








As we shall see, this simple model of the neuron forms
the basic mathematical element in many artificial neural net-
work models. By linking together many such simple process-
ing elements it is possible to construct a very general class of
non-linear mappings, which can be applied to a wide range
of practical problems. Adaptation of the weight values, ac-
cording to an appropriate training algorithm, can allow net-
works to learn in response to external data.

Although we have introduced this mathematical model
of the neuron as a representation of the behavior of biologi-
cal neurons, precisely the same ideas also arise when we
consider optimal approaches to the solution of problems in
statistical pattern recognition. In this context, expressions
such as Egs. (2) and (3) are known as linear discriminants.

D. A brief history of neural computing

The origins of neural networks, or neural computing
(sometimes also called neurocomputing or connectionism),
lie in the 1940’s with the paper of McCulloch and Pitts’
discussed above. They showed that networks of model neu-
rons are capable of universal computation, in other words
they can in principle emulate any general-purpose computing
machine. :

The next major step was the publication in 1949 of the
book The Organization of Behaviour by Hebb,? in which he
proposed a specific mechanism for learning in biological
neural networks. He suggested that learning occurs through
modifications to the strengths of the synaptic interconnec-
tions between neurons, such that if two neurons tend to fire
together then the synapse between them should be strength-
ened. This learning rule can be made quantitative, and forms
the basis for learning in some simple neural network models
(which will not be considered in this review).

During the late 1950’s the first hardware neural network
system was developed by Rosenblatt.® Known as the per-
ceptron, this was based on McCulloch-Pitts neuron models
of the form given in Egs. (2) and (3). It had an array of
photoreceptors which acted as external inputs, and used
banks of motor-driven potentiometers to provide adaptive
synaptic connections which could retain a learned setting.
Adjustments to the potentiometers were made using the per-
ceptron learning algorithm.'® In many circumstances the per-
ceptron could learn to distinguish between characters or
shapes presented to the inputs as pixellated images. Rosen-
blatt also demonstrated theoretically the remarkable result
that, if a given problem was soluble in principle by a percep-
tron, then the perceptron learning algorithm was guaranteed
to find the solution in a finite number of steps. Similar net-
works were also studied by Widrow, who developed the
ADALINE (ADAptive LINear Element) network'! and a
corresponding training procedure called the Widrow-Hoff
learning rule.'” These network models are reviewed in Ref.
13. The underlying algorithm is still in routine use for echo
cancellation on long distance telephone cables.

The 1960’s saw a great deal of research activity in neural
networks, much of it characterized by a lack of rigor, some-
times bordering on alchemy, as well as excessive claims for
the capability and near-term potential of the technology. De-
spite initial successes, however, momentum in the field be-
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gan to diminish towards the end of the 1960’s as a number of
difficult problems emerged which could not be solved by the
algorithms then available. In addition, neural computing suf-
fered fierce criticism from proponents of the field of Artifi-
cial Intelligence (which tries to formulate solutions to pattern
recognition and similar problems in terms of explicit sets of
rules), centering around the book Perceptrons’* by Minsky
and Papert. Their criticism focused on a class of problems
called linearly non-separable which could not be solved by

networks such as the perceptron and ADALINE. The field of -

neural computing fell into disfavor during the 1970’s, with
only a handful of researchers remaining active.

A dramatic resurgence of interest in neural networks be-
gan in the early 1980’s and was driven in large part by the
work of the physicist Hopfield,'>'® who demonstrated a close
link between a class of neural network models and certain
physical systems known as spin glasses. A second major de-
velopment was the discovery of learning algorithms, based
on error backpropagation'’ (to be discussed at length in Sec.
III), which overcame the principal limitations of earlier neu-
ral networks such as the simple perceptron. During this pe-
riod, many researchers developed an interest in neural com-
puting through the books Parallel Distributed Processing by
Rumelhart et al.*'®!° An additional important factor was the
widespread availability by the 1980°s of cheap powerful
computers which had not been available 20 years earlier. The
combination of these factors, coupled with the failure of Ar-
tificial Intelligence to live up to many of its expectations, led
to an explosion of interest in neural computing. The early
1990’s has been characterized by a consolidation of the theo-
retical foundations of the subject, as well as the emergence
of widespread successful applications. Neural networks can
even be found now in consumer electronics and domestic
appliances, for applications varying from sophisticated au-
toexposure on video cameras to “intelligent” washing ma-
chines. N
Many of the historically important papers from the field
of neural networks have been collected together and re-
printed in two volumes in Refs. 20 and 21.

Il. MULTIVARIATE NON-LINEAR MAPPINGS

In this review we shall restrict our attention primarily to
feedforward networks, which can be regarded as general pur-
pose non-linear functions for performing mappings between
two sets of variables. As we indicated earlier, such networks
form the basis for most present day applications. In addition,
a sound understanding of such networks provides a good
basis for the study of more complex network architectures.
Figure 4 shows a schematic illustration of a non-linear func-
tion which takes d independent variables x,...,x; and maps
them onto ¢ dependent variables y;,...,y.. In the terminol-
ogy of neural computing, the x’s are called input variables
and the y’s are called output variables. As we shall see, a
wide range of practical applications can be cast in this frame-
work. ’

As a specific example, consider the problem of analyz-
ing a Doppler-broadened spectral line. The x’s might repre-
sent the observed amplitudes of the spectrum at various
wavelengths, and the y’s might represent the amplitude,
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FIG. 4. Schematic illustration of a general non-linear functional mapping

from a set of input variables x;,...,x; to a set of output variables
Yi,---Y.. EBach of the y, can be an arbitrary non-linear function of the
inputs.

width, and central wavelength of the spectral line. A suitably
trained neural network can then provide a direct mapping
from the observed data onto the required spectral line param-
eters. Practical applications of neural networks to spectral
analysis problems of this kind can be found in Refs. 22 and
23, and will be discussed further in Sec. VIIL

It is sometimes convenient to gather the input and output
variables together to form input and output vectors which we
shall denote by x=(x,,...,x;) and y=(¥{,...,y.). The pre-
cise form of the function which maps x to y is determined
both by the internal structure (i.e., the topology and choice of
activation functions) of the neural network, and by the values
of a set of weight parameters wy,...w ;-. Again, the weights
(and biases) can conveniently be grouped together to form a
weight vector w=(w,...w_;). We can then write the net-
work mapping in the form y=y(x;w), which denotes that
y is a function of x which is parameterized by w.

In this review we shall consider two of the principal
neural network architectures. The first is called the
multilayer perceptron (MLP) and is currently the most
widely used neural network model for practical applications.
The second model is known as the radial basis function
(RBF) network, which has also been used successfully in a
variety of applications, and which has a number of advan-
tages, as well as limitations, compared with the MLP. Al-
though this by no means exhausts the range of possible mod-
els (which now number many hundreds) these two models
together provide the most useful tools for many applications.
In Sec. IX we shall give an overview of some of the other
major models which have been developed and indicate their
potential uses. Some of these models do more than provide
static non-linear mappings, as the networks themselves have
dynamical properties.

A. Analogy with polynomial curve fitting

We shall find it convenient at several points in this re-
view to draw an analogy between the training of neural net-
works and the problem of curve fitting using simple polyno-
mials. Consider for instance the mth order polynomial given

by

m

y=w AWt we= D wx. 4)
j=0

This can be regarded as a non-linear mapping which takes x
as an input variable and produces y as an output variable.

The precise form of the function y(x) is determined by the
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values of the parameters wy,...w,,, which are analogousto
the weights in a neural network [strictly, w is analogous to
a bias parameter, as in Eq. (1)]. Note that the polynomial can
be written as a functional mapping in the form y =y (x;w) as
was done for more general non-linear mappings above.

There are two important ways in which neural networks
differ from such simple polynomials. First, a neural network
can have many input variables x; and many output variables
Y&, as compared with the one input variable and one output
variable of the polynomial. Second, a neural network can
approximate a very large class of functions very efficiently.
In fact, a sufficiently large network can approximate any
continuous function, for a finite range of values of the inputs,
to arbitrary accuracy.”*?° Thus, neural networks provide a
general purpose set of mathematical functions for represent-
ing non-linear transformations between sets of variables.
Note that, although in principle multi-variate polynomials_
would satisfy the same property, they would require’ ex-
tremely (exponentially) large numbers of -adjustable coeffi-
cients. In practice, neural networks can achieve similar’re-
sults using far fewer parameters, and so offer a practical
approach to the representation of general non-linear map-
pings in many variables.

B. Error functions and network training

The problem of determining the values for the weights in
a neural network is called training and is most easily intro-
duced using our analogy of fitting a polynomial curve
through a set of »n data points. We shall label a particular data
point with the index g=1,...,n. Each data point consists of
a value of x, denoted by x7, and a corresponding desired
value for the output y, which we shall denote by 9. These
desired output values are called target values in the neural i
network context. (Note that data points are sometimes also

- referred to as patterns.) In order to find suitable values for

the coefficients in the polynomial, it is convenient to con- -
sider the error between the desired output value ¢, for a
particular input x, and the corresponding value predicted by
the polynomial function given by y(x?;w). Standard curve
fitting procedures involve minimizing the square of this er-
ror, summed over all data points, given by

E=% 2 (% wy—)2, 5
g=1

We can regard F as being a function of w, and so the curve
can be fitted to the data by choosing a value for w which
minimizes E. Note that the polynomial (4) is a linear func-
tion of the parameters w and so Eq. (5) is a quadratic func-
tion of w. This means that the minimum of E can be found in
terms of the solution of a set of linear algebraic equations.

It should be noted that the standard sum-of-squares error,
introduced here from a heuristic viewpoint, can be derived
from the principle of maximum likelihood on the assumption
that the noise on the target data has a Gaussian
distribution."” Even when this assumption is not satisfied,
however, the sum-of-squares error function remains of great
practical importance. We shall discuss some of its properties
in later sections.
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FIG. 5. An example of curve fitting using a polynomial function. Here 11
data points have been generated by sampling the function sin(27x) at equal
intervals of x and then adding zero mean Gaussian noise with variance of
0.05. The solid curve shows a cubic polynomial fitted by minimizing a
sum-of-squares error. (From Ref. 1.)

Figure 5 shows an example of a set of data points to-
gether with a cubic polynomial [Eq. (4) with m=3] which
has been fitted to the data by minimizing the sum-of-squares
error. We see that the minimum-error curve successfully cap-
tures the underlying trend in the data.

The training of a neural network proceeds in an analo-
gous manner. A suitable error function is defined with respect
to a set of data points, and the parameters (weights) are cho-
sen to minimize the error. We shall see later that neural net-
work functions depend non-linearly on their weights and so
the minimization of the corresponding error function is sub-
stantially more difficult than in the case of polynomials, and
generally requires the use of iterative non-linear optimization
algorithms.

In the .case of a neural network, each input vector
x?=(x9,...,x]) from the data set has a corresponding target
vector t?. The error for output k£ when the network is pre-
sented with pattern g is given by y(x?;w)—t7. The total
error for the whole pattern set can then be defined as the
squares of the individual errors summed over all output units
and over all patterns. This gives an error function, for use in

~neural network training, of the form

1
E:‘iz
q

> u(x?; w)—t)2. (6)
1 k=1

While the sum-of-squares error is the most commonly used
form of error function, it should be noted that there exist
other error measures which may be more appropriate in par-
ticular circumstances. (A lengthy discussion of error func-
tions and their properties can be found in Ref. 1.)

C. Interpolation and classification

In pol)}'nomial curve fitting the goal is generally to find a
smooth representation of the underlying trends in a set of
data. We shall refer to this process as interpolation. Typically
the data will be noisy and so we are looking for a function
which passes close to the data but which does not necessarily
pass exactly through each data point. Note that this differs
from the problem of strict interpolation in which the aim is to
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FIG. 6. A single-layer network having d inputs x,,...,x;, and m outputs
Z1,...Zy - Each line in the diagram corresponds to one of the weight pa-
rameters in the network function. The biases are shown as weights from an
extra input unit (denoted by the solid black circle) whose activation is per-
manently set to x,=1. (From Ref. 1.)

find a function which fits the data exactly. Neural networks
can similarly be applied to interpolation problems in which
there may be several input and several output variables. The
spectral line analysis application mentioned earlier is an ex-
ample of an interpolation problem, and we shall consider
other examples of this type in Sec. VIIL

A second major class of applications for which neural
networks may be used are classification problems in which
the goal is to assign input vectors correctly to one of a num-
ber of possible classes or categories. One example of a clas-
sification problem, which will be discussed in more detail in
Sec. VIII, concerns the monitoring of oil flow along a pipe
containing a mixture of oil, water, and gas. The inputs to the
network consist of measurements from a number of gamma-
ray based diagnostics, and the outputs indicate which of a
number of possible geometrical flow configurations (strati-
fied, annular, homogeneous, etc.) is present in the pipe.

lil. THE MULTILAYER PERCEPTRON

So far we have described feedforward neural networks in
terms of non-linear mappings between multi-dimensional
spaces. We now introduce one explicit form for the mapping
known. as the multilayer perceptron network. This class of
networks has been used as the basis for the majority of prac-
tical applications of neural networks to date.

A. Architecture of the multilayer perceptron

In Sec. I we introduced the concept of a single process-
ing unit described by Egs. (2) and (3). If we consider a set of
m such units, all with common inputs, then we arrive at a
neural network having a single layer of adaptive parameters
(weights) as illustrated in Fig. 6. The output variables are
denoted by z; and are given by

d
Z]:g 2 Wjixi N (7)
i=0

where w;; is the weight from input i to unit j, and g( ) isan
activation function as discussed previously. Again we have
included bias parameters as special cases of weights from an
extra input x,=1.
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FIG. 7. A multilayer perceptron neural network having two layers of
weights. Such networks are capable of approximating any continuous non-
linear function to arbitrary accuracy provided the number m of hidden units
is sufficiently large. (From Ref: 1.)

Note that Fig. 6 can be regarded as a diagramatic short-
hand for function (7), with each element of the diagram cor-
responding to one of the components of the function. Each
circle at the bottom of Fig. 6 represents one of the inputs
x;, each circle at the top represents one of the outputs z;,
and the lines connecting the circles represent the correspond-
ing weights w; . The extra input xo=1 is shown by the solid
black circle, and the lines connecting this unit to the output
represent the bias parameters wj,. Single-layer networks
such as these were studied extensively in the 1960’s. They
generally used activation functions g( ) given by the step
function in Fig. 3(b) and were known as perceptrons, and
were trained using the perceptron learning algorithm dis-
cussed earlier. Such networks have very limited computa-
tional capabilities. In fact, if the linear activation function of
Fig. 3(a) is chosen, then the network reduces to simple ma-
trix multiplication. While single-layer networks do have
some practical significance, a much more powerful class of
networks is obtained if we consider networks having several
successive layers of processing units. Such networks were
not considered extensively in the 1960°s due to the difficulty
of finding a suitable training algorithm (the perceptron algo-
rithm only works for single-layer networks). The solution to
the problem of training networks having several layers is to
replace the step activation functions of Fig. 3(b) with differ-
entiable sigmoidal activation functions of the form shown in
Fig. 3(d). This allows techniques of differential calculus to
be applied in order to find a suitable training algorithm. Such
networks are known as multilayer perceptrons.

Figure 7 shows a network with two successive layers of
units, and thus two layers of weights. Units in the middle
layer are known as hidden units since their activation values
are not directly accessihle from_outsjde the network. The

1]

where wy; denotes a weight in the second layer connecting
hidden unit j to output unit k. Note that we have introduced
an extra hidden unit with activation zo=1 to provide a bias
for the output units. The bias terms (for both the hidden and
output units) play an important role in ensuring that the net-
work can represent general non-linear mappings. We can
combine Eqgs. (7) and (8) to give the complete expression for
the transformation represented by the network in the form

d

m
=g > Wiig > WiXi| |- ©)
j=0 i=0

Again, each of the components of Eq. (9) corresponds to an
element of the diagram in Fig. 7. Note that the activation
function g applied to the output units need not be the same as
the activation function g used for the hidden units.

It should be noted that there are two distinct Ways;'of
counting the number of layers in a network, both of which
are in common use in the neural computing literature. In one
convention, a network of the form shown in Fig. 7 would be
called a 2-layer network, in which the layers refer to the
hidden and output units, or equivalently to the layers of
weights. Alternatively, the same network might also be called
a 3-layer network in which the layers refer to units and the
inputs are counted as one of the layers. We prefer to call this
a 2-layer network, since it is the number of layers of weights
which primarily determines the capabilities of the network.

If the activation functions g( ) and g( ) for the network
structure shown in Fig. 7 are taken to be linear, the network
transformation reduces to the product of two matrices, which
is itself just a matrix. However, if the activation function

g( ) for the hidden units is taken to be non-linear then the |

network acquires some powerful general-purpose representa-
tional capabilities. As we shall see later, in order to train the
network we shall need to ensure that its mapping function
y( ) is differentiable. For these reasons, a sigmoidal (S-
shaped) activation function g(a) of the form shown in Fig.
3(d) is often used. In practice, a convenient choice is the
“tanh” function given by
e?—e™ "

re 10

g(a)=tanh a=

This has the property, which will prove useful when we dis-
cuss network training, that its derivative can easily be ex-
pressed in terms of the function itself

g'(a)=1+g(a)*. (11)

Another common choice of activation function is the logistic

\
|
-
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FIG. 10. Schematic illustration of the error function E(w) seen as a surface
over weight space (the space spanned by the values of the weight and bias
parameters w={w/ ,...,w , }). The weight vector w* corresponds to the glo-
bal minimum of the error function, while the weight vector w? corresponds
to a local minimum. Network training by the gradient descent algorithm
begins with a random choice of weight vector and then proceeds by making
small changes to the weight vector so as to move it in the direction of the
negative of the error function gradient VE, until the weight vector reaches a
local or global minimum. (From Ref. 1.)

layers of weights, with full connectivity between inputs and
hidden units and between hidden units and output units. In
principle, there is no need to consider other architectures,
since the 2-layer network already has universal approxima-
tion capabilities. In practice, however, it is often useful to
consider more general topologies of neural network. One im-
portant motivation for this is to allow additional information
(called prior knowledge) to be built into the form of the
mapping. This will be discussed further in Sec. VI, and a
simple example will be given in Sec. VIII. An example of a
more complex network structure (having 4 layers of weights)
used for fast recognition of postal codes, can be found in
Ref. 30. In each case there is a direct correspondence be-
tween the network diagram and the corresponding non-linear
mapping function.

B. Network training

As we have already discussed, the fitting of a network
function to a set of data (network training) is performed by
seeking a set of values for the weights which minimizes
some error function, often chosen to be the sum-of-squares
error given by Eq. (6). The error function can be regarded
geometrically as an error surface sitting over weight space,
as indicated schematically in Fig. 10. The problem of net-
work training corresponds to the search for the minimum of
the error surface. An absolute minimum of the error function,
indicated by the weight vector w* in Fig. 11, is called a
global minimum. There may, however, also exist other higher
minima, such as the one corresponding to the weight vector
w? in Fig. 10, which are referred to as local minima.

For single-layer networks with linear activation func-
tions, the sum-of-squares error function is a generalized qua-
dratic, as was the case for polynomial curve fitting. It has no
local minima, and its global minimum is easily found by
solution of a set of linear equations. For multilayer networks,
however, the error function is a highly non-linear function of
the weights,?! and the search for the minimum generally pro-
ceeds in an iterative fashion, starting from some randomly
chosen point in weight space. Some algorithms will find the
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FIG. 11. An illustration of how backpropagation of error signals is used to
evaluate derivatives of the error function with respect to the weight (and
bias) parameters in the first layer of a 2-layer network. The error signal &; at
hidden unit j is obtained by summing error signals &; from the output units

k=1,...,c after first multiplying them by the corresponding weights Wy -

The derivative of the error function with respect to a weight w;; is then
given by the product of the error signal &; at hidden unit j with the activa-
tion z; of input unit i. (From Ref. 1.)

nearest local minimum, while others are able to escape local
minima and offer the possibility of finding a global mini-
mum. In general, the error surface will be extremely complex
and for many practical applications a good local minimum
may be sufficient to achieve satisfactory results.

Many of the algorithms for performing the error function
minimization make use of the derivatives of the error func-
tion with respect to the weights in the network. These deriva-
tives form the components of the gradient vector VE(w) of
the error function, which, at any given point in weight space,
gives the gradient of the error surface, as indicated in Fig. 10.

Since there is considerable benefit to the training procedure .

from making use of this gradient information, we begin with
a discussion of techniques for evaluating the derivatives of
E.

One of the important features of the class of non-linear
mapping functions given by the multilayer perceptron is that
there exists a computationally efficient procedure for evalu-
ating the derivatives of the error function, based on the tech-
nique of error backpropagation.'” Here we consider the
problem of finding the error derivatives for a network having
a single hidden layer, as given by the expression in Eq. (9),
for the case of a sum-of-squares error function given by Eq.
(6). In principle this is very straightforward since, by substi-
tuting Eq. (9) into Eq. (6) we obtain the error as an explicit
function of the weights, which can then be differentiated
using the usual rules of differential calculus. However, if
some care is taken over how this calculation is set out, it
leads to a procedure which is both computationally efficient
and which is readily extended to feedforward networks of
arbitrary topology. This same technique is easily generalized
to other error functions which can be expressed explicitly as
functions of the network outputs. It can be also used to
evaluate the elements of the Jacobian matrix (the matrix of
derivatives of output values with respect to input values)
which can be used to study the effects on the outputs of small
changes in the input values.! Similarly, it can be extended to
the evaluation of the second derivatives of the error with
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respect to the weights (the elements of the Hessian matrix)
which play an important role in a number of advanced net-
work algorithms.>

First note that the total sum-of-squares error function (6)
can be written as a sum over all patterns of an error function
for each pattern separately

n 1 [
E=2 E, £ ] 2 w19
q=1 k=1

where y,(x;w) is given by the network mapping Eq. (9). We
can therefore consider derivatives for each pattern separately,
and then obtain the required derivative by summing over all
of the patterns in the data set. For simplicity of notation we
shall omit the explicit pattern index g from the various net-
work variables during our discussion of the evaluation of
derivatives. It should be borne in mind, however, that all of
the input and intermediate variables in the network are evalu-
ated for a given input pattern.

Consider first the derivatives with respect to a weight in
the second layer (the layer of weights from hidden to output
units). It is convenient to use the notation introduced in Sec.
I, and write the network output variables in the form

yk:é(dk)7

m
j=0

The derivatives with respect to the final-layer weights can
then be written in the form

OEY JET da,
— = = . (16)
3ij &ak 19Wk] .
We now introduce the definition
8,= okl (17)
LY

Then, by making use of Eq. (15), we can write the derivative
in the form

J0E1

Er

=&z; . (18)

We can find an expression for 5, by using Egs. (14), (15),
and (17) to give

&=8"(alye—ti}- (19)

Because &, is proportional to the difference between the net-
work output and the desired value, it is sometimes referred to
as an error. Note that, for the sigmoidal activation functions
discussed earlier, the derivative g’ (a) is easily re-expressed
in terms of g(a), as in Egs. (11) and (13). This provides a
small computational saving in a numerical implementation of
the algorithm. Note also that the expression for the derivative
with respect to a particular weight, given by Eq. (18), takes
the simple form of the product of the error at the output end
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of the weight times the activation of the hidden unit at the
other end of the weight. The derivative of the error with
respect to any weight in a multilayer pérceptron network (of
arbitrary topology) can always be written in a form analo-
gous to Eq. (18).

In order to find a corresponding expression for the de-
rivatives with respect to weights in the first layer, we start by
writing the activations of the hidden units in the form

d
z;=g(a;), 01:2 WX . (20)
i=0

We can then write the required derivative as

GEY JE? da;
ow _0a1 0"W}, '

21

Ji

From Eq. (20) we note that da i/ow;i=x;. If we then define

. JE9
i=a; (22)
we can then write the derivative in the form
JE1

Note that this has the same form as the derivative for a
second-layer weight given by Eq. (18), so that the derivative
for a given weight connecting an input to a hidden unit is
given by the product of the & for the hidden unit and the
value of the input variable.

Finally, we need to find an expression for the &’s. This is
easily obtained by using the chain rule for partial derivatives

OB 2‘: E? day
" da; < day da; @4)
By making use of Egs. (15), (17), and (20) we obtain
c
85=8"(a)) 2 Wiy - (25)

k=1

The expression in Eq. (25) can be interpreted in terms of the
network dlagram as a propagation of error signals, given by
8, backwards through the network along the second- -layer
weights. This is illustrated in Fig. 11, and is the origin of the
term error backpropagation.

It is worth summarizing the various steps involved in
evaluation of the derivatives for a multilayer perceptron net-
work

(1) For each pattern in the data set in turn, evaluate the
activations of the hidden units using Eq. (20) and of the
output units using Eq. (15). This corresponds to the for-
ward propagation of signals through the network.

(2) Evaluate the individual errors for the output units using
Eq. (19).
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FIG. 16. Plot of the activation z(x; ,x,) of a Gaussian hidden unit as used in
a radial basis function network, as a function of two input variables x; and
x,. This plot should be compared with the sigmoid shown in Fig. 8.

presented with input vector x. Again, a bias for the output
units has been included, and this has been represented as an
extra ‘“basis function” ¢, whose activation is fixed to be
¢o=1. For most applications the basis functions are chosen
to be Gaussian, so that we have

— ]2
¢,-(x>=exp[—'x # ] (34)

2
20']‘

where u; is a vector representing the center of the jth basis
function. Note that each basis function is given its own width
parameter o;. A plot of the response of a Gaussian unit as a
function of 2 input variables is shown in Fig. 16. Note that
this is localized in the input space, unlike the ridge-like re-
sponse of a sigmoidal unit shown in Fig. 8.

The RBF network can be represented by a network dia-
gram as shown in Fig. 17. Each of the hidden units corre-
sponds to one of the basis functions, and the lines connecting
the inputs to hidden unit j represent the elements of the
vector u; . Instead of a bias parameter, each unit now has a
parameter o; which describes the width of the Gaussian ba-

outputs
yl yc
. basis
bias functions
0, 0,

FIG. 17. Architecture of a radial basis function neural network having d
inputs x1,...,x, and ¢ outputs y;,...,y. . Each of the m basis functions ¢;
computes a localized (often Gaussian) function of the input vector. The lines
connecting the inputs to the basis function ¢; represent the elements of the
vector p; which describes the location of the center (in input space) of that
basis function. The second layer of the network, connecting the basis func-
tions with the output units, is identical to that of the multilayer perceptron
shown in Fig. 7. (From Ref. 1.)
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sis function. The second layer of the network is identical to
that of a multilayer perceptron in which the output units have
linear activation functions. \

Again, it can be shown formally that such a structure is
capable of approximating essentially arbitrary continuous
functions to arbitrary accuracy provided a sufficiently large
number of hidden units (basis functions) is used and pro-
vided the network parameters (centers M, widths o, and
second-layer weights wy;) are suitably chosen. *443

As with the multilayer perceptron, we seek a least-
squares solution for the network parameters, obtained by
minimizing a sum-of-squares error of the form given in Eq.
(6). Since the network mapping is an analytic function of the
network parameters, this could be done by simply optimizing
all of the weights in the network together using one of the
standard algorithms discussed earlier. Such an approach
would, however, offer little advantage over the MLP net-
work. ‘

A much faster approach to training is based on the fact
that the hidden units have a localized response, that is, each
unit only produces an output which is significantly different
from zero over a limited region of input space. This leads to
a two-stage training procedure in which the basis function
parameters (g; and o;) are optimized first, and then, subse-
quently, the final-layer weights {ij} are determined.

B. Choosing the basis function parameters

In the use of radial basis functions for exact interpola-
tion, a basis function was placed over every data point. In the
case of an RBF neural network we can adopt a similar strat-
egy of placing basis functions in the regions of input space
where the training data are located. Various heuristic proce-
dures exist for achieving this, and we shall limit our discus-
sion to two of the simplest. We shall also discuss a more
systematic approach based on maximum likelihood.

The fastest and most straightforward approach to choos-
ing the centers u; of the basis functions is to set them equal
to some subset (usually chosen randomly) of the input vec-
tors from the training set. This only sets the basis function
centers, and the width parameters o; must be set using some
other heuristic. For instance, we can choose all the o to be
equal and to be given by the average distance between the
basis function centers. This ensures that the basis functions
overlap to some degree and hence give a relatively smooth
representation of the distribution of training data. Such an
approach to the choice of u; and o; is very fast, and allows
an RBF network to be set up very quickly. The subset of
input vectors to be used as basis function centers can instead
be chosen from a more principled approach based on or-
thogonal least squares,*S which also determines the second-
layer weights at the same time. In this case, the width pa-
rameters o; are fixed and are chosen at the outset.

A slightly more elaborate approach is based on the
K-means algorithm.*” The goal of this technique is to asso-
ciate each basis function with a group of input pattern vec-
tors, such that the center of the basis function is given by the
mean of the vectors in the group, and such that the basis
function center in each group is closer to each pattern in the
group than is any other basis function center. In this way, the
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data points are grouped into ““clusters” with one basis func-
tion center acting as the representative vector for each clus-
ter. This is achieved by an iterative procedure as follows.
First, the basis function centers are initialized (for instance
by setting them to a subset of the pattern vectors). Then each
pattern vector is assigned to the basis function with the near-
est center u;, and the centers are recomputed as the means
of the vectors in each group. This process is then repeated,
and generally converges in a few iterations. Again, it only
sets the centers, and the width parameters must be set using
a technique of the kind described above.

A more principled approach to setting the basis function
parameters is based on the ‘technique of maximum likeli-
hood. Let us define p(x) to be the (unknown) probability
density function for the input data, so that the probability of
a new input vector falling within a small volume Ax of input
space is given by p(x)Ax, and [p(x) dx=1. The idea is to
use the basis functions to form a representation for p(x), and
to determine the parameters of the basis functions by using
the input vectors from the training set. The probability den-
sity is expressed as a linear combination of the basis func-
tions in the form of a Gaussian mixture model*®

m

1 1
P(X)—— 2 W—d oi(x), (35

where the prefactor in front of ¢;(xX) is chosen to ensure that
the probability density function integrates to unity:
Sp(x) dx=1. If the input vectors from the training set are
drawn independently from this distribution function, then the
likelihood of this data set is given by the product

Z=11I p(x). | (36)

q=1

The basis function parameters can then be set by maximizing
this likelihood. Since the likelihood is an analytic non-linear
function of the parameters {u;,0;}, this maximization can
be achieved by standard optimization methods (such as the
conjugate gradients and quasi-Newton methods described
earlier). It can also be done using re-substitution methods
based on the EM-algorithm.*® Such methods are relatively
fast and allow values for the parameters {u;,0;} to be ob-
tained reasonably quickly. In contrast to the MLP, the hidden
units in this case have a particularly simple interpretation as
the components in a mixture model for the distribution of
input data. The sum of their activations (suitably normalized)
then provides a quantitative measure of p(x), which can play
an important role in validating the outputs of the network.’

C. Choosing the second-layer weights

We shall suppose that the basis function parameters
(centers and widths) have been chosen and. fixed. As usual,
the sum-of-squares error can be written as

1 n c .
=52 2 - -6

g=1 k=1
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We note that, since y, is a linear function of the final layer
weights, E is a quadratic function of these weights. Substi-
tuting Eq. (33) into Eq. (37), we can minimize E with respect
to these weights explicitly by differentiation, to give

m

> Wbl -t (38)

i'=1

0=2 ¢f
g=1

where ¢f=¢;(x?). It is convenient to write this in matrix
notation in the form

0= {dW' T}, ' (39)

where the matrices have the following elements: ®=( ),
W=(wy;), and T=(¢{). The notation M7 denotes the trans-
pose of a matrix M. This equation has a formal solution for

the weights given by P
Wi=@'T, (40)
where ®' is the pseudo-inverse™ of the matrix ® and is
given by
O'=(d'P) @7 (41)

(Note that this formula for the pseudo-inverse assumes that
the relevant inverse matrix exists. If it does not, then the
pseudo-inverse can still be uniquely defined by an appropri-
ate limiting process.”®) In a practical implementation, the
weights are found by solving the linear equations (39) using
singular value decomposition® to allow for possible numeri-
cal ill-conditioning. Thus the final layer weights can be
found explicitly in closed form. Note, however, that the op-

timum value for these weights, given by Eq. (40), depends

on the values of the basis function parameters {;,07;}, via
the quantities ¢7. Once these parameters have been deter-
mined, the second-layer weights can then be set to their op-
timal values.

Note that the matrix @ has dimensions n X m where n is
the number of patterns, and m is the number of hidden units.
If there is one hidden unit per pattern, so that m=r, then the
matrix ® becomes square and the pseudo-inverse reduces to
the usual matrix inverse. In this case the network outputs
equal the target values exactly for each pattern, and the error
function is reduced to zero. This corresponds precisely to the
exact interpolation method discussed above. As we shall see
later, this is generally not a desirable situation, as it leads to
the network having poor performance on unseen data, and in
practice m is typically much less than n. The crucial issue of
how to optimize m will be discussed at greater length in the
next section.

V. LEARNING AND GENERALIZATION

So far we have discussed the representational capabili-
ties of two important classes of neural network model, and
we have shown how network parameters can be determined
on the basis of a set of training data. As a consequence of the
great flexibility of neural network mappings, it is often easy
to arrange for the network to represent the training data set
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with reasonable accuracy, particularly if the size of the data
set is relatively small. A much more important issue, how-
ever, is how well does the network perform when presented
with new data which did not form part of the training set.
This is called generalization and is often much more difficult
to achieve than simple memorization of the training data.

A. Interpretation of network outputs

We begin our discussion of generalization in neural net-
works by considering an ideal limit in which an infinite
amount of training data is available. This allows us to replace
the finite sum in the sum-of-squares error function by an
integral over the (smooth) probability density function of the
data. The sum-of-squares error (6) can then be written as

1 c
E=5 3 [ -6l plad %) pix) diydx, 42
k=1

where p(#;|x) denotes the conditional probability density of
the target data for output unit £, given a value x for the input
vector, and p(x) denotes the probability density of input data
as before. The process of network training corresponds to an
attempt to adjust the network function y(x) so as to mini-
mize E. If we assume that the network has unlimited flex-
ibility to generate different functions, then we can formally
minimize E in Eq. (42) by functional differentiation

OF

Wzozsz {ye(x) =t} 8(x—x")

X 5kk;p(tklx)p(x)dtkdx. (43)

This is easily solved [using [p(t;|x) dt,=1] to give the
minimizing network function in the form

Yk(x):<tklx>5f tp(t|x)dey (44)

where (#;|x) denotes the conditional average of the target
data for a specified value of the input vector x, and is known
as the regression. This result was derived without reference
to neural networks, and applies in principle to any class of
models which can represent general functions y(x). The im-
portance of neural networks is that they represent a very
flexible class of functions and so in principle can provide a
good approximation to the optimal function (¢|x).

To illustrate the meaning of this important result, con-
sider a network having one input x and one output y. Figure
18 shows a schematic illustration of the way in which the
network function y(x) is determined, at each value of x, by
averaging over the distribution of the target data. Suppose
that the target data are generated from some smooth deter-
ministic function z(x) to which is added zero mean noise

t=h(x)+e. _ (45)

A network trained on such data will generate an output
which, from Eq. (44), will be given by
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X, x

FIG. 18. Schematic illustration of some noisy data points (the black dots)
cach of which consists of a value of the input variable x together with a
corresponding target value ¢. The curve shows the optimal network function
y(x) obtained by minimizing a sum-of-squares error function. For any given
value x, of the input, the function y(x,) is given by the mean of ¢ with
respect to the conditional probability distribution p(|x,). This central re-
sult, which is easily extended to the case of several input and several output
variables, has a number of important consequences, as discussed in the text.
(From Ref. 1.)

y(x)=(t]x)=h(x) (46)

since (€)=0. The network therefore averages over the noise
on the target data and learns the underlying deterministic
function. In this sense, the network mapping can be regarded
as optimal. ,

The result (44) has several other important implications,
one of which concerns the application of neural networks to
classification problems. It is convenient for such applications
to make use of a “1-of-N"” coding scheme for the target data
as follows. Suppose there are c¢ possible classes
&% (k=1,...,c) to which an input vector could be assigned.
In a medical screening application, for example, we may
wish to assign an x-ray image (described by a vector of pixel
intensities x) to one of the two classes %1="“normal,” and
&= ""tumor.” We construct a network having ¢ output units,
and we choose target values for the outputs such that, for an
input vector belonging to class /, all outputs have a target of
0, except for output / which has a target of 1. If the data has
a probability P(%}|x) of belonging to class &, when the
input vector is x then the probability density of the target
data (which now consists of 0’s and 1’s) becomes

p(td X=2 8(t,— 6y)P(F|x). %)
=1

Substituting Eq. (47) into Eq. (44) we obtain the network
outputs in the form

yi(X)=P(&}|x). (48)

This says that the network outputs will represent the Baye-

sian a-posteriori probabilities of class membership.>'*? The
fact that the network outputs can be given a precise proba-
bilistic interpretation has several important practical conse-
quences. For instance, it tells us that when we present a new
input vector to the network it should be assigned to the class
having the largest output activation,. as this minimizes the
probability of misclassification.’® In addition it allows
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other quantities (called loss criteria) other than misclassifica-
tion rate to be minimized. This is important if different mis-
classifications have different consequences and should there-
fore carry different penalties.’’ It also provides a principled
way to combine the outputs of different networks to build a
modular solution to a complex problem. These topics are
discussed further in Refs. 1 and 51.

B. Generalization

The above analysis made two central assumptions: (i)
there is an infinite supply of training data, (ii) the network
has unlimited flexibility to represent arbitrary functional
forms. In practice we must inevitably deal with finite data
sets and, as we shall see, this forces us to restrict the flex-
ibility of the network in order to achieve good performance.
By using a very large network, and a small data set, it is
generally easy to arrange for the network to learn the training
data reasonably accurately. It must be emphasized, however,
that the goal of network training is to produce a mapping
which captures the underlying trends in the training data in
such a way as to produce reliable outputs when the network
is presented with data which do not form part of the training
set. If there is noise on the data, as will be the case for most
practical applications, then a network which achieves too
good a fit to the training data will have learned the details of
the noise on that particular data set. Such a network will
perform poorly when presented with new data which do not
form part of the training set. Good performance on new data,
however, requires a network with the appropriate degree of
flexibility to learn the trends in the data, yet without fitting to
the noise.

These central issues in network generalization are most
easily understood by returning to our earlier analogy with
polynomial curve fitting. In particular, consider the problem
of fitting a curve through a set of noise-corrupted data points,
as shown earlier for the case of a cubic polynomial in Fig. 5.
The results of fitting polynomials of various orders are
shown in Fig. 19. If the order m. of the polynomial is too low,
as indicated for m=1 in Fig. 19(a), then the resulting curve
gives only a poor representation of the trends in the data.
When the value of y is predicted using new values of x the
results will be poor. If the order of the polynomial is in-
creased, as shown for m =3 in Fig. 19(b), then a much closer
representation of the data trend is obtained. However, if the
order of the polynomial is increased too far, as shown in Fig.
19(c), the phenomenon of overfitting occurs which gives a
very small (in this case zero) error with respect to the train-
ing data, but which again gives a poor representation of the
underlying trend in the data and which therefore gives poor
predictions for new data. Figure 20 shows a plot of the sum-
of-squares error versus the order of the polynomial for two
data sets. The first of these is the training data set which is
used to determine the coefficients of the polynomial, and the
second is an independent test set which is generated in the
same way as the training set, except for the noise contribu-
tion which is independent of that on the training data. The
test set therefore simulates the effects of applying new data
to the “trained” polynomial. The order of the polynomial
controls the number of degrees of freedom in the function,
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FIG. 19. Examples of curve fitting using polynomials of successively higher
order, using the same data as was used to plot Fig. 5. (a) was obtained using
a first order (linear) polynomial, and is seen to give a rather poor represen-
tation of the data. By using a cubic polynomial, as shown in (b), a much
better representation of the data is obtained. (This figure is identical to Fig.
6, and is reproduced here for ease of comparison.) If a 10th order polyno-
mial is used, as shown in (c), a perfect fit to the data is obtained (since there
are 11 data points and a 10th order polynomial has 11 degrees of freedom).
In this case, however, the large oscillations which are needed to fit the data
mean that the polynomial gives a poor representation of the underlying
generator of the data, and so will make poor predictions of y for new values
of x. (From Ref. 1.)

and we see that there is an optimum number of degrees of
freedom (for a particular data set) in order to obtain the best
performance with new data.

A similar situation occurs with neural network map-
pings. Here the weights in the network are analogous to the
coefficients in a polynomial, and the number of degrees of
freedom in the network is controlled by the number of
weights, which in turn is determined by the number of hid-
den units. (Note that the effective number of degrees of free-
dom in a neural network is generally less than the number of
weights and biases. For a discussion see Ref. 58.) Again we
can consider two independent data sets which we call train-
ing and test sets. We can then use the training data to train
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the input data alone. The most common such technique is
principal components analysis® in which a linear dimen-
sionality reducing transformation is sought which maximizes
the variance of the transformed data. While easy to apply,
such techniques run the risk of being significantly sub-
optimal since they take no account of the target data.

More generally, the goal of preprocessing is to find a
number of (usually non-linear) combinations of the input
variables, known as features, which are designed to make the
task of the neural network as easy as possible. By selecting
fewer features than input variables, a dimensionality reduc-
tion is achieved. The optimum choice of features is very
problem dependent, and yet can have a strong influence on
the final performance of the network system. It is here that
the skill and experience of the developer count a great deal.

D. Prior knowledge

One of the most important, and most powerful, ways in
which the performance of neural network systems can be
improved is through the incorporation of additional informa-
tion, known as prior knowledge, into the network develop-
ment and training procedure, in addition to using the infor-
mation provided by the training data set. Prior knowledge
can take many forms, such as invariances which the network
transformation must respect, or expected frequency of occur-
rences of different classes in a classification problem.

One way of exploiting prior knowledge is to build it into

Al A ot he oL -

Vil. IMPLEMENTATION OF NEURAL NETWORKS

So far we have discussed neural networks as abstract
mathematical functions. In a practical application, it is nec-
essary to provide an implementation of the neural network.
At present, the great majority of research projects in neural
networks, as well as most practical applications, makes use
of simulations of the networks written in conventional soft-
ware and running on standard computer platforms. While
this is adequate for many applications, it is also possible to
implement networks in various forms of special-purpose
hardware. This takes advantage of the intrinsic parallelism of
neural network models and can lead to very high processing
speeds. We begin, however, with a discussion of software
implementation.

A. Software implementation

Most applications of neural networks use software
implementations written in high level languages such as'C,
PASCAL, and FORTRAN. The neural network algorithms
themselves are generally relatively straightforward to impie-
ment, and much of the effort is often devoted to application-
specific tasks such as data preprocessing and user interface.
Neural networks are well suited to implementation in object
oriented languages such as C+ +, which allow a network to
be treated as an object, with methods to implement ‘the basic
operations of forward propagation, saving and retrieving
weight vectors, etc.

There are now numerous neural network software pack-
ages available, ranging from simple demonstration software
provided on disk with introductory books, through to large
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FIG. 24. Network structure used for predicting the normalized energy con-
finement time 75 of a tokamak plasma in terms of a set of dimensionless
experimentally measured quantities g, v,, 8,, and p. - Note how the basic
input and output quantities have been processed by taking logarithms in
order to compress their dynamic range. The bias units-have been omitted for
clarity. (From Ref. 72.)

In principle, this function could be predicted from plasma
physics considerations, but in practice the physical processes
are much too complex, and so empirical methods are used.

The conventional approach to this problem is to make
the arbitrary assumption that the function F( ) in Eq. (51)
takes the form of a product of powers of the independent
variables, so that

e 52)

where the parameters C and a;-- a4 are to be determined
empirically from an experimental database. By taking loga-
rithms of Eq. (53) we obtain an expression which is linear in
the unknown parameters

In7;=C+a;Ing+a, In vita;ln By+a,Inp,
. (53)

and so the parameters can be determined from a data set of
values of (q,v+,B,,p.), together with the corresponding
values of 7z, by the usual techniques of linear regression
(involving the minimization of a sum-of-squares error func-
tion).

The limitation of the conventional approach is that it
makes the arbitrary assumption of a power law expression
(52). This was chosen purely for computational simplicity
(because the logarithmic expression is linear in the param-
eters) and has no physical justification (with one exception to
be discussed shortly). We can overcome this limitation by
using a neural network to model the function F( ) in Eq.
(51). The network structure is shown in Fig. 24. Note that
logarithms are used both as a form of preprocessing of the
input variables and also to preprocess the target data (which
is taken to be In 75). This is done to compress the dynamic
range of the variables and thereby ensure that the relative
accuracy is maintained even when some of the quantities
have small values. It also has the effect that, if the network
mapping is linear, the standard linear regression expression is
recovered. Thus the neural network explicitly contains the
linear regression approach as a special case.

Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

0.08

0.06 4

0.04 | \

0.00 ; s ; -
-1 0 1 2. Y 3

FIG. 25. The solid curve shows the behavior of the energy confinement time
7 versus the input variables for the energy confinement time problem cor-
responding to the network shown in Fig. 24. Since there are four input
variables, the horizontal axis has been taken along the direction of the first
principal component of the test data set, and the parameter y measures
distance along this direction. The dashed curve shows the corresponding
results obtained using the linear regression. Note that the linear regression
function necessarily produces a power law behavior, while the neural net-
work function is able to represent a more general class of functions and
hence can capture more of the structure in the data. (From Ref. 72.)

Since a neural network can potentially contain many
more parameters than the five which are found in the linear
regression formula (53), it is likely that the network can
achieve better fits to the data, even if such an improvement is
not statistically significant. This is analogous to the overfit-
ting problem discussed in Sec. V. Such difficulties are
avoided by optimizing the network structure using cross-
validation, and by comparing the final network with linear
regression using a separate test data set. The training data set
consisted of 574 data points, with a further 573 in the test
set, and the networks were trained using 500 complete ep-
ochs of the limited memory BFGS algorithm (discussed in
Sec. III).

A reduction in rms error of about 25% is found with the
neural network approach, as compared with linear regres-
sion. The resulting behavior for the function F( ) obtained
from the neural network is compared with the corresponding
result from the linear regression approach in Fig. 25.

This application. also provides an illustration of how

k prior knowledge can be built into a neural network structure.

Various theories of energy confinement in tokamaks predict
that the dependence of the confinement time on the quantity
pe should in fact exhibit a power law behavior. This fact can
be built into the network structure, while leaving the depen-
dence on the remaining quantities arbitrary. Thus we seek a
representation of the form

a\-E:(ﬁe)a(;(Q’V* 5Bp)- (54)

If the data are again processed using logarithms, then the

functional form in Eq. (54) can be represented by the net-

work structure shown in Fig. 26. Since there is a direct con-
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FIG. 31. Neural networks have recently been used for real-time feedback
control of the position and shape of the plasma in the COMPASS tokamak
experiment, using the control system shown here. Inputs to the network
consist of a set of signals m from magnetic pick-up coils which surround the
tokamak vacuum vessel. These are mapped by the network onto the values
of a set of variables y, which describe the position and shape of the plasma
boundary. Comparison of these variables with their desired values y§ (which
are preprogrammed to have specific time variations) gives error signals
which are sent, via control amplifiers, to sets of feedback control coils which
can modify the position and shape of the plasma boundary. Due to the very
high speed (~10 us) at which the feedback loop must operate, a fully
parallel hardware implementation of the neural network was used. (From
Ref. 71.)

desired position
and shape y;

Y

from the solid curve in Fig. 30 are used to train a network the
resulting network mapping will have the form shown by the
dashed curve. In the range where the data is multivalued the
output of the network can be completely spurious, since the
average of several values of v may itself not be a valid value
for that variable for the given value of u. This problem is not
resolved by increasing the quantity of data or by improve-
ments in the training procedure.

When applying neural networks to inverse problems it is
therefore essential to anticipate the possibility that the data
may be multivalued. One approach to resolving this problem
is to exclude all but one of the branches of the inverse map-
ping (or by training separate networks for each of the
branches if all possible solutions are needed). For a detailed
example of how this technique is applied in practice, in this
case to the determination of the coefficients in a Gaussian
function fitted to a spectral line, see Ref. 22.

D. Control applications

In this review we have concentrated almost entirely on
neural networks for data analysis, and indeed this represents
the area where these techniques are currently having the
greatest practical impact. However, neural networks also of-
fer considerable promise for the solution of many complex
problems in non-linear control.

Feedforward networks, of the kind considered in this
review, can be used to perform a non-linear mapping within
the context of a conventional linear feedback control loop.
This technique has been exploited successfully for the feed-
back control of tokamak plasmas’” as illustrated in Fig. 31.
Here the inputs to the fetwork consist of a number of mag-
netic signals (typically between 10 and 100) obtained from
pick-up coils located around the tokamak vacuum vessel.
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These are mapped by the neural network onto a set of geo-
metrical parameters which describe the position and shape of
the boundary of the plasma. The values for these parameters
as predicted by the neural network are compared with de-
sired values which have been preprogrammed as functions of
time prior to the plasma pulse. The resulting error signals are
then sent to standard PID (proportional-integral-differential)
linear control amplifiers which adjust the position and shape
of the plasma by changing the currents in a number of con-
trol coils.

The network is trained off-line in software from a large
data set of example plasma configurations obtained by nu-
merical solution of the plasma equilibrium equations. In or-
der to achieve real-time operation, the network was imple-
mented in special purpose hybrid digital-analogue
hardware” described in Sec. VII. Values for the network
weights, obtained from the software simulation, are loaded
into the network prior to the plasma pulse. This system Te-
cently achieved the first real-time control of a tokamak
plasma by a neural network.”!

This application provides another example of the use of
prior knowledge in neural networks. It is a consequence of
the linearity of Maxwell’s equations that, if all of the currents
in the tokamak system are scaled by a constant factor, the
magnetic field values will be scaled by the same constant
factor and the plasma position and shape will be unchanged.
This implies that the mapping from measured signals to the
position and shape parameters, represented by the network;
should have the property that, if all the inputs are scaled by
the same factor, the outputs should remain unchanged. Since
the order of magnitude of the inputs can vary by a factor of
up to 100 during a plasma pulse, there is considerable benefit
in building in this prior knowledge explicitly. This is
achieved by dividing all inputs by the value of the total
plasma current. A hardware implementation of this normal-
ization process was developed for real-time operation. If this
prior knowledge were not included in the network structure,
the network would have to learn the invariance property
purely from the examples in the data set.

Another recent real-time application for neural networks
was for the control of 6 mirror segments in an astronomical
optical telescope in order to perform real-time cancellation of
distortions due to atmospheric turbu‘lence.76 This technique,
called adaptive optics, involves changing the effective mirror
shape every 10 ms. Conventional approaches involve itera-
tive algorithms to calculate the required deformations of the
mirror, and are computationally prohibitive. The neural net-
work provides a fast alternative, which achieves high accu-
racy. When the control loop is closed the image quality
shows a strong improvement, with a resolution close to that
of the Hubble space telescope. In this case the network was
implemented on an array of transputers.

Neural networks can also be used as non-linear adaptive
components within a control loop. In this case the network
continues to learn while acting as a controller, and in prin-
ciple can learn to control complex non-linear systems by trial
and error. This raises a number of interesting issues con-
nected with the fact that the training data which the network
sees is itself dependent on the control actions of the network.
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Such issues take us well beyond the scope of this review,
however, and so we must refer the interested reader to the
literature for further details.”’"

IX. DISCUSSION

In this review we have focused our attention on feedfor-
ward neural networks viewed as general parameterized non-
linear mappings between multi-dimensional spaces. Such
networks provide a powerful set of new data analysis and
data processing tools with numerous instrumentation appli-
cations. While feedforward networks currently account for
the majority of applications there are many other network
models, performing a variety of different functions, which
we do not have space to discuss in detail here. Instead we
give a brief overview of some of the topics which have been
omitted, along with pointers to the literature. We then con-
clude with a few remarks on the future of neural computing.

A. Other network models

Most of the network models described so far are trained
by a supervised learning process in which the network is
supplied with input vectors together with the corresponding
target vectors. There are other network models which are
trained by unsupervised learning in which only the input
vectors x7 are supplied to the network. The goal in this case
is to model structure within the data rather than learn a func-
tional mapping. ,

One example of unsupervised training is called density
estimation in which the network forms a model of the prob-
ability distribution p(x) of the data as a function of x.>*>! We
have already encountered one example of this in Sec. IV,
using the Gaussian mixture model in Eq. (35). Another ex-
ample is clustering in which the goal is to discover any
clumping of the data which may indicate structure having
some particular significance.”" Yet another application of
unsupervised methods is data visualization in which the data
is projected onto a 2-dimensional surface embedded in the
original d-dimensional space, allowing the data to be visual-
ized on a computer screen.®” In this case the training process
corresponds to an iterative optimization of the location of the
surface in order to capture as much of the structure in the
data as possible. Unsupervised networks are also used for
dimensionality reduction of the data prior to treatment with
supervised learning techniques in order to mitigate the ef-
fects of the curse of dimensionality. _

One of the restrictions placed on the networks discussed
in this review is that they should have a feedforward struc-
ture so that the output values become explicit functions of
the inputs. If we consider network diagrams with connec-
tions which form loops then the network acquires a dynami-
cal behavior in which the activations of the units must be
calculated by evolving differential equations through time. A
class of such networks having some historical significance is
that developed by Hopfield'>'® who showed that, if the con-
nection from unit a to unit b has the same strength as the
connection from unit b back to unit a, then the evolution of
the network corresponds to a relaxation described by an en-
ergy function, thereby ensuring that the network evolves to a
stationary state. Such networks can act as associative memo-
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ries which reconstruct a complete pattern from a partial cue,
or from a corrupted version of that pattern. They have also
been used to solve combinatorial optimization problems,
such as placing of components in an integrated circuit or the
scheduling of steps in a manufacturing process.

Another aspect of the techniques considered in this re-
view is that all of the input data have been treated as static
vectors. There is also considerable interest in being able to
deal effectively with time varying signals. The simplest, and
most common approach, is to sample the time series at regu-
lar intervals and then treat a succession of observed values as
a static vector which can then be used as the input vector of
a standard feedforward network. This approach has been
used with considerable success both for classification of time
series in problems such as speech recognition® and for pre-
diction of future values of the time series® in applications
such as financial forecasting or the prediction of sunspot ac-
tivity. A more comprehensive approach would, however,
make use of dynamical networks of the kind discussed
above.

It should be emphasized that most of these neural net-
work techniques have their counterparts in conventional
methods. In many cases the neural network provides a non-
linear extension of some well known linear technique. Any-
one wishing to make serious use of neural networks is there-
fore recommended to become familiar with these
conventional approaches.>>~>°

Throughout this review we have discussed learning in
neural networks in terms of the minimization of an error
function. However, learning and generalization in neural net-
works can also be formulated in terms of a Bayesian infer-
ence framework," 386 and this is currently an active area of
research.

B. Future developments

Feedforward neural networks are now becoming well es-
tablished as methods for data processing and interpretation,
and as such will find an ever greater range of practical ap-
plications both in scientific instrumentation and many other
fields. However, it is clear too that the connectionist para-
digm for information processing is a very rich one which, 50
years after the pioneering work of McCulloch and Pitts, we
are only just beginning to explore. It is likely to be a very
long time before artificial neural networks approach the com-
plexity or performance of their biological counterparts. Nev-
ertheless, the fact that biological systems achieve such im-
pressive feats of information processing using this basic
connectionist approach will remain as a constant source of
inspiration. While it would be unwise to speculate on future
technical developments in this field, there can be little doubt
that the future will be an exciting one.

APPENDIX: GUIDE TO THE NEURAL COMPUTING
LITERATURE

The last few years have witnessed a dramatic growth of
activity in neural computing accompanied by a huge range of
books, journals, and conference proceedings. Here we aim to
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provide an overview of the principal sources of information
on neural networks, although we cannot hope to be exhaus-
tive.

The following journals specialize in neural networks. It
should be emphasized, however, that the subject spans many
disciplines and that important contributions also appear in a
range of journals specializing in other subjects.

Neural Networks is published bimonthly by Pergamon
Press and first appeared in 1988. It covers biological, math-
ematical, and technological aspects of neural networks, and a
subscription is included with membership of the Interna-
tional Neural Network Society. :

Neural Computation is a high quality multidisciplinary
letters journal published quarterly by MIT Press.

Network is another cross-disciplinary journal and is pub-
lished quarterly by the Institute of Physics in the U.K.

International Journal of Neural Systems is published
quarterly by World Scientific also covers a broad range of
topics.

IEEE Transactions on Neural Networks is a Journal with
a strong emphasis on artificial networks and technology and
appears bimonthly.

Neural Computing and Applications is a new journal
concerned primarily with applications and is published quar-
terly by Springer-Verlag.

Neurocomputing is published bimonthly by Elsevier.

There are currently well over 100 books available on
neural networks and it is impossible .to survey them all.
Many of the introductory texts give a rather superficial treat-
ment, generally with little insight into the key issues which
often make the difference between successful applications
and failures. Some of the better books are those given in
Refs. 87 and 88. A more comprehensive account of the ma-
terial covered in this review can be found in Ref. 1.

One of the largest conferences on neural networks is the
International Joint Conference on Neural Networks (IJCNN)
held in the USA (and also in the Far East) with the proceed-
ings published by IEEE. A scan through the substantial vol-
umes of the proceedings gives a good indication of the tre-
mendous range of applications now being found for neural
network techniques. A similar annual conference is the World
Congress on Neural Networks. A comparable, though some-
what smaller, conference is held each year in Europe as the
International Conference on Artificial Neural Networks
(ICANN). An excellent meeting is the annual Neural Infor-
mation Processing Systems conference (NIPS) whose pro-
ceedings are published under the title Advances in Neural
Information Processing Systems by Morgan Kaufman. These
proceedings provide a snapshot of the latest research activity
across almost all aspects of neural networks, and are highly
recommended. Details of future conferences can generally be
found in the various neural network journals.
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