server. Prior work [35, 56] avoids this solution by (a) con-
catenating small objects (e.g., a few objects form one
row of the library), and (b) splitting large objects over
multiple rows of the library and using multi-row queries
that retrieve (secretly) many rows in a single query. The
reduced communication cost is close to the optimal: the
size of the longest object in the library. However, this
cost is still high, especially if a smaller object is being
retrieved. An alternative is to download different rows (of
an object) as independent objects, possibly at the cost of
increasing the consumption delay [35]. Popcorn uses this
technique for objects that are divided over multiple rows,
but in addition reduces the number of such objects by
using a combination of compression and padding (§4.4).
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Prior PIR implementations. Many of the CPIR and
ITPIR protocols described above have been implemented.
The Percy++ library [51] contains several of them [15,
31, 37–39, 52, 57, 74]. Also, [56] is implemented as a
fork of Percy++, RAID-PIR [35] is implemented on top
of upPIR [27], and there are numerous CPIR implemen-
tations [14, 33, 45, 76, 78, 86, 93, 104, 106, 110], among
which XPIR [14] is the fastest. Popcorn incorporates some
of these implementations as modules: it uses the XPIR
library for CPIR and borrows the CGKS ITPIR [31] code
from Percy++. Sections 5 and 6 empirically or analytically
compare Popcorn against these prior implementations.

8 Discussion, limitations, and future work
We evaluated Popcorn at the scale of a Netflix library, and
found that the results are cautiously encouraging: com-
pared to a baseline, I/O and CPU overhead are both lower
(due to amortization, batching, and careful provisioning).
And, although the overall resource cost is high, the dol-
lar cost is manageable. Below, we discuss fundamental
limitations of Popcorn, followed by limitations of the
prototype and current design that require future work.

Fundamental limitations. We see three main limita-
tions. First, because Popcorn’s overheads grow linearly
with the number of objects, it has no hope of scaling to
YouTube-size libraries. Second, organizations that serve
objects can collude to compromise Popcorn’s privacy
guarantee. Admittedly, an assumption of no collusion may
be unrealistic against state-level adversaries that can com-
promise multiple organizations (or already have). Third,
Popcorn cannot support forward seeks during playback:
such user actions alter the download pattern in a content-
dependent way, thus revealing information.

Library updates. To support online updates, Popcorn
should execute both CPIR and ITPIR queries on the same
version of the key and object libraries, at the key server
and at both object servers. Standard solutions exist (e.g.,
generation numbers in concert with garbage collection).

Integration with CDNs. Running Popcorn on content
delivery networks (CDNs) would present two main chal-
lenges: maintaining the utility of batching when running
on a distributed infrastructure, and increased hardware
provisioning at the CDN’s edge servers. Though address-
ing the latter is non-trivial, we think that it does not require
a paradigm shift: Akamai’s EdgeComputing service [34]
already enables running CPU-intensive enterprise busi-
ness web applications at edge servers. Moreover, Netflix
recently installed custom-built storage-optimized appli-
ances at the edges.

Similarly, we think that, though the CDN’s distributed
infrastructure will reduce opportunities for batching,
enough concurrency will remain to make the service cost
effective. Indeed, rough back-of-the-envelope calculations

suggest that request rates for Netflix are already quite high
(e.g., over 9200 requests/90min/PoP12) and are growing
fast [6]. This is not specific to Netflix: similar request rates
(average of 6000 requests in 90 minutes from within a
single city) have been reported for other video on demand
systems [111].

Changes in load. Unless Popcorn is always wastefully
provisioned for the peak load, load changes require care:
the assignment of work units to machines depends on the
number of clients (§4.3). A solution is to rely on virtual
machines (VMs): give each VM a single slice, and then
provide elasticity via VM migration or consolidation.

Variations in quality and bandwidth. Adaptive stream-
ing lets clients switch between different video quality
levels to adjust to bandwidth fluctuations. Popcorn could
support this feature in two ways. First, it could maintain
an individual library for each quality level. Clients would
send queries to all libraries but download a video chunk
only from the appropriate one. (A concern is, does switch-
ing between libraries leak information? No, because the
chunk download pattern and switches are “lined up” with
a reference object, Oavg (§4.4).) This solution is simple,
but asking each library to process every request would
increase server-side work significantly.

Alternatively, Popcorn could exploit layered cod-
ing [59, 66, 89, 95] or multiple description coding
(MDC) [54, 92, 107]. There would be a single basic qual-
ity library accessed by all clients, with separate libraries
for enhancement layers (better spatial resolution, bitrate,
frame rate, etc.). The server-side work would thus be
proportional only to the size of the highest quality library.

Billing and accounting. Popcorn must enable the con-
tent distributor to charge consumers, pay royalties, and
collect aggregate statistics. The current prototype can sup-
port both subscription-based and pay-per-view pricing
models, by monitoring accesses to the key server. Further-
more, by default it works with a prepaid royalty model,
where the distributor pays a fixed license fee up front.
However, in its current form, Popcorn does not support
advanced pricing models (different prices for different
objects, possibly in tiers) or advanced royalties models
(e.g., based on number of views or aggregate statistics).
However, we think that these limitations are not funda-
mental, as prior works [16, 25, 57, 103] have addressed
them in different contexts. Future work is to investigate
the performance and privacy implications of composing
these works with Popcorn.

Targeted ads and recommendation services. Popcorn
does not currently support targeted advertisements or rec-
ommendations. Incorporating relevant prior work [19, 24,
26, 55, 65, 68] into Popcorn is a direction for future work.

12Assumes 10 billion hours watched in 3 months [5], requests are for a
90 minute video, and a total of 500 Points of Presence (PoP).
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A Derivation of segment sizes
Recall the inequalities defined in Section 4.3:

ti ≤ Ti ·α, where α =
min {Ri, Pi/bi}

µ ·n

Ti ≤ d′+
i−1∑
j=1

tj, where d′ = d−ε

We consider the special case where both sides of the
inequalities are equal. Combining both statements:

ti =

d′+
i−1∑
j=1

tj

 ·α
We show that ti = (d′ ·α ·(1+α)i−1) is a solution to the
above equation. Substituting on both sides:

d′ ·α ·(1+α)i−1 =

d′+
i−1∑
j=1

d′ ·α ·(1+α)j−1

 ·α.

Summing the finite geometric series, and rearranging:

=

(
d′+d′ ·α ·

(
(1+α)i−1−1

α

))
·α

= d′ ·α ·(1+α)i−1.

Setting α = 1, we get ti = 2i−1 ·(d−ε), as desired.

B Pricing model
Our high-level goal is to estimate the hourly cost of rent-
ing three resources on Amazon EC2: a vCPU, 1 GB of
memory, and 1 Gbps of sequential read I/O bandwidth.
To get the estimates, we make the simplifying assump-
tion that the price of an EC2 machine depends only on
these three resources. Of course, in practice, pricing ma-
chines is a complex process that depends on many factors
(I/O performance for non-sequential workloads, cost of
the networking infrastructure, prices set by competitors,
etc.); the values derived here should be treated as only
estimates.

At a high level, our method is to use the specification
of machines on Amazon EC2 and their corresponding
prices to derive a system of linear equations; in these
equations variables represent the unit cost of the resources
mentioned above, coefficients represent the “quantity” of
those resources in an Amazon EC2 machine, and the RHS
will be the price of renting that machine.

We consider the machines in Figure 8 and an additional
machine. We need this additional machine as the equa-
tion for i2.4xl is not linearly independent from that of
i2.8xl, which leaves us with two equations to solve for
three variables. To write the third equation, we pick a
memory optimized machine that has 32 vCPUs, 244 GB

of memory capacity, 2 SSDs with 320 GB capacity each
(6.4 Gbps sequential read I/O bandwidth), and is rented
out for $0.9822 per hour. Using these, we get the follow-
ing equations:

32C+60M+6.4I = 0.6281
32C+244M+6.4I = 0.9822

32C+244M+23.3I = 1.6902,

where C is the hourly cost of renting a vCPU, M is the
cost of renting 1 GB of memory for an hour, and I is the
hourly cost for 1 Gbps of sequential read I/O bandwidth.

Solving for the unknowns in the equations, we get
I=0.042, M=0.0019, and C=0.0076.

Acknowledgments
We thank Carlos Aguilar-Melchor, Allen Clement, Alan
Dunn, Bryan Ford, Yuval Ishai, Lon Ingram, Jaeyeon
Jung, Brad Karp, Marc-Olivier Killijian, Sangman Kim,
Michael Z. Lee, James Mickens, Simon Peter, Thomas
Schneider, Vitaly Shmatikov, Emmett Witchel, and the
anonymous reviewers for feedback and comments that im-
proved this draft. The Texas Advanced Computing Center
(TACC) at UT supplied computing resources for an earlier
version of this work. This work was supported by NSF
grants 1040083, 1048269, 1409555, and 1055057; ONR
grant N00014-14-1-0469; an AWS in Education Research
grant; and a Google European Doctoral Fellowship.

References
[1] Alphabetical List - Fri, Apr 3, 2015.

http://usa.netflixable.com/2015/04/
alphabetical-list-fri-apr-3-2015.html.

[2] Digital Rights Management.
http://msdn.microsoft.com/en-us/library/
cc838192%28VS.95%29.aspx.

[3] Free haven’s selected papers in anonymity.
http://freehaven.net/anonbib/.

[4] Microsoft PlayReady.
http://www.microsoft.com/playready/.

[5] Netflix 2015 Q1 Earnings Letter.
http://files.shareholder.com/downloads/NFLX/
47469957x0x821407/DB785B50-90FE-44DA-9F5B-

37DBF0DCD0E1/Q1_15_Earnings_Letter_final_

tables.pdf.
[6] Netflix Soars On Subscriber Growth. http:

//www.forbes.com/sites/laurengensler/2015/
01/20/netflix-soars-on-subscriber-growth/.

[7] New Movie Arrivals - Fri, Apr 3, 2015.
http://usa.netflixable.com/2015/04/new-
movie-arrivals-fri-apr-3-2015.html.

[8] Pyramid broadcast technique for video on demand.
Lecture notes,
http://www.mathcs.emory.edu/~cheung/Courses/
558-old/Syllabus/5-VoD/pyramid.html.

14

http://usa.netflixable.com/2015/04/alphabetical-list-fri-apr-3-2015.html
http://usa.netflixable.com/2015/04/alphabetical-list-fri-apr-3-2015.html
http://msdn.microsoft.com/en-us/library/cc838192%28VS.95%29.aspx
http://msdn.microsoft.com/en-us/library/cc838192%28VS.95%29.aspx
http://freehaven.net/anonbib/
http://www.microsoft.com/playready/
http://files.shareholder.com/downloads/NFLX/47469957x0x821407/DB785B50-90FE-44DA-9F5B-37DBF0DCD0E1/Q1_15_Earnings_Letter_final_tables.pdf
http://files.shareholder.com/downloads/NFLX/47469957x0x821407/DB785B50-90FE-44DA-9F5B-37DBF0DCD0E1/Q1_15_Earnings_Letter_final_tables.pdf
http://files.shareholder.com/downloads/NFLX/47469957x0x821407/DB785B50-90FE-44DA-9F5B-37DBF0DCD0E1/Q1_15_Earnings_Letter_final_tables.pdf
http://files.shareholder.com/downloads/NFLX/47469957x0x821407/DB785B50-90FE-44DA-9F5B-37DBF0DCD0E1/Q1_15_Earnings_Letter_final_tables.pdf
http://www.forbes.com/sites/laurengensler/2015/01/20/netflix-soars-on-subscriber-growth/
http://www.forbes.com/sites/laurengensler/2015/01/20/netflix-soars-on-subscriber-growth/
http://www.forbes.com/sites/laurengensler/2015/01/20/netflix-soars-on-subscriber-growth/
http://usa.netflixable.com/2015/04/new-movie-arrivals-fri-apr-3-2015.html
http://usa.netflixable.com/2015/04/new-movie-arrivals-fri-apr-3-2015.html
http://www.mathcs.emory.edu/~cheung/Courses/558-old/Syllabus/5-VoD/pyramid.html
http://www.mathcs.emory.edu/~cheung/Courses/558-old/Syllabus/5-VoD/pyramid.html


[9] The 2014 Pulitzer Prize Winners, Public Service: The
Guardian US and The Washington Post. http://
www.pulitzer.org/works/2014-Public-Service.

[10] The WebM Project.
http://www.webmproject.org/about/faq/.

[11] WebM Encryption. http:
//www.webmproject.org/docs/webm-encryption/.

[12] You are watching more web video ads than ever.
http://allthingsd.com/20130215/you-are-
watching-more-web-video-ads-than-ever/.

[13] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt,
M. Steiner, and Z.-L. Zhang. Unreeling Netflix:
Understanding and improving multi-CDN movie delivery.
In IEEE International Conference on Computer
Communications (INFOCOM), 2012.

[14] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O.
Killijian. XPIR: Private Information Retrieval for
Everyone. Cryptology ePrint Archive, Report 2014/1025,
2014.

[15] C. Aguilar-Melchor and P. Gaborit. A lattice-based
computationally-efficient private information retrieval
protocol. In Western European Workshop on Research in
Cryptology (WEWoRC), 2007.

[16] W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious
transfer: How to sell digital goods. In Annual
International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT), 2001.

[17] O. M. Alliance. DRM Architecture.
http://technical.openmobilealliance.org/
Technical/release_program/docs/DRM/V2_1-

20081106-A/OMA-AD-DRM-V2_1-20081014-A.pdf,
Mar. 2004.

[18] D. Asonov and J.-C. Freytag. Almost optimal private
information retrieval. In Workshop on Privacy Enhancing
Technologies (PET), 2003.

[19] M. Backes, A. Kate, M. Maffei, and K. Pecina. ObliviAd:
Provably secure and practical online behavioral
advertising. In IEEE Symposium on Security and Privacy
(S&P), 2012.

[20] E. Balsa, C. Troncoso, and C. Diaz. OB-PWS:
Obfuscation-based private web search. In IEEE
Symposium on Security and Privacy (S&P), 2012.

[21] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers’
computation in private information retrieval: PIR with
preprocessing. Journal of Cryptology, 17(2):125–151,
2004.

[22] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic
encryption from ring-LWE and security for key
dependent messages. In Advances in
Cryptology—CRYPTO, 2011.

[23] G. Brassard, C. Crepeau, and J.-M. Robert.
All-or-nothing disclosure of secrets. In Advances in
Cryptology—CRYPTO, 1987.

[24] M. Burkhart and X. A. Dimitropoulos. Fast
privacy-preserving top-k queries using secret sharing. In
International Conference on Computer Communication
Networks (ICCCN), 2010.

[25] J. Camenisch, M. Dubovitskaya, and G. Neven.
Unlinkable priced oblivious transfer with rechargeable
wallets. In International Conference on Financial
Cryptography and Data Security (FC), 2010.

[26] J. Canny. Collaborative filtering with privacy. In IEEE
Symposium on Security and Privacy (S&P), 2002.

[27] J. Cappos. Avoiding theoretical optimality to efficiently
and privately retrieve security updates. In International
Conference on Financial Cryptography and Data
Security (FC), 2013.

[28] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk,
M.-C. Rosu, and M. Steiner. Dynamic searchable
encryption in very-large databases: Data structures and
implementation. In Network and Distributed System
Security Symposium (NDSS), 2014.

[29] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner. Highly-scalable searchable symmetric
encryption with support for boolean queries. In Advances
in Cryptology—CRYPTO, 2013.

[30] X. Cheng, C. Dale, and J. Liu. Statistics and social
network of YouTube videos. In International Workshop
on Quality of Service (IWQoS), 2008.

[31] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private information retrieval. Journal of the ACM
(JACM), 45(6):965–981, 1998.

[32] D. Coppersmith and S. Winograd. Matrix multiplication
via arithmetic progressions. Journal of symbolic
computation, 9(3):251–280, 1990.
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