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Abstract. In recent years the problem of object recognition has received consid-
erable attention from both the machine learning and computer vision communi-
ties. The key challenge of this problem is to be able to recognize any member
of a category of objects in spite of wide variations in visual appearance due to
variations in the form and colour of the object, occlusions, geometrical transfor-
mations (such as scaling and rotation), changes in illumination, and potentially
non-rigid deformations of the object itself. In this paper we focus on the detec-
tion of objects within images by combining information from a large number of
small regions, or ‘patches’, of the image. Since detailed hand-segmentation and
labelling of images is very labour intensive, we make use of ‘weakly labelled’
data in which the training images are labelled only according to the presence or
absence of each category of object. A major challenge presented by this problem
is that the foreground object is accompanied by widely varying background clut-
ter, and the system must learn to distinguish the foreground from the background
without the aid of labelled data. In this paper we first show that patches which are
highly relevant for the object discrimination problem can be selected automati-
cally from a large dictionary of candidate patches during learning, and that this
leads to improved classification compared to direct use of the full dictionary. We
then explore alternative techniques which are able to provide labels for the indi-
vidual patches, as well as for the image as a whole, so that each patch is identified
as belonging to one of the object categories or to the background class. This pro-
vides a rough indication of the location of the object or objects within the image.
Again these individual patch labels must be learned on the basis only of overall
image class labels. We develop two such approaches, one discriminative and one
generative, and compare their performance both in terms of patch labelling and
image labelling. Our results show that good classification performance can be
obtained on challenging data sets using only weak training labels, and they also
highlight some of the relative merits of discriminative and generative approaches.

1 Introduction

The problem of object recognition has emerged as a ‘grand challenge’ for computer vi-
sion, with the longer term aim of being able to achieve near human levels of recognition
for tens of thousands of object categories under a wide variety of conditions. Many of



the current approaches to this problem rely on the use of local features obtained from
small patches of the image. The motivation for this is that the variability of small patches
is much less than that of whole images and so there are much better prospects for gen-
eralization, in other words for recognizing that a patch from a test image is similar to
patches in the training images. However, the patches must be sufficiently variable, and
therefore sufficiently large, to be able to discriminate between the different object cat-
egories and also between objects and background clutter. A good way to balance these
two conflicting requirements is to determine the object categories present in an image
by fusing together partial ambiguous information from multiple patches. Probability
theory provides a powerful framework for combining such uncertain information in a
principled manner, and will form the basis for our research (the specific local features
that we use in this paper are described in Section 2.) Also, the locations of those patches
which provide strong evidence for an object also give an indication of the location and
spatial extent of that object.

In common with a number of previous approaches, we do not attempt to model
the spatial relationship between patches. Although such spatial information is certainly
very relevant to the object recognition problem, and its inclusion would be expected to
improved recognition performance for many object categories, its role is complemen-
tary to that of the texture-like evidence provided by local patches. Here we show that
local information alone can already give good discriminatory results.

A key issue in object recognition is the need for predictions to be invariant to a
wide variety of transformations of the input image due to translations and rotations of
the object in 3D space, changes in viewing direction and distance, variations in the
intensity and nature of the illumination, and non-rigid transformations of the object.
Although the informative features used in [13] are shown to be superior to generic
features when used with a simple classification method, they are not invariant to scale
and orientation. By contrast, generic interest point operators such as saliency [6], DoG
[7] and Harris-Laplace [9] detectors are repeatable in the sense that they are invariant to
location, scale and orientation, and some are also affine invariant [7, 9] to some extent.
For the purposes of this paper we shall consider the use of invariant features obtained
from local regions of the image centered on interest points.

Fergus et al. [5] learn jointly the appearances and relative locations of a small set
of parts whose potential locations are determined by a saliency detector [6]. Since their
algorithm is very complex, the number of parts has to be kept small and the type of
detector they used is appropriate for this purpose. Csurka et al. [3] used Harris-Laplace
interest point operators [9] with SIFT features [7] for the purpose of multi class object
category recognition. Features are clustered using K-Means and each feature is labelled
according to the closest cluster centre. Histograms of feature labels are then used as
class-conditional densities. Since such interest point operators detect many points from
the background as well as from the object itself, the features are used collectively to
determine the object category, and no information on object localization is obtained. In
[4], informative features were selected based on information criteria such as likelihood
ratio and mutual information in which DoG and Harris-Laplace interest point detectors
with SIFT descriptors were compared. However, in this supervised approach, hundreds
of images were hand segmented in order to train support vector machine and Gaussian



mixture models (GMMs) for foreground/background classification. The two detectors
gave similar results although DoG produces more features from the background. Fi-
nally, Xie and Perez [14] extended the GMM based approach of [4] to a semi-supervised
case inspired from [5]. A multi-modal GMM was trained to model foreground and
background features where some uncluttered images of foreground were used for the
purpose of initialization.

In this paper we develop several new approaches to object recognition based on fea-
tures extracted from local patches centered on interest points. We begin, in Section 3,
by extending the model of [3] which constructs a large dictionary of candidate fea-
ture ‘prototypes’. By using the technique of automatic relevance determination, our
approach can learn which of these prototypes are particularly salient for the problem of
discriminating object classes and can thereby give appropriately less emphasis to those
which carry little discriminatory information (such as those associated with background
clutter). This leads to a significant improvement in classification performance.

While this approach allows the system to focus on the foreground objects, it does
not directly lead to a labelling of the individual patches. We therefore develop new
probabilistic approaches to object recognition based on local patches in which the sys-
tem learns not only to classify the overall image, but also to assign labels to patches
themselves. In particular, we develop two complementary approaches one of which is
discriminative (Section 4) and one of which is generative (Section 5).

To understand the distinction between discriminative and generative, consider a sce-
nario in which an image described by a vector X (which might comprise raw pixel in-
tensities, or some set of features extracted from the image) is to be assigned to one of K
classes k = 1, ..., K. From basic decision theory [2] we know that the most complete
characterization of the solution is expressed in terms of the set of posterior probabilities
p(k|X). Once we know these probabilities it is straightforward to assign the image X
to a particular class to minimize the expected loss (for instance, if we wish to minimize
the number of misclassifications we assign X to the class having the largest posterior
probability).

In a discriminative approach we introduce a parametric model for the posterior prob-
abilities, and infer the values of the parameters from a set of labelled training data. This
may be done by making point estimates of the parameters using maximum likelihood,
or by computing distributions over the parameters in a Bayesian setting (for example
by using variational inference).

By contrast, in a generative approach we model the joint distribution p(k, X) of
images and labels. This can be done, for instance, by learning the class prior probabil-
ities p(k) and the class-conditional densities p(X|k) separately. The required posterior
probabilities are then obtained using Bayes’ theorem
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where the sum in the denominator is taken over all classes.

Comparative results from the various approaches are presented in Section 6. These
show that the generative approach gives excellent classification performance both for
individual patches and for the complete images, but that careful initialization of the



training procedure is required. By contrast the discriminative approach, which gives
good results for image labelling but not for patch labelling, is significantly faster in
processing test images. Ideas for future work, including techniques for combining the
benefits of generative and discriminative approaches, are discussed briefly in Section 7.

2 Local Feature Extraction

Our goal in this paper is not to find optimal features and representations for solving a
specific object recognition task, but rather to fix on a particular, widely used, feature set
and use this as the basis to compare alternative learning methodologies. We shall also
fix on a specific data set, chosen for the wide variability of the objects in order to present
a non-trivial classification problem. In particular, we consider the task of detecting and
distinguishing cows and sheep in natural images.

We therefore follow several recent approaches [7,9] and use an interest point de-
tector to focus attention on a small number of local patches in each image. This is fol-
lowed by invariant feature extraction from a neighbourhood around each interest point.
Specifically we use DoG interest point detectors, and at each interest point we extract
a 128 dimensional SIFT feature vector [7] from a patch whose scale is determined
by the DoG detector. Following [1] we concatenate the SIFT features with additional
colour features comprising average and standard deviation of (R, G, B), (L, a,b) and
(r=R/(R+G+ B),g9g=G/(R+ G+ B)), which gives an overall 144 dimensional
feature vector. The result of applying the DoG operator to a cow image is shown in
Figure 1.

In this paper we use t,, to denote the image label vector for image n with indepen-
dent components t,,;, € {0,1} in which & = 1,... K labels the class. Each class can
be present or absent independently in an image, and we make no distinction between
foreground and background classes within the model itself. X,, denotes the observation
for image n and this comprises as set of .J,, patch vectors {x,,;} where j = 1,..., J,.
Note that the number J,, of detected interest points will in general vary from image to
image.

On a small-scale problem it is reasonable to segment and label the objects present
in the training images. However, for large-scale object recognition involving thousands
of categories this will not be feasible, and so instead it is necessary to employ training
data which is at best ‘weakly labelled’. Here we consider a training set in which each
image is labelled only according to the presence or absence of each category of object
(in our example each image contains either cows or sheep).

3 Patch Saliency using Automatic Relevance Determination

We begin by considering a simple approach based on [3]. In this method the features
extracted from all of the training images are clustered into C' classes using the K-means
algorithm, after which each patch in each image is assigned to the closest prototype.
Each image n is therefore described by a fixed-length histogram feature vector h,, of
length C' in which element h,,. represents the number of patches in image n which
are assigned to cluster ¢, where ¢ € {1,...,C} and n € {1,...,N}. These feature



Fig. 1. Difference of Gaussian interest points with their local regions, in which the squares are
centered at the interest points and the size of the squares indicates the scale of the interest points.
The SIFT descriptors and colour features are obtained from these square patches Note that interest
points fall both on the objects of interest (the cows) and also on the background.

vectors are then used to construct a classifier which takes an image X, as input, converts
it to a feature vector h,, and then assigns this vector to an object category. Here the
assumption is that each image belongs to one and only one of some number K of
mutually exclusive classes. In [3] the classifier was based either on naive Bayes or on
support vector machines.

Here we use a linear softmax model since this can be readily extended to determine
feature saliency as discussed shortly. Thus the model computes a set of outputs given
by

exp(wj hy,)

yr(h,, w) = m 2

where k € {1,..., K}. Here the quantity yj(h,, w) which can be interpreted as the
posterior probability that image vector h,, belongs to class k. The parameter vector
w = {wy} is found by maximum likelihood using iterative re-weighted least squares
[10]. We shall refer to this approach as VQ-S for vector quantized softmax. Results
from this method will be presented in Section 6.

An obvious problem with this approach is that the patches which contribute to the
feature vector come from both the foreground object(s) and also from the background.
Changes to the background cause changes in the feature vector even if the foreground
object is the same. Furthermore, some foreground patches might occur on objects from
different classes, and are therefore provide relatively little discriminatory information
compared to other patches which are more closely associated with particular object
categories.



We can address this problem using the Bayesian technique of automatic relevance
determination or ARD [8]. This involves the introduction of a prior distribution over
the parameter vector w in which each input variable h. has a separate hyperparameter
a. corresponding to the inverse variance (or precision) of the prior distribution of the
weights w. associated with that input, so that

c

p(wla) = [[M(wcl0,a,'T). 3)

c=1

During learning the hyperparameters are updated by maximizing the marginal likeli-
hood, i.e. the probability of the training labels D given o in which w has been inte-
grated out, given by

p(Dla) = / p(D|w)p(w) dw. @

This is known as the evidence procedure and the values of the hyperparameters found
at convergence express the relative importance of the input variables in determining
the image class label. Specifically, the hyperparameters represent the inverse variances
of the weights, and so a large value of . implies that the corresponding parameter
vector w, has a distribution which is concentrated around zero and so the associated
input variable h, has little effect in determining the output values y. Such inputs have
low relevance. By contrast a high value of a. corresponds to an input h. whose value
plays an important role in determining the class label. The inclusion of ARD leads to
an improvement in classification performance, as discussed in Section 6. We shall refer
to this model as VQ-ARD.

With this approach we can rank the patch clusters according to their relevance. The
logarithm of the inverse of the hyperparameter «.. is sorted and plotted in Figure 2.
Equivalently this can be plotted as a histogram of « values, as shown in Figure 3. It is
interesting to note that in this problem the hyperparameter values form two groups in
which one group can loosely be considered as relevant and the other as not relevant, so
far as the discrimination task is concerned.

Figure 4 shows the properties of the most relevant cluster and of the least relevant
cluster, as well as that of an intermediate cluster, according to the ARD analysis based
on C' = 100 cluster centers. Note that the images have been hand segmented in order to
identify the foreground region. This segmentation is used purely for test purposes and
plays no role during training. The top row shows the features belonging to the worst
cluster, i.e. ranked 100, on a sheep image and on a cow image. This feature exists in
both classes and thus provides a little information to make a classification. The middle
row shows the locations of patches assigned to the cluster which is ranked 27, in which
we see that all of the patches belong to the background. Finally, the bottom row of the
figure shows the features belonging to the most relevant cluster, ranked 1, on the same
sheep and cow images. This feature is not observed on the sheep image but there are
several patches assigned to this cluster on the cow image. Thus the detection of this
feature is a good indicator of the presence of a cow.

It is also interesting to explore the behaviour of the two groups of clusters cor-
responding to the two modes in the distribution of hyper-parameter values shown in
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Fig. 2. The sorted values of the log variance (inverse of the hyperparameter a).

Figure 3. Figure 5 shows examples of cow and sheep images in each case showing the
locations of the clusters associated with the two modes.

Although this approach is able to focuss attention on foreground regions, we have
seen that not all foreground patches have high saliency, and so this approach cannot
reliably identify regions occupied by the foreground objects. We therefore turn to the
development of new models in which we explicitly consider the identity of individual
patches and not simply their saliency for overall image classification. In particular the
hard quantization of K-means is abandoned in favour of more probabilistic approaches.
First we discuss a discriminative model and then we turn to a complementary generative
model.

4 The Discriminative Model with Patch Labelling

Since our goal is to determine the class membership of individual patches, we associate
with each patch j in an image n a binary label 7,,;, € {0, 1} denoting the class k of
the patch. For the models developed in this paper we shall consider these labels to be
mutually exclusive, so that Zle Tnjk = 1, in other words each patch is assumed to be
either cow, sheep or background. Note that this assumption is not essential, and other
formulations could also be considered. These components can be grouped together into
vectors T,,;. If the values of these labels were available during training (correspond-
ing to strongly labelled images) then the development of recognition models would
be greatly simplified. For weakly labelled data, however, the {7,;} labels are hidden
(latent) variables, which of course makes the training problem much harder.

We now introduce a discriminative model, which corresponds to the directed graph
shown in Figure 6.
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Fig. 3. The histogram of the log variances.

Consider for a moment a particular image n (and omit the index n to keep the nota-
tion uncluttered). We build a parametric model y; (x;, w) for the probability that patch
x; belongs to class k. For example we might use a simple linear-softmax model with
outputs
exp(w; ;)

> exp(wix;)
which satisfy 0 < y, < 1and ), yx = 1. More generally we can use a multi-layer
neural network, a relevance vector machine, or any other parametric model that gives
probabilistic outputs and which can be optimized using gradient-based methods. The
probability of a patch label 7 ; is then given by

®)

yr(xj, W) =

p(Tjlx;) = HUkX w) (6)

where the binary exponent 73, simply pulls out the required term (since yg = 1 and
Yi = Yr)-

Next we assume that if one, or more, of the patches carries the label for a particular
class, then the whole image will. For instance, if there is at least one local patch in the
image which is labelled ‘cow’ then the whole image will carry a ‘cow’ label (recall that
an image can carry more than one class label at a time). Thus the conditional distribution
of the image label, given the patch labels, is given by

t 1—t;
J T k

K
p(t]T) = H H (1 — 7jk] [0 =) . (7

j=1 j=1
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Fig.4. The top row shows example cow and sheep images, with the foreground regions seg-
mented, together with the locations of patches assigned to the least relevant (ranked 100) cluster
center. Similarly the middle row analogous results for a cluster of intermediate relevance (ranked
27) and the bottom row shows the cluster assignments for the most relevant cluster (ranked 1).
The centers of the squares are the locations of the patches from which the features are obtained
and the size of the squares show the scale of the patches.
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Fig. 5. Tllustration of the behaviour of the two modes in the histogram of hyper-parameter values
seen in Figure 5. The left column shows a typical example from the sheep class while the right
column shows a typical example from the cow class. In the top row the squares denote the loca-
tions of interest points assigned to clusters in the left hand mode of the histogram corresponding
to low relevance clusters, while the bottom row gives the analogous results to the high relevance
model. The threshold between high and low was set by eye to In(1/«) = —5. Note that the high
relevance clusters are associated predominantly with the foreground, while the low relevance
ones occur on both the foreground and the background.
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Fig. 6. Graphical representation of the discriminative model for object recognition.

In order to obtain the conditional distribution p(t|X) we have to marginalize over
the latent patch labels. Although there are exponentially many terms in this sum, it can
be performed analytically for our model due to the factorization implied by the graph
in Figure 6 to give

J
p(t|X) = Z p(t|T) H (T41%5)
T Jj=1
tr 1—tg

K J J
=11t Hl—yk (x;, w)] Hl—yk (xj, W)] : (8)
k=1 7j=1 j=1

This can be viewed as a softened (probabilistic) version of the logical’OR’ function
[12].

Given a training set of NV images, which are assumed to be independent, we can
construct the likelihood function from the product of such distributions, one for each
data point. Taking the negative logarithm then gives the following error function

N C
_ZZ{nklnl_ ]—I—(l—tnk)annk} 9)

n=1k=1

where we have defined
Jn

Zw = [ ] 11— yr (%0, w)] . (10)
j=1



The parameter vector w can be determined by minimizing this error (which corresponds
to maximizing the likelihood function) using a standard optimization algorithm such as
scaled conjugate gradients [2]. More generally the likelihood function could be used as
the basis of a Bayesian treatment, although we do not consider this here.

Once the optimal value wyyy, is found, the corresponding functions yg (x, Wnr,)
for £k = 1,..., K will give the posterior class probabilities for a new patch feature
vector x. Thus the model has learned to label the patches even though the training data
contained only image labels. Note, however, that as a consequence of the noisy ‘OR’
assumption, the model only needs to label one foreground patch correctly in order to
predict the image label. It will therefore learn to pick out a small number of highly
discriminative foreground patches, and will classify the remaining foreground patches,
as well as those falling on the background, as ‘background’ meaning non-discriminative
for the foreground class. This will be illustrated in Section 6.

S The Generative Model with Patch Labelling

Next we turn to a description of our generative model, whose graphical representation is
shown in Figure 7. The structure of this model mirrors closely that of the discriminative
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Fig. 7. Graphical representation of the generative model for object recognition.

model. In particular, the same class-label variables T,,; are associated with the patches
in each image, and again these are unobserved and must be marginalized out in order to
obtain maximum likelihood solutions.

In the discriminative model we represented the conditional distribution p(t|X) di-
rectly as a parametric model. By contrast in the generative approach we model p(t, X),



which we decompose into p(t, X) = p(X|t)p(t) and then model the two factors sep-
arately. This decomposition would allow us, for instance, to employ large numbers of
‘background’ images (those containing no instances of the object classes) during train-
ing to determined p(X|t) without concluding that the prior probabilities p(t) of objects
is small.

Again, we begin by considering a single image n. The prior p(t) is specified in

terms of K parameters ¥y, where 0 < ¢y < land k =1, ..., K, so that
K
=[] v — )", (11)
k=1

In general we do not need to learn these from the training data since the prior occur-
rences of different classes is more a property of the way the data was collected than
of the real world frequencies. (Similarly in the discriminative model we will typically
wish to correct for different priors between the training set and test data using Bayes’
theorem.)

The remainder of the model is specified in terms of the conditional probabilities
p(7|t) and p(X|7). The probability of generating a patch from a particular class is
governed by a set of parameters 7, one for each class, such that 7, > 0, constrained
by the subset of classes actually present in the image. Thus

—1 K
Tj‘t (Ztﬂrl> H(tkﬂk)Tjk. (12)

k=1

Note that there is an overall undetermined scale to these parameters, which may be
removed by fixing one of them, e.g. 71 = 1.

For each class k, the distribution of the patch feature vector x is governed by a
separate mixture of Gaussians which we denote by ¢ (x; 0},), so that

p(xj|T5) = H br(x;;0%)7 (13)

where 0, denotes the set of parameters (means, covariances and mixing coefficients)
associated with this mixture model, and again the binary exponent 7;; simply picks out
the required class.

If we assume IV independent images, and for image n we have .J,, patches drawn
independently, then the joint distribution of all random variables is

JIn

N
Hp H (%0 |70 )P(T g )] (14)

Since we wish to maximize likelihood in the presence of latent variables, namely the
{Tn;}. we use the EM algorithm. The expected complete-data log likelihood is given

by
N Jn K
Z Z {Z Tnjk: ln[ nk:ﬂ—k(bk an —In (Z tnl’”l) } (15)

n=1 j=1



In the E-step the expected values of 7,; are computed using

tnkT, Xy i
<Tnjk> = Z Tnjkp(Tnj|xnj7tn) = Kkkd)—k(J) (16)

(Tos} > tumen(Xnj)
=1

Notice that the first factor on the right hand side of (12) has cancelled in the evaluation
of <T n jk>~

For the M-step we first set the derivative with respect to one of the parameters 7
equal to zero (no Lagrange multiplier is required since there is no summation constraint
on the {r;}) and then re-arrange to give the following re-estimation equations

N K -1t N,
St (z t> >3 (1)
n=1 =1 n=1j=1

Since these represent coupled equations we perform several (fast) iterations of these
equations before proceeding with the next EM cycle (note that for this purpose the
sums over j can be pre-computed since they do not depend on the {7 }).

Now consider the optimization with respect to the parameters @) governing the
distribution ¢y (x;0y,). The dependence of the expected complete-data log likelihood
on 0}, takes the form

N J,
Z Z Tnijk) 10 @ (Xp;; Ok) + const. (18)

This is easily maximized for each class k& separately using the EM algorithm (in an
inner loop), since (18) simply represents a log likelihood function for a weighted data
set in which patch (n, j) is weighted with (7,,;1). Specifically, we use a model in which
¢r(x; 0}) is given by a Gaussian mixture distribution of the form

k(x;0)) = Zpkm (X[ s Zrom)- (19)

The E-step is given by

Vrikm = pkmN(an|ukm72km)
j Yo Pl N (X | s s o)

while the M-step equations are weighted by the coefficients (7, ;1) to give

(20)

new __ Yon Zj<7njk>’)’njkmxnj
Hiem = >on Ej<7'njk>7njkm
new 2o 2 (Tngie ) Ynjkm (Xnj — i) (Xnj — pin )T
e S 2 Tk Y Yaghm
new 2o 225 (Tnjk) Ynjkm
P = >on Z;-(%jk) '




If one EM cycle is performed for each mixture model ¢ (x; 0},) this is equivalent
to a global EM algorithm for the whole model. However, it is also possible to perform
several EM cycle for each mixture model ¢ (x; 6y) within the outer EM algorithm.
Such variants yield valid EM algorithms in which the likelihood never decreases.

The incomplete-data log likelihood can be evaluated after each iteration to ensure
that it is correctly increasing. It is given by

5 onn) (o))

n=1 j=1

Note that, for a data set in which all ¢,,;, = 1, the model simply reduces to fitting a
flat mixture to all observations, and the standard EM is recovered as a special case of
the above equations.

This model can be viewed as a generalization of that presented in [14] in which
a parameter is learned for each mixture component representing the probability of that
component being foreground. This parameter is then used to select the most informative
N components in a similar approach to [4] and [13] where the number IV is chosen
heuristically. In our case, however, the probability of each feature belonging to one of
the K classes is learned directly.

Inference in the generative model is more complicated than in the discriminative
model. Given all patches X = {x;} from an image, the posterior probability of the
label 7 ; for patch j can be found by marginalizing out all other hidden variables

p(rX)=>"> p(r.X

t T/T,

K
= ZP( H et (x;))7" H [Zﬂktk¢k X; 1 21
t (Zl 1771151) k=1 ]

where 7 = {7} denotes the set of all patch labels, and 7/7; denotes this set with
7; omitted. Note that the summation over all possible t values, which must be done
explicitly, is computationally expensive.

For the inference of image label we require the posterior probability of image label
t, which can be computed using

p (t1X) o< p (X[t) p(t) (22)

in p(t) is computed from the coefficients {1y } for each setting of t in turn, and p (X|t)
is found by summing out patch labels

JIn
p(X[t) = ZHP (X, 7[t) = H > 1tk77k¢k (Xg) 23)
j=1

T j=1 1= 1t17rl

6 Results

In this study, we have used a test bed of weakly labelled images each containing either
cows or sheep, in which the animals vary widely in terms of number, pose, size, colour



and texture. There are 167 images in each class, and 10-fold cross-validation is used
to measure performance. For the discriminative model we used a linear network of
the form (5) with 144 inputs, corresponding to the 144 features discussed in Section 2
and 3 outputs (cow, sheep, background). We also explore two-layer non-linear networks
having 50 hidden units with ‘tanh’ activation functions, and a quadratic regularizer with
hyper-parameter 0.2. For the generative model we used a separate Gaussian mixture for
cow, sheep and background, each of which has 10 components with diagonal covariance
matrices.

Initial results with the generative model showed that with random initialization of
the mixture model parameters it is incapable of learning a satisfactory solution. We
conjectured that this is due to the problem of multiple local maxima in the likelihood
function (a similar effect was found by [14]). To test this we used some segmented im-
ages for initialization purposes (but not for optimization). 30 cow and 30 sheep images
were hand-segmented, and features belonging to each class were clustered using the
K-means algorithm and the component centers of a class mixture model were assigned
to the cluster centers of the respective class. The mixing coefficients were set to the
number of points in the corresponding cluster divided by the total number of points in
that class. Similarly, covariance matrices were computed using the data points assigned
to the respective center.

In the test phase of both discriminative and generative models, we input the patch
features to the models and obtain the posterior probabilities of the patch labels as the
outputs using (5) for discriminative model and (21) for the generative model. The pos-
terior probability of the image label is computed as in (8) for the discriminative model
and (22) for the generative case. We can therefore investigate the ability of the two
models both to predict the class labels of whole images and of their constituent patches.
The latter is important for object localization.

The overall correct rates of object recognition, i.e. image labelling, is given in Ta-
ble 1 for the VQ-S, VQ-ARD, linear discriminative (D-L), nonlinear discriminative
(D-NL) and generative (G) models.

Table 1. Overall correct rates.

VQ-S[VQ-ARD| D-L [D-NL[ G
80% | 92% |82.5%|87.2%|97%

It is also interesting to investigate the extent to which the discriminative and gen-
erative models correctly label the individual patches. In order to make a comparison in
terms of patch labelling we used 30 hand segmented images for each class. In Table 2
patch labelling scores for foreground (FG) and background (BG) for discriminative and
generative models are given. Various thresholds are used on patch label probabilities in
order to produce ROC curves for the generative model and the non-linear network ver-
sion of the discriminative model, as shown in Figure 8. We also plot the ROC curve for
the generative model when random initialization is performed to show the importance
of initialization for such models.



Table 2. Patch labelling scores.

Class |D-BG|D-FG|G-BG|G-FG
Cow | 99% | 17% | 82% | 68%
Sheep| 99% | 5% | 52% | 82%
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Fig. 8. ROC curves of patch labelling.

As already noted, the discriminative model finds a small number of highly discrimina-
tive foreground patches, and labels all other patches as background, whereas the gen-
erative model must balance the accurate labelling of both foreground and background
patches. Some examples of patch labelling for test images are given in Figure 9 for cow
images and in Figure 10 for sheep images.

There is a huge difference between discriminative and generative models in terms
of speed. The generative model is more than 20 times slower than the discriminative
model in training and more than 200 times slower in testing. Typical values for the
duration of a single cycle and the total duration of training and testing are given, for a
Matlab implementation, in Table 3.



Table 3. Typical values for speed (sec).

Model|Single train cycle|Total training | Testing

D-L 3 510 0.0015

D-NL 5 625 0.0033
G 386 15440 0.31

7 Discussion

In this paper we have introduced and compared a variety of local patch-based models
for object recognition. We have shown that automatic relevance determination allows
a system to learn which features are most salient in determining the present of an ob-
ject. We have also introduced novel discriminative and generative models which have
complementary strengths and limitations, and shown that the discriminative model is
capable of fast inference, and is able to focus on highly informative features, while
the generative model gives high classification accuracy, and also has some ability to
localize the objects within the image. However, the generative model requires careful
initialization in order to achieve good results.

One major potential benefit of the generative model is the ability to augment the la-
belled data with unlabelled data. Indeed, a combination of images which are unlabelled,
weakly labelled (having image labels only) and strongly labelled (in which patch labels
are also provided as well as the image labels) could be used, provided that all missing
variables are ‘missing at random’.

Another significant potential advantage of generative models is the relative ease
with which invariances can be specified, particularly those arising from geometrical
transformations. For instance, the effect of a translation is simply to shift the pixels.
By contrast, in a discriminative model ensuring invariance to the resulting highly non-
linear transformations of the input variables is non-trivial. However, inference in such a
generative model can be very complex due to the need to determine values for the trans-
formation parameters which have high posterior probability, and this generally involves
iteration. A discriminative model, on the other hand, is typically very fast once trained.

Our investigations suggest that the most fruitful approaches will involve some com-
bination of generative and discriminative models. Indeed, this is already found to be
the case in speech recognition where generative hidden Markov models are used to ex-
press invariance to non-linear time warping, and are then trained discriminatively by
maximizing mutual information in order to achieve high predictive performance.

One promising avenue for investigation is to use a fast discriminative model to lo-
cate regions of high probability in the parameter space of a generative model, which can
subsequently refine the inferences. Indeed, such coupled generative and discriminative
models can mutually train each other, as has already been demonstrated in a simple
context in [11].

One of the limitations of the techniques discussed here is the use of interest point
detectors that are not tuned to the problem being solved (since they are hand-crafted
rather than learned) and which are therefore unlikely in general to focus on the most
discriminative regions of the image. Similarly, the invariant features used in our study



were hand-selected. We expect that robust recognition of a large class of object cate-
gories will require that local features be learned from data.

Finally, for the purposes of this study we have ignored spatial information regarding

the relative locations of feature patches in the image. However, most of our conclusions
remain valid if a spatial model is combined with the local information provided by the
patch features.
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Fig. 9. Cow patch labelling examples for discriminative model (left column) and generative model
(right column). Black, gray and white dots denote cow, background and sheep patches respec-
tively (and are obtained by assigning each patch to the most probable class).



Fig. 10. Sheep patch labelling examples for discriminative model (left column) and generative
model (right column). Black, gray and white dots denote cow, background and sheep patches
respectively.



