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One of the most promising approaches to achieving
fusion of the light elements, as a potential large-scale
energy source for the next century, is based on the
magnetic confinement of an ionised high temperature
plasma. Most of the current research in magnetic
confinement makes use of toroidal plasma configur-
ations in experiments known as tokamaks. Theoretical
results have predicted that the characteristics of a
tokamak plasma can be made more favourable to
fusion if the cross-section of the plasma is appropri-
ately shaped. However, the accurate generation of
such plasmas, and the real-time control of their
position and shape, represents a demanding problem
involving the simultaneous adjustment of the currents
through several control coils on time scales as short
as a few tens of microseconds. In this paper, we
present results from the first use of neural networks
for the control of the high temperature plasma in a
tokamak fusion experiment. This application requires
the use of fast hardware, for which we have developed
a fully parallel custom implementation of a multilayer
perceptron, based on a hybrid of digital and analogue
techniques. Our results demonstrate that the network
is indeed capable of fast plasma control in accordance
with the predictions of software simulations.
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1. Introduction

When the nuclei of light elements (such as isotopes
of hydrogen) fuse they release huge amounts of
energy. However, in order to fuse, the nuclei must
collide with considerable kinetic energy to overcome
their mutual Coulomb repulsion. In the sun, the
very high temperatures provide the nuclei with the
necessary kinetic energy. Over the last few decades,
a considerable research effort worldwide has been
aimed at trying to recreate similar conditions in the
laboratory, as a potential large-scale energy source
for the next century. Despite the enormous technical
difficulties which must be overcome, the last few
years have seen considerable progress, due in large
part to the development of sophisticated devices
known as ‘tokamaks’. In these experiments, isotopes
of hydrogen are raised to very high temperatures
(up to a few hundred million degrees K) where
they form a highly ionised plasma. Strong magnetic
fields are used to confine the plasma against its
own internal pressure, and additional magnetic
fields are used to control its position and shape.
At the heart of a tokamak experiment is a toroidal
vacuum vessel in which the plasma is generated.
Early tokamaks produced plasmas whose toroidal
cross-sections were circular. However, there is
considerable interest in generating plasmas with
more complex cross-sectional shapes, as these offer
the possibility of significantly improved performance
in terms of the physical conditions needed for
fusion. However, the accurate generation of such
plasmas, and the real-time control of their position
and shape, represents a demanding problem involv-
ing the simultaneous adjustment of the currents
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through several control coils on time scales as short
as a few tens of microseconds.

In this paper, we describe an approach to the
control of plasma position and shape in a tokamak
based on feedforward neural networks. We also
present results from the first successful use of neural
networks in this application. In the next section we
give a brief introduction to the principles of magnetic
confinement, and in Sect. 3 we describe the problem
of plasma feedback control, and review the principal
conventional approaches to its solution. We then
introduce an alternative approach based on feedfor-
ward neural networks. In Sect. 4 we describe the
network architecture and training procedure, and
in Sect. 5 we present results from software simula-
tions of the network. The combined requirements
of high bandwidth and high precision have led
us to develop a fully parallel custom hardware
implementation of the multilayer perceptron,
described in Sect. 6, based on analogue signal
processing, together with digitally stored synaptic
weights. First results from real-time feedback control
of the plasma in the COMPASS tokamak are
presented in Sect. 7, and a brief discussion is given
in Sect. 8.

2. Magnetic Confinement

To release the energy available from fusion, the
nuclei of light elements, usually isotopes of hydro-
gen, must be forced together against their electro-
static Coulomb repulsion. This can be achieved by
raising appropriate isotopes to very high tempera-
tures so that the kinetic energy of the nuclei, with
some help from quantum tunnelling, allows them
to fuse. The average kinetic energy per nucleon
needs to be of order 10* electron volts, corresponding
to a temperature of 108K, for the probability of
fusion to be significant. Under these conditions,
the hydrogen atoms are fully ionised and form an
electrically conducting plasma. Economic pro-
duction of power requires the fusion process to be
self-sustaining so that the energy released by the
fusion reactions maintains the extremely high tem-
peratures, and the plasma is said to have reached
‘ignition’. This in turn requires the density of the
plasma to be high (so that the rate of reaction is
high), and it requires the heat produced to be well
confined (so that it does not leak away too
quickly). The quantitative condition for ignition was
developed by Lawson [1], who showed that the
triple product of the density, temperature and
energy confinement time (the characteristic time
for energy to be transported out of the plasma)
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must exceed a threshold value. Currently, the best
plasma conditions achieved are about a factor of
5-10 short of this threshold.

To achieve such conditions in practice, the high
temperature plasma must be contained and thermally
insulated. Since the plasma is ionised, it can carry
electrical currents and can therefore be controlled
and shaped by magnetic fields. The high pressure
of the plasma (governed by the product of density
and temperature) can then be balanced by the
pressure of the magnetic field. This is called
‘magnetic confinement’. The principal experimental
device for research into this approach to controlled
fusion is the tokamak, which consists of a toroidal
vacuum vessel containing a small quantity of hydro-
gen which is ionised and heated by a large toroidal
electric current. This current is induced by trans-
former action using a time-varying magnetic field,
which is itself generated by currents flowing through
external coils. The plasma current also generates a
magnetic field which contributes to the confinement
of the high pressure plasma. A strong magnetic
field, generated by large ‘toroidal-field’ coils, serves
to stabilise the plasma, and additional magnetic
fields, generated by currents flowing through ‘poloi-
dal-field’ coils, control the plasma shape and pos-
ition. Each plasma pulse (or shot) in COMPASS
typically lasts a few hundred ms, while in large
tokamaks the plasma can be sustained for several
tens of seconds, and one Japanese tokamak is even
able to operate in steady state.

Figure 1 shows a cross-section of the COMPASS

Fig. 1. Cutaway drawing of the COMPASS tokamak experiment
at Culham Laboratory showing the D-shaped cross-section
toroidal vacuum vessel. The overall height of the experiment is
around 3 m.
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Fig. 2. Cross-sections of the vacuum vessel showing some
examples of plasma shapes which COMPASS is designed to
explore. The solid curve is the boundary of the vacuum vessel,
and the plasma is shown by the shaded regions.

tokamak at Culham Laboratory, showing the toro-
idal vacuum vessel as well as the support structure
and several of the control coils. Note that the cross-
section of the vacuum vessel has a D-shape, unlike
most earlier tokamak designs which were constructed
with circular cross-section vessels. This D-shaped
vessel allows non-circular cross-section plasmas to
be generated, which are found to have improved
energy confinement times and pressure limits,
allowing significantly better plasma conditions to
be achieved. Figure 2 shows some examples of the
kinds of plasma shapes which can be produced in
COMPASS. The Joint European Torus (JET)
experiment (currently the world’s largest tokamak),
situated adjacent to Culham Laboratory, as well as
nearly all designs for future tokamak experiments,
also feature D-shaped plasmas.

3. Plasma Feedback Control

While non-circular cross-section plasmas offer a
number of physics advantages over circular plasmas,
they also present a number of additional problems.
In particular, such plasmas are more difficult to
produce and to control accurately, since currents
through several control coils must be adjusted
simultaneously to generate the desired shapes.
Furthermore, during a typical plasma pulse, the
shape must evolve, usually from some initial near-
circular shape. Due to uncertainties in the current
and pressure distributions within the plasma, the
desired accuracy for plasma control can only be
achieved by making real-time measurements of the

C. M. Bishop et al.

position and shape of the boundary, and using error
feedback to adjust the currents in the control coils.

The physics of the plasma equilibrium is deter-
mined by force balance between the magnetic
pressure and the thermal pressure of the plasma,
and is relatively well understood. We shall assume
that the tokamak has rotational symmetry about
the vertical axis, which is an excellent approximation
in the present context. Since variations around the
torus are neglected it is sufficient to consider one
particular cross-sectional plane. As a consequence
of the assumed axi-symmetry, the component B, of
magnetic field in this plane (known as the ‘poloidal
field’) can be written in terms of the gradient of a
scalar flux function ¥:

B, = e x V¥(R,Z) 0

where e is a unit vector in the toroidal direction
(i.e. perpendicular to the cross-sectional plane),
and R and Z are the radial and vertical coordinates,
respectively, such that the Z-axis is the axis of
symmetry of the tokamak. These coordinates are
illustrated in Fig. 3. The surfaces of constant ¥ are
known as ‘flux surfaces’, and in three dimensions
any magnetic field line will spiral around the torus
while remaining confined to such a surface. One of
the flux surfaces forms the boundary of the plasma.
The requirement of force balance then leads to a
description of plasma equilibrium configurations in
terms of solutions of the Grad-Shafranov equation
[2], given by:

A
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Fig. 3. Schematic illustration of a cross-section of the toroidal
vacuum vessel showing the definitions of various coordinates
and parameters. The elliptical curve denotes the plasma boundary.
The Z-axis is the axis of symmetry of the torus, R is the major
radius coordinate and 6 is called the poloidal angle. The
triangularity 8 (not shown) describes the departure of the plasma
boundary from a simple ellipse (values of k =1 and 8 =0
correspond to a circular plasma boundary).
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d (1a¥) o*¥
where the function J(¥, R) specifies the toroidal
plasma current density, and takes the form:

1(W)I'(¥)
R

Here the function p(¥) and I(¥) describe the
plasma pressure and the toroidal magnetic flux,
respectively, and are determined by a variety of
competing processes within the plasma such as
impurity radiation, and thermal and particle trans-
port. Since prediction of these processes from first
principles is exceedingly difficult (due to non-linear
turbulence-like processes in the plasma), it is usual
to assume simple parameterised functional forms
for p(¥) and I(¥). One specific example of such
a parameterisation will be discussed in Sect. 4.
Fortunately, the plasma configurations obtained
from solution of the Grad-Shafranov equation are
relatively insensitive to the precise choice of these
functions.

Due to the non-linear nature of the
Grad-Shafranov equation, a general analytic sol-
ution is not possible. However, for a given current
density function J(¥, R), the Grad-Shafranov equ-
ation can be solved by iterative numerical methods,
with boundary conditions determined by currents
flowing in the external control coils which surround
the vacuum vessel. On the tokamak itself it is
changes in these currents which are used to alter
the position and cross-sectional shape of the plasma.
Numerical solution of the Grad-Shafranov equation
represents the standard technique for post-shot
analysis of the plasma, and is also the method used
to generate the training dataset for the neural
network, as described in the next section. However,
this approach is computationally very intensive,
and is therefore unsuitable for feedback control
purposes.

For real-time control it is necessary to have a
fast (typically < 100 ps) determination of the plasma
boundary shape. This information can be extracted
directly from a variety of diagnostic systems, the
most important being local magnetic measurements
taken at a number of points around the perimeter
of the vacuum vessel. Most tokamaks have several
tens or hundreds of small pick up coils located at
carefully optimised points around the torus for this
purpose. It is convenient to represent these magnetic
signals collectively as a vector m. Other diagnostic
information can also be used, for instance infor-
mation about the spatial profiles of density, tempera-
ture and poloidal magnetic field (which together

J(¥,R) = —Rp'(¥) - €)
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help to determine the current profile function J)
obtained from laser diagnostics. In the work reported
here, only magnetic signals have been considered,
although it is intended to extend this to include
other diagnostic information in the future.

The position and shape of the plasma boundary
can be described in terms of a set of geometrical
parameters such as vertical position and elongation
(the particular parameters used in this work will be
discussed in Sect. 4). The basic problem which has
to be addressed, therefore, is to find a representation
for the mapping from the magnetic signals m to the
values of the geometrical parameters (which we
denote by y,), which can be implemented in suitable
hardware for real-time control. This mapping is
non-linear, but is continuous and smooth for almost
all values of m. For tokamaks which operate with
a small range of shapes (circular cross-sections only
for instance) the mapping may be approximated by
a linearisation around a fixed operating point.
However, if a wide range of shapes must be
accommodated, as, for instance, when a strongly
shaped plasma is evolved from some initially circular
configuration, then the non-linearity of the mapping
must be taken into account.

Several conventional approaches have been con-
sidered for the solution of this problem, many of
which rely on the generation of a large dataset of
representative equilibria obtained by numerical
solution of the Grad-Shafranov equation. A para-
meterised functional form can then be fitted to
the dataset using, for instance, a least-squares
procedure. We can group these approaches into the
following three categories:

1. Hand-selected functional forms are prescribed
which contain a number of parameters whose values
are determined by fitting to the data set. Generally,
these functions are designed to describe the mapping
in the neighbourhood of a particular operating
point, and yet capture some of the non-linearity of
the mapping. The functions are hardwired for use
in real-time control. This technique has been applied
successfully to the DIIID tokamak [3]. Its main
limitation is that it is still limited to a restricted
range of equilibria.

2. The dimensionality of the vector m (which is
typically of order 10-100) is first reduced by a
principal components projection, based on the
dataset measurements, to give a vector m = P-m,
where the rows of the matrix P are given by the
eigenvectors of the covariance matrix for the vector
m with respect to the dataset. Subsequently, the
parameters y, are expressed as a general quadratic
function of m in the form:
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yk = Wk + wk'ﬁi + fﬂ'wk'ﬁ (4)

where the parameters wy, w, and W, are determined
by least-squares fitting to the dataset. This tech-
nique, known as ‘function parameterisation’, was
developed for the interpretation of spark chamber
data from high energy physics experiments [4], and
subsequently applied to the interpretation of data
from the ASDEX tokamak [5,6]. While it can
represent some degree of non-linearity, it is clear that
the unsupervised nature of the principal components
reduction is in general sub-optimal, and that the
restrictive choice of a quadratic fit (which is based
on computational simplicity and not on any prior
knowledge) will also in general be sub-optimal.

3. Since the required mapping is continuous, it
can be approximated to arbitrary accuracy by a
piecewise-linear function. Each linear segment can
be determined by least-squares fitting to an appropri-
ate subset of the database, or can be obtained
analytically by expansion of the Grad-Shafranov
equation around a given equilibrium [7]. The map-
ping itself is now represented by a simple matrix,
but the elements of the matrix must be switched as
the plasma moves from one region of m-space to
another. This requires that the hardware implemen-
tation allows the matrix elements of the linear
mapping to be switched rapidly many times during
the plasma pulse as the plasma evolves from one
region of parameter space to another. A hardware
system which implements this approach has been
developed for control of the TCV and ALCATOR
C-MOD tokamaks [8]. The principal drawbacks of
this approach are the complications involved in
deciding how to partition the input space into
suitable regions, and the potential problems arising
from discontinuous switching within a control loop.

In this paper, we consider an alternative approach
to the problem of tokamak equilibrium feed-back
control based on feedforward neural networks
[9-11]. As in other approaches, a parameterised
functional form is fitted to a large database of
numerical equilibria. The functional fit, however,
is produced using a multilayer perceptron, which is
capable in principle of approximating with arbitrary
accuracy an arbitrary continuous mapping from a
compact set [12]. The need to switch parameters
can therefore be avoided, while no a-priori limitation
on the functional form of the mapping is introduced.

Figure 4 shows a block diagram of the control
loop for the neural network approach to tokamak
equilibrium control. The rdle of the neural network
is to map the measured magnetic signals m onto
the values y, of the geometrical parameters describ-
ing the plasma position and shape. These are
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Fig. 4. Block diagram of the control loop used for real-time
feedback control of plasma position and shape.

compared with desired values yg for the parameters,
which are pre-programmed as functions of time
prior to the plasma pulse. The differences y, — yg
constitute error signals which generate corrections
to the currents flowing in the control coils, through
standard linear proportional-differential (PD) con-
trol laws.

4. Dataset and Network Architecture

The dataset for training and testing the network
was generated by numerical solution of Eq. (2)
using a free-boundary equilibrium code. This code
contains a detailed description of the COMPASS
hardware configuration, and allows the boundary
conditions to be expressed directly in terms of
currents in the control coils. The database currently
consists of over 2000 equilibria spanning the wide
range of plasma positions and shapes available
in COMPASS. Each configuration takes several
minutes to generate on a fast UNIX workstation.
Since the shape of the plasma boundary is not
strongly sensitive to the precise form of the current
density function J, we have considered the specific
form:

J(¥,R) = b{aR + Q—I}@} A-¥e)2 (9

where b is a constant, B controls the ratio of plasma
pressure to magnetic field energy density, and the
parameters a; and o, are numbers = 1 which can
be varied to generate a variety of current profiles.

For alarge class of equilibria, the plasma boundary
can be reasonably well represented in terms of a
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simple parameterisation, governed by the poloidal
angle 6, given by:

R(8) = Ry + acos (6 + 3sin 6)
Z(0) =Zy+ axsin 0 6)
where we have defined the following parameters:

R, radial distance of the plasma centre from the
major axis of the torus :

Z, vertical distance of the plasma centre from
the torus midplane

a minor radius measured in the lane Z = Z,
k elongation
& triangularity

which are shown geometrically in Fig. 3. Each of
the entries in the database has been fitted using
the form in Eq. (6), so that the equilibria are
labelled with the appropriate values of the shape
parameters. Figure 5 shows scatter plots of pairs of
boundary parameters for the whole dataset. These
are seen to form distinct regions which correspond
to the physical range of the tokamak operating
space. For example, in the plot of elongation
versus triangularity, there are no points with high
triangularity and low elongation, since all of the
shaping coil configurations produce elongation as
well as triangularity. Within these regions the
parameter spaces are seen to be reasonably well
populated. The plot of triangularity versus major
radius shows stripes, due to the fact that, for any
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given configuration of the shaping coil circuits as
provided on the COMPASS tokamak, there is a
strong correlation between triangularity and major
radius. Different configurations produced different
correlations, but the configurations themselves can
only be changed in discrete steps. Such correlations
are also expected in experimentally achieved equilib-
ria. The dataset was randomly partitioned into
halves for training and testing.

The results presented in this paper are based on
a multilayer perceptron architecture with a single
hidden layer. The units in the hidden layer compute
a symmetric sigmoid function of the form:

1—e~
1+e™*

X

fx)= (™)
where x is the input to the unit and f(x) is the
output. Units in the output layer are taken to be
linear.

It is important to note that the transformation
from magnetic signals to flux surface parameters
involves an exact linear invariance. This follows
from the fact that, if all of the currents are scaled
by a constant factor (so that the pressure profile
term in Eq. (3) is implicitly scaled by the same
factor), then the magnetic fields will be scaled by
this factor, and the geometry of the flux surfaces, and
hence of the plasma boundary, will be unchanged. It
is important to take advantage of this prior know-
ledge and to build it into the network structure,
rather than force the network to learn it by example.
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Fig. 5. Scatter plots of plasma boundary parameters from the database.
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We therefore normalise the vector m of input signals
to the network by dividing by a common factor
proportional to the total plasma current. A scaling
of the magnetic signals by a common factor then
leaves the network inputs (and hence the network
outputs) unchanged. This normalisation of the input
vector brings three distinct advantages. First, the
network exhibits exact invariance to rescaling of the
currents, compared with the approximate invariance
which would result if the network had to learn by
example. Second, output accuracy can be maintained
over a wide range of plasma currents. The input
signals have a significant dynamic range (as the
toroidal plasma current grows from a few kA to a
few 100 kA during the plasma pulse), and without
this normalisation we would expect a loss of accuracy
at low plasma currents due to the limited precision of
the hardware implementation. Finally, the network
training can be performed with a smaller dataset
than would otherwise be possible, which can be
generated for just one value of total plasma current.
Note that the normalisation has to be incorporated
into the hardware implementation of the network,
as will be discussed in Sect. 6.

5. Results from Software Simulations

Networks are trained by minimization of a sum-of-
squares error defined over the network outputs.
The target data from the training set are first
normalised so that each output has zero mean and
unit standard deviation. This ensures that the
outputs are treated on an equal footing. Note that
a weighting of the sum-of-squares error could in
principle be used to enforce a higher relative
accuracy on some of the outputs at the expense of
others, although this has not been explored in the
work done to-date. Error backpropagation is used
to compute the derivatives of the error with respect
to the weights and thresholds in the network. These
derivatives are then used in a standard conjugate
gradients optimisation algorithm [13] to find a
minimum of the error function. In all studies
conducted so far, networks having a single hidden
layer were used, with full interconnections from
inputs to hidden units and full interconnections
from hidden units to output units. The number of
hidden units was optimised by training networks
having various numbers of hidden units and then
comparing them using the test set.

The results from the neural network mapping are
compared with those for the optimal linear mapping,
that is the single linear transformation which mini-
mises the same sum-of-squares error as is used

C. M. Bishop et al.

in the neural network training algorithm. This
minimisation can be expressed in terms of a set of
linear equations whose solution can be found
efficiently and robustly using the technique of
singular value decomposition [13]. This comparison
also provides some indication of the degree of non-
linearity involved in the mapping.

On the COMPASS experiment, there are some
120 magnetic signals which could be used to provide
inputs to the network. Since each input could either
be included or excluded, there are potentially
2120 = 10°¢ possible sets of inputs which might be
considered. In principle, to select the best subset,
it is necessary to optimise a network on each subset
and compare their performances. This is clearly
impractical, and so we have used two simplifications
of the selection process. First, for the purposes of
input selection, we have replaced the neural network
with the simple linear mapping. It is hoped that
the set of inputs which are chosen on this basis will
also be appropriate for the neural network. This is
a reasonable expectation, since it is known that
the linear mapping can give an acceptable result
provided the range of equilibria is not too great.
The second simplification involves the use of forward
sequential selection [14] to choose the inputs, rather
than exhaustive search. For N possible inputs, this
approach starts by considering the N possible choices
of just one input, and selecting the one which gives
the best result, in the sense of producing the
smallest residual error. This input is retained, and
all possible sets of two inputs obtained by combining
the first selected input with each of the N —1
remaining candidates, are considered, and again the
best choice is retained. This process is continued until
a sufficient number of inputs has been accumulated.
Simulations aimed at finding a network suitable for
use in real-time control have so far concentrated
on 16 inputs, since this is the number available
from the initial hardware configuration (see Sect.
6).

Initial results were obtained on networks having
three output units, corresponding to the values of
vertical position Z,, major radius R, and elongation
K, these being parameters which are of interest for
real-time feedback control. Results from neural
networks with various umbers of hidden units, and
from the optimal linear mapping, are shown in
Table 1. These results are plotted in Fig. 6

The smallest average test set error is obtained
from the network having 16 hidden units. Typically,
the residual error on test data is reduced by about
30%—40% as a result of going from the linear
system to the best neural network. In the context
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Table 1. Comparison of the training and test set errors for networks having
various numbers Ny of hidden units. The linear mapping results are shown

as Ny =0
Training Test
Ny €r €2 €, € €R €z €, €
0 15.02 13.34 2475 1840 1540 1250 24.70 18.30
4 11.70 8.19 16.93 12.79 11.13 9.14 20.87 14.64
6 10.54 8.66 11.53 10.31 10.18 9.76 20.09 14.17
8 8.90 7.07 9.35 8.50 11.45 797 21.18 14.64
10 8.36 6.26 8.18 7.66 10.71 748 1647 12.14
12 7.11 6.44 9.26 7.70  12.84 8.53 16.59 13.08
14 7.58 5.96 8.35 7.37 11.61 7.92 19.47 13.86
16 6.80 6.07 7.52 6.82 10.49 7.38 15.66 11.69
20 7.06 5.59 7.15 6.64 11.12 9.04 17.26 12.96
24 5.93 5.34 6.52 5.95 11.15 8.25 18.08 13.16
28 5.82 5.20 6.86 6.00 11.59 9.51 16.99 13.08
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Fig. 6. Plot of the normalised errors for both training and test sets versus the number of hidden units, as given in Table 1. The

results from the linear mapping are shown as 0 hidden units.

of this application, such an improvement is very
significant.

For the experiments on real-time feedback control
described in Sect. 7, the available hardware only
permitted networks having four hidden units, and
so we consider the results from this network in
more detail. Figure 7 shows two examples of
reconstructed plasma boundaries. Each example
shows the cross-section of the COMPASS tokamak
vacuum vessel together with the plasma boundary

from one of the test set equilibria, and the corre-
sponding predictions for the boundary (plotted using
the parametric representation in Eq. (6)) from the
neural network and from the optimal linear mapping.

Figure 8 shows plots of the network predictions
for various parameters versus the corresponding
values from the test set portion of the database.
Analogous plots for the optimal linear map predic-
tions versus the database values are also shown.
Comparison of the corresponding figures show the

—
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Fig. 7. Two examples of the prediction of the plasma boundary
shape using the outputs from the neural network (with four
hidden units) and from the linear mapping, for equilibria from
the test set. In each case, the COMPASS vacuum vessel is given
by the outer curve, the solid curve shows the boundary obtained
from the equilibrium code, the prediction from the neural
network is shown by the heavy dashed curve, and the prediction
from the linear mapping is shown by the light dashed curve. In
the right-hand diagram, the network prediction and the actual
boundary are barely distinguishable.

superior predictive capability of the neural network
approach.

6. Hardware Implementation

The hardware implementation of the neural network
must have a bandwidth of = 10 kHz to cope with
the fast timescales of the plasma evolution, and an
output precision of at least 8 bits to ensure that the
final accuracy which is attainable will not be limited
by the hardware system. It is also desirable, for
development work, to have a system in which the
network architecture can be readily changed to
explore different numbers of inputs, different num-
bers of hidden units, the effects of a second hidden
layer, and so on. We have chosen to develop a full
parallel custom implementation of the multilayer
perceptron, based on analogue signal paths with
digitally stored synaptic weights [15]. While in
principle a fully digital solution (based on arrays of
digital signal processing chips for instance) is always
a possible alternative, the use of analogue signal
paths avoids the need for conversions to and from
the digital representation, and fits more naturally
into the control framework currently used on most
tokamaks including COMPASS.

A VME-based modular construction has been
chosen as this allows flexibility in changing the
network architecture, ease of loading network
weights, and simplicity of data acquisition. Three

C. M. Bishop et al.

separate types of card have been developed as
follows:

® A combined 16-input buffer and signal normalizer
® A 16 X 4 matrix multiplier and output driver
® A 4-channel sigmoid module

We now describe each of these cards in more detail.

6.1. Input Normaliser

Due to the significant dynamic range of the measured
signals, and the requirement for invariance to
rescaling of the input signals (as discussed in Sect.
4), an analogue hardware implementation of the
input vector normalisation has been developed. This
has been combined with input buffering on a
separate VME card, which has been designed to
provide independent scaling of groups of eight
inputs by an arbitrary function of an external
reference signal. In the present application, the
reference signal is taken to be the plasma current
(determined by a magnetic pick-up loop called a
‘Rogowski coil’), and the function is chosen to be
a simple inverse proportionality. The reference
signal is converted to digital form using an ADC
(analogue-to-digital converter), and this is mapped
to another digital signal using an EPROM look-up
table, which is then used to provide a scaling factor
for the main signal inputs via multiplying DACs
(digital-to-analogue converters). The normalising
system operates in less than 4 ps, allowing the
buffer gain to be adjusted at a bandwidth in excess
of 100 kHz.

6.2. Matrix Multiplier

The requirement for 8-bit precision suggests that
the synaptic weights should be stored to significantly
higher precision than this. Detailed simulations of
the hardware network indicate that in feedforward
mode there is little degradation in error as the
precision of the weights is reduced until about 10-
bit precision is reached. The error then starts to
increase, becoming unacceptable for precisions less
than about 7-bits. The synaptic weights are produced
using 12-bit frequency-compensated multiplying
DAGC:s, which can be configured to allow 4-quadrant
multiplication of analogue signals by a digitally
stored number. The weights are obtained as a 12-
bit 2’s-complement representation from the VME
backplane. Note that the DACs are being used
here as digitally controlled attenuators, and not in
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Fig. 8. Plots of the values from the test set versus the values predicted by the linear mapping for the three equilibrium parameters,
together with the corresponding plots for the neural network with four hidden units.

their usual role of converting digital signals into
analogue signals. Each module contains four separ-
ate 16-input 1l-output multipliers, on separate
daughter boards. The products from each group of
16 weighted inputs are summed internally to provide
the final output to the next module, so that each
matrix card provides a 16 X 4 matrix of weights.
Synaptic weights are downloaded (prior to the
plasma pulse) via the VME backplane from a central
control computer, using an addressing technique to
label the individual weights. The complete system
includes extensive diagnostics, allowing voltages at
all key points within the network to be monitored
as a function of time via a series of multiplexed
output channels.

6.3. Sigmoidal Summer

There are many ways in which to produce a
sigmoidal non-linearity, and we have opted for a
solution using two transistors configured as a long-
tailed-pair, to generate a transfer characteristic of
the form given in Eq. (7). The principal drawback
of such an approach is the temperature sensitivity
due to the appearance of temperature in the
denominator of the exponential transistor transfer
characteristic. An elegant solution to this problem
has been found by exploiting a chip containing five
transistors in close thermal contact. Two of the
transistors form the long-tailed pair, one of the

transistors is used as a heat source, and the
remaining two transistors are used to measure
temperature. External circuitry provides active ther-
mal feedback control, and stability to changes in
ambient temperature over the range 0°C-50°C is
found to be well within the acceptable range. Noise
levels and response times are also well within the
required limits. A separate 12-bit DAC system,
identical to those used in the matrix multiplier
cards, but with a fixed DC input, is used to provide
a bias for each sigmoid.

7. Real-Time Feedback Control

Prior to use in closed-loop feedback control, exten-
sive testing of the hardware was performed to ensure
its correct operation. A software implementation of
the network in feedforward mode was developed,
which provides a detailed simulation of the hardware
system, and in particular allows voltages at all
diagnosed points within the network to be predicted.
After carrying out full tests of the various modules
to ensure they met the design specification, a
complete network system was configured and con-
nected to the tokamak in an open-loop mode in
which the network receives the diagnostic signals
from the magnetic pick-up coils, but where the
network outputs are simply digitised for post-shot
analysis. During this time the feedback control was
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provided by a linear system based on a combination
of four hand-selected magnetic signals. This simple
controller is adequate to allow the generation of
usable plasmas, but does not allow accurate control
of a wide range of shapes. The input signals to
the network were digitised to allow for post-shot
reconstruction of the plasma configuration using the
same free-boundary equilibrium code as was used
to generate the training data (see Sect. 4). In
addition, the outputs from the network were
digitised, as were the voltages at all key points
within the network.

The network architecture used had 16 inputs,
four hidden units and three output units, and was
trained in software to output the values of major
radius R,, vertical position Z, and elongation .
Initial tests with the network operating open-loop
allowed all of the internal and output signals from
the network to be monitored, and to be compared
with the corresponding signals from the software
simulation of the network when loaded with the
same weight and bias values and presented with
the same input signals. Satisfactory agreement
between these was obtained, and ensured that such
issues as the sign conventions on the input signals
and the addressing of individual weights in the
network had been handled correctly.

Finally, the output signals from the network were
used for closed-loop real-time feedback control of
the plasma elongation k, using the same network
configuration and weight values as had been used
during the open-loop evaluation phase. The remain-
ing two outputs were digitised for post-shot diag-
nosis, but were not used for feedback control. An
example of the results is given in Fig. 9, which
shows the evolution of the plasma elongation as a
function of time during a plasma pulse. Here the
desired elongation has been pre-programmed to
follow a series of steps as a function of time. Initial
interpretation of the data was performed using a
simple ‘filament’ code (which models the current
distribution inside the plasma as a small number of
filamentary currents). This gives relatively rapid
post-shot plasma shape reconstruction but with
limited accuracy. A more careful reconstruction
using the full free-boundary equilibrium code gives
closer agreement with the network predictions. The
graph clearly shows the network generating the
required elongation signal in close agreement with
the reconstructed values. The typical residual error
is of order 0.07 on elongation values up to around
1.5. Much of this error is attributable to the
restricted number of hidden units available with the
initial hardware configuration, and is expected to
fall significantly when larger networks become
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Fig. 9. Plot of the plasma elongation k as a function of time
during shot no. 9576 on the COMPASS tokamak. The solid
curve shows the value of elongation produced as output (in real
time) by the neural network. The dashed curve shows the post-
shot reconstruction of the elongation obtained from a simple
filament code, using the same signals as provided to the network,
while the circles denotes the more accurate reconstruction
obtained from the full equilibrium solver.

available. Additional improvements in the accuracy
with which kis determined should be possible by
weighting the sum-of-squares error function used
during training, to reduce the errors on k at the
expense of increased errors on the other variables.
The use of a larger set of input variables is also
expected to give further reductions in error. It should
be noted that the plasma behaved satisfactorily
throughout the shot, without any need for switching
of the mapping parameters. While these results
represent the first obtained using closed loop control,
it is clear from earlier software modelling of larger
network architectures (such as 32-16-4) that residual
errors of order a few per cent should be attainable.
The implementation of such larger networks is being
pursued, following the successes with the smaller
system.

8. Discussion

We have shown that the multilayer perceptron
offers an alternative approach to the problem of
real-time feedback control of the plasma in a
tokamak experiment. Unlike many conventional
approaches, it does not assume a specific functional
form for the mapping needed to determine the
plasma shape, nor does it involve switching of the
mapping in real-time. Simulation results demon-
strate that the technique is capable of achieving the
desired accuracy over a wide range of equilibrium
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configurations. Custom neural network hardware
has been designed which combines analogue signal
paths with 12-bit digital synaptic weights to give
high bandwidth together with high precision. This
hardware system is well diagnosed internally, and
can readily be reconfigured for a wide variety of
network architectures.

We have also presented the first results from the
use of neural networks for real-time feedback control
of the plasma in a tokamak fusion experiment.
These show that the network is indeed capable of
performing as expected in controlling the plasma
elongation in the range 1.0-1.5 while simultaneously
decoding two other equilibrium parameters.
Software simulations indicate that the neural net-
work approach should compare favourably with
alternative methods being considered for the control
of strongly shaped plasmas. While it is too early to
form a definitive conclusion as to which technique
is the best, it is already clear that the neural network
approach must be a strong contender.

Work is currently underway to improve the
accuracy of the neural network, and to provide
control of several shape parameters simultaneously.
In addition, the possibility of extending the network
mapping to include information from other diagnos-
tics (such as laser scattering systems for measuring
plasma pressure) to provide still greater accuracy is
being considered.

Neural networks have already been used with
great success for fast interpretation of the data from
tokamak plasma diagnostics to determine the spatial
and temporal profiles of quantities such as tempera-
ture and density [16-18]. There is currently con-
siderable interest in extending these techniques to
allow real-time feedback control of the profiles to
give more complete determination of the plasma
configuration than is possible by boundary shape
control alone. For such applications, neural net-
works appear to offer one of the most promising
approaches.
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