
Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 1

Appendix to

Code Reviewing in the Trenches: Understanding

Challenges, Best Practices and Tool Needs

Michaela Greiler,

Christian Bird,

Margaret Anne Storey,

Laura MacLeod,

and

Jacek Czerwonka

June 22nd, 2016

Technical Report

MSR-TR-2016-27

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 2

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 3

Table of Contents

Abstract .. 4

1. Code Review Study .. 4

1.1 Ethnographic observations and interviews ... 4

1.2 Survey Results .. 6

2. Code Review Challenges .. 9

2.1 Challenges faced by code change authors... 10

2.2 Challenges faced by code reviewers ... 10

3. Best Practices ... 11

3.1 Author’s perspective ... 12

3.2 Reviewer’s perspective .. 13

3.3 Organizational perspective .. 14

4. Code Review Tradeoffs ... 15

5. Tool Needs and Opportunities .. 17

6. Conclusion .. 18

Appendix: In-Depth Survey Analysis.. 18

Demographics ... 18

Technical set-up .. 20

Development practices ... 20

Code reviews .. 20

Appendix: Survey Slices .. 29

Distributed teams versus collocated teams .. 29

Impact in the job evaluation .. 32

Appendix: Raw Results ... 36

Appendix: Complete Survey ... 39

Bibliography ... 50

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 4

Abstract

This technical report is a companion document to the IEEE Software article “Code

Reviewing in the Trenches: Understanding Challenges, Best Practices and Tool Needs”. It is

intended to give a thorough description of our study such that the article in IEEE Software

can focus on results and insights that are most relevant to practitioners. In this report, we

provide a more in-depth description of the methodology used to conduct our study of code

review at Microsoft (see 1. Code Review Study) and share more detailed and comprehensive

analyses of the survey results (see Appendix: In-Depth Survey Analysis and Appendix:

Survey Slices). We also present the survey that we deployed in its entirety (see Appendix:

Complete Survey), as well as many raw results (Appendix: Raw Results).

1. Code Review Study

Much of the previous research on code reviews focused on a retrospective analysis of code

review traces, captured by one or more tools (e.g., Codeflow (Bacchelli and Bird), Github

pull requests (Gousios, Pinzger and v. Deursen) or emails (Thongtanunam, Kula and Cruz))

who mostly conducted their research using open source projects. Less frequently, researchers

directly communicated with developers, although some examples include surveys (Gousios,

Pinzger and v. Deursen) (Gurbani, Garvert and Herbsleb). Mostly, those studies relied on a

retrospective memory of what occurred to understand the motivation and challenges with

code review. One notable exception is the research by (Bacchelli and Bird), as they

conducted interviews during code reviewing activity at Microsoft. This work provides

insights into motivations, outcomes and expectations that developers perceive about code

reviewing but only report some high level recommendations for improving code review

practices.

For our study, we wished to gain a more in depth understanding of the human and social

dimensions that drive the code review lifecycle in a large industrial context, to uncover

challenges experienced by developers and to reveal best practices that can be applied at

different stages of the lifecycle and to identify pitfalls that should be avoided. We also

wished to understand the broader constellation of tools and communication channels

developers rely on during the different code reviewing activities and to consider not just the

reviewers, but also the authors of the code to be reviewed, as well as other stakeholders such

as team leads. Finally, we wished to uncover contextual factors that may influence the

observed and reported best practices and tools used. As code reviewing is a socially situated

activity (involving many stakeholders and influenced by numerous social factors), we

followed an ethnographic approach (using observations and contextual interviews),

complemented with a broad survey to discern if our findings from the observations of a

select set of teams resonated with a much broader population of developers at Microsoft. In

the following, we provide more details on the ethnographic observations and contextual

interviews and the survey we conducted.

1.1 Ethnographic observations and interviews

We interviewed 18 developers from 4 different project teams and conducted observations

with four other teams, sitting with each of these four teams for approximately one week each

monitoring their code reviewing activities. The observations allowed us to witness

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 5

interactions concerning code review that would not be visible in the trace data captured by

the code reviewing tools, and to witness cultural and social issues that may be difficult or

even impossible to elicit through surveys and interviews. We further conducted semi-

structured contextual interviews with 18 different developers from the four observed teams

either while they were conducting a code review activity, or shortly thereafter (thus bringing

situated insights).

For example, in three instances while sitting with developers working on a code review, we

observed the conversations they had with teammates, asking questions to clarify their

understanding of the code change. These cases highlighted the challenges developers face in

trying to understand a code change, and the use of face-to-face communication as a quick

method to get content and information. In a similar case while observing Team 3, the code

reviewer couldn’t ask the author questions about the change because the author was working

from home for the day,

“If it was in person I would just ask him real quick because I don’t want to do look up this

code to go find out what does this do.... I could, but I would just ask him why does he need

it?” (Participant 15)

In another conversation, we observed a code reviewer and author having a 90+ minute

debugging session to walk through the edge cases and alternate approaches to a particularly

complex problem in a code review. While the reviewer was satisfied with the end result, the

author described the checked in solution as ‘duct tape’.

The teams we observed consisted of between 5 and 14 developers, working on newer

projects to legacy systems, which were a mix of products from internal use to external use.

Three of the four teams collaborated with either remote team members or contract

developers, and two of these collaborated with members in different time zones. Our

interviewees were a mix of new developers, senior developers and managers. During these

interviews, we asked questions about the developers’ roles in the code review (whether they

were the author or a reviewer), their experience during the review and their insights and

opinions on the overall process. This elicited responses about team member relationships and

their approaches to code reviewing.

“I have always the persona in my head of the Code Review Hammer. ‘I am the code review

guardian and no bug will get through my review and I’m gonna comment on

everything’…But like as you get to know the developers you normalize, and you get to know

what the developer’s strengths and weaknesses are.” (Participant 16)

Since the teams all used the same code review tool, CodeFlow – an internal and homegrown

tool of Microsoft that supports a diverse set of code reviewing practices – common practices

emerged. Change authors would create a code review, add a description with varying levels

of detail about the change, and then choose code reviewers to send the review to.

Typically authors added one or two required developers to the review, and then included

broader team mailing list as optional to give the rest of the team visibility. One interviewee

described how knowing who to add to the review can be a difficult task for new developers:

“Its actually really hard for new people. New people email out and are like ‘I’m modifying

this thing. Please help. I don’t know who owns this thing” (Participant 5)

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 6

The interviews and observations helped us understand how the teams approached code

reviewing, the policies used, as well as elicit human and social factors not obvious from

looking at trace data alone. In particular, we learned that code reviewing has a common

lifecycle across all the teams which involves (in varying order depending on the policy):

 Preparation of the code to be reviewed (by the author),

 Selection of reviewers (automatically or manually, the number of reviewers and the

requirements for who should be and how they should be selected depend on the

policy and tools used),

 Notification of the selected reviewers and other stakeholders (where the policy may

dictate who should be informed and how)

 Feedback provided by reviewers to authors and potentially other stakeholders (the

tools and practices that are used depend on the policy and/or team culture)

 Iteration between the author and a reviewer, which may involve extensive or little

communication between the two and further work by both the author and the

reviewer.

 Check-in of the reviewed code to the target system. Note that for some team

policies, code may be committed before review and in some cases review is an

optional activity.

In addition to insights about the variability about how each phase of review is conducted, we

gained initial insights into many challenges (technical and social) faced by authors and

reviewers, as well as insights concerning the policies they follow and the tools they use. We

used the findings from this phase of our study to design an in-depth survey which was sent to

a much broader set of developers.

In this survey, we asked about

 the demographics of the respondents,

 the team policies used for code reviews,

 the reviewing and communication tools used, as well as which informal

communication channels were used and why these were used,

 the motivations for conducting code reviews,

 challenges authors and reviewers faced,

 how diligent developers were at reviewing and the steps authors took before

submitting code for a review.

 We also inquired about a number of personal issues such as if developers felt they

were evaluated or judged based on their reviewing activity (or the reviewing of their

code), and how reviewing influenced their relationships with other developers.

We discuss some background findings from the survey next, while other insights are

mentioned throughout the remainder of the article. The interested reader can find the full

survey in (Appendix: Complete Survey), as well as additional in-depth analysis of the

survey responses in (Appendix: In-Depth Survey Analysis) and (Appendix: Survey Slices).

1.2 Survey Results

Participants for the survey were selected based on job title `Software Developer' and

`Software Developer in Test' and they were contacted via email. Participation was optional

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 7

(with two prizes of nominal Amazon gift cards awarded as a small incentive). The survey

was sent to 4300 developers and answered by 911 developers. First we share some details

about the survey demographics, occurrence and frequency of code review activities,

motivations for reviewing code, some background on different code reviewing policies used

at Microsoft and some findings how social interactions shape code review and vice versa at

Microsoft.

Demographics: Of the 911 developers, 87% of the respondents indicated that they had at

least 2 years in the software industry. Figure 1 below provides an overview of the survey

respondents demographics, and more information can be found in the Appendix. 70% had

more than 6 years experience in the software industry, and 40% had more than 10 years of

experience. Similarly, 72% of respondents worked for Microsoft for at least 2-5 years, and

43% for at least 6-10 years, and 17% had been at Microsoft for longer than 10 years. Most of

the respondents (80.3%) who practice code reviewing had at least 2-5 years of experience

with code reviewing, and 22% had more than 10 years of code review experience. A group of

respondents (18.6%) reported that they had 6 or more years of experience in the software

industry, but had been practicing code reviews for less than 2 years.

Figure 1: Demographics of Microsoft employees who responded to the survey.

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 8

Code reviewing occurrence and frequency: Most respondents indicate they review code at

least once a day (39%) with 21% reviewing multiple changes per day. Whereas, 36% review

changes a couple of times during the week. The remainder indicated they review changes

once during the week (12%). 13% indicated they had not done a review in the week before

the survey. Since our survey was focused on code reviewing, these percentages do not

accurately reflect how many developers conduct code review at Microsoft as perhaps

developers that do not do code review did not respond, but nevertheless it does demonstrate

it is a broadly occurring activity. Respondents indicated they author code (to be reviewed)

less often than they act as reviewer, with 17% authoring code to be reviewed at least once a

day. Almost half (48%) said they author code that needs review a couple of times per week,

and the rest authored code for review once during the week (21%). 14% did not author any

code to be reviewed in the week before the survey.

Motivations for code reviewing: The motivations behind code reviewing have been

reported by others (see (Bacchelli and Bird) paper for example). We found some similar

results. We asked the respondents to rank reasons that are important to them for performing

code reviews (see Figure 1). The top ranked reasons were code improvements and finding

defects, followed by increased knowledge transfer, and finding alternative solutions.

In the free text, several respondents added additional or slightly different reasons to review

code. One of the more frequent reasons given is to teach junior or less experienced

developers. Similarly, several respondents indicated that self-improvement and learning is

an important reason for code reviewing. Another reason is that code reviews allow the team

to develop a coding culture, to develop best coding practices and to avoid anti-patterns or

detect issues faster. Code reviewing therefore promotes coherent code bases. Similarly,

several respondents indicate the need to enforce a quality bar, coding standards and style

guidelines. Also, increasing maintainability and readability of the code was also

mentioned numerous times. Another reason is to build awareness among the team, to inform

others, as well as to get subject matter or area experts’ opinions. Some respondents said that

the effect of knowing that others look at the changes increases code quality and

accountability. Code review was used as a tool to perform design, security, architecture

reviews as well as a way to support test planning and verify test coverage.

Code Review Policies: Developers typically appreciate the value of code reviewing, with

94% of the survey respondents ranking it as either important (37%) or very important (57%).

As noted previously, teams at Microsoft use varying policies for conducting code reviews,

94% of our respondents reported that their teams require a code review before check- in. In

some cases, code review could be skipped (to avoid bottlenecks and thus increase code

velocity), in other cases any code that is committed must be reviewed and rigorously tested.

Other researchers have studied the impact of code review policies, specifically in open

source (Rigby, Cleary and Painchaud).

However, the respondents were divided between those who indicated that their team has

rules or policies around code reviews (54%) and those that had no explicit policies or rules in

place (46%). Interestingly, fewer remote respondents indicated that a code review is needed

before committing a code change (86.7% versus 94.1%), but this difference could be

explained by other contextual factors rather than merely distance.

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 9

Code Review tools: Through the survey, we asked which tools are used to support their

code reviewing activities. An internal tool, CodeFlow, was reported to be the most widely

used code review tool at Microsoft (see Figure 2). This tool is well explained in (Bacchelli

and Bird). While email is used by about 15% of developers, respondents also reported using

a variety of other communication channels for code review-related tasks: face-to-face

discussions, discussions at the whiteboard, video and voice chats, and IM. Email was the top

reported choice for scheduling meetings (71.9%) and coordinating with other teams (65.3%).

Face-to-face discussions were used by 61% to communicate issues that might reflect badly

on someone else. For a fast response, face- to-face was the preferred method by 43.6%, while

asking questions about the code being reviewed was done through the code reviewing tool

(CodeFlow, GitHub, VisualStudio Team Services, and Atlassian).

Figure 2: Percentage of survey respondents that reported using the various tools. The vast

majority use CodeFlow (89%) and/or the CodeFlow plugin for Visual Studio (13%).

The social shaping of code reviewing: We asked participants a variety of questions related

to the social interactions that shape code reviews. When authoring a code review 84.9% of

respondents agreed or strongly agreed that they appreciated the feedback provided by

reviewers. Respondents reported that having others review their changes improved their

confidence (83.3% agreed or strongly agreed) and that they felt that they were more

thorough because they knew that their work would be reviewed (75.9%). Respondents also

reported that reviewing the changes of others improved their confidence (73.1%). When

asked about whether they worry about others judging them or whether the personal

relationships impact the code review process our respondents were split. 34% of the

respondents indicated that they worry about being judged, and 31% indicated that their

personal relationships impact their code review process. These responses demonstrate that

the inter-personal relationships between developers have impact on the code review process,

and should not be overlooked. We discuss later the importance of organizations taking these

findings into consideration.

2. Code Review Challenges

Our survey respondents and the developers we interviewed and observed reported a number

of challenges when requesting or performing code reviews. We detail these challenges from

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 10

two perspectives: an author of a change requesting a review and a change reviewer providing

feedback. Many of these findings also reinforce the challenges reported by other researchers.

Organizational challenges are discussed in Section 4, as they mainly concern tradeoffs.

2.1 Challenges faced by code change authors

The first challenge faced by the change authors is receiving feedback on their code in a

timely manner. This was also listed as the top code reviewing challenge from respondents to

the survey.

“Usually you write up some code and then you send it out for review, and then about a day

later you ping them to remind them... and then about half a day later you go to their office

and knock on their door.” (Participant 7)

In addition, our participants reported that it was difficult finding appropriate or willing

reviewers. Seven interviewees explained that knowing who to ask for review is challenging

as well. Thongtanunam et al. also reported challenges faced finding expert reviewers

(Thongtanunam, Kula and Cruz).

Another challenge mentioned by five developers we interviewed is obtaining insightful

feedback on their code. The interviewees mentioned that reviewers sometimes focus on

insignificant details rather than looking for larger issues.

“There is a lot of style [comments] a lot of the time, which I find annoying. And people will

be like, Maybe you should use this name?” (Participant 7)

When preparing for a review, interviewed authors were troubled by how to best document

changes for review. It was interesting that only 26% of respondents reported writing

descriptions of the change when they prepared code for review, but that many more

recognize it should be done more often and more thoroughly.

Some interviewees noted that receiving a rejection can be harsh and that they prefer being

given a reason why a change is rejected. Others also noted that the feedback and discussion

around code review was ephemeral and not easy to refer to after the fact, especially if they

use communication channels such as face-to-face rather than a code reviewing tool that

maintains a history of discussion. Traceability of review activity was also reported as a

challenge by (Rigby and Bird).

Richer channels may be preferred when trying to reach consensus about next steps though

some discussed how it can be a challenge to manage multiple communication channels.

Furthermore, some of our interviewees also stated that available tooling slows down code

velocity and tools should be modified to better suit the team’s context, workflow, and policy.

2.2 Challenges faced by code reviewers

Developers reviewing code changes made by their teammates struggle with large reviews (a

challenge also reported by others (Barnett, Bird and Brunet) (Rigby, Cleary and Painchaud)

(Tao, Dang and Xie). A team lead we interviewed explained how code review size was an

issue for him:

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 11

“Yesterday I got a huge one that took at least an hour to even look over. Due to the sheer

size, it’s really hard to see what's happening.'' (Participant 10)”

 Additionally, our interviewees struggle with finding time to perform all the code

reviews requested of them, as well as understanding the code's purpose, understanding

the motivations for the change, and understanding how the change was implemented.

For code changes that are difficult to understand, one developer expressed frustration around

the value of his review:

“It's just this big incomprehensible mess... then you can't add any value because they are just

going to explain it to you and you're going to parrot back what they say.'' (Participant 13)

 Related to comprehension, code reviewers reported challenges with finding relevant

documentation about changes. This was brought up by 11 interviewees and also recognized

in the survey. One interviewee provided his thoughts on what a good description of a change

is:

``Typically [a good code review] has a good description of what the problem was, what the

solution is, and if it's a big change, it has [documentation explaining] what it's doing and

how it's integrated with everything else.'' (Participant 4)

 From our interviews, we also learned that understanding the history of comments

was an issue. Other challenges reported by some survey respondents included a lack of

training on the review process itself and that their reviewing activities were perceived as not

being valued enough. Some also discussed that they lacked insights into how their code

review activities impact job evaluations.

3. Best Practices

Our interviewees and respondents also shared ideas on how some of the challenges they

discussed with us could be avoided or mitigated. To get a taste for the original data we

distilled the practices from, see Figure 3 to see a quote for each perspective.

We summarize their responses into a set of suggested best practices categorized by practices

for authors of code changes, code reviewers, and practices that the team or an organization

could follow. Many of these best practices are also founded in the related literature (and thus

are found in other development contexts including open source projects). Where appropriate,

we reference existing literature to strengthen the case for the best practice. Note, we do not

suggest that these practices will apply to all development contexts nor to all developers.

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 12

Figure 3: Excepts of best practices from “the trenches".

3.1 Author’s perspective

For each task from preparing a change, over receiving feedback until submission of a change,

authors can keep in mind the following best practices:

While preparing a change for review, authors should:

 Be conscientious and read thoroughly through changes before sending them out to

be reviewed. Often seeing changes in the code review tool which visually presents

them differently, makes it easier for the author to identify simple issues e.g. related to

coding style. This best practice was also suggested by (Cohen, Brown and DuRette).

 Aim for small, incremental changes, and easy to understand code changes.

Incremental changes are seen as especially important for novices whose

understanding of the codebase can still be superficial. (Rigby, German and Storey)

also noted this practice was followed in a number of open source projects.

 Cluster related changes and submit the change including context for the

reviewers.

 Document the motivation, annotate and describe the change while providing

reviewing directions to the reviewer. This practice was also suggested by (Bacchelli

and Bird).

 Test the change before sending it out for review and if no test exists, create a test

for the change.

 Run automated tools to check for formatting and low level issues (that can be

caught through simple code analysis).

 Know when to skip a review, check the code review policy (if one exists) and

confirm that the type of change should be sent out for review. Based on interviewees

and survey respondents, typical reasons for skipping a review include small or trivial

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 13

changes that did not change the logic of the code, such as commenting or formatting

issues, or renaming of local variables and stylistic fixes.

While selecting reviewers, authors should:

 Decide how many reviewers should be selected consulting a policy if one exists.

Similar to the findings in Rigby et al., two of the leads we interviewed explicitly

recommended two reviewers was their ideal.

 Select appropriate reviewers with the right expertise, or who are in charge of the code

maintenance.

 Allow reviewers to volunteer to perform a review (if consistent with other

policies). (Rigby, German and Storey) also suggested this best practice noting it was

important for a number of open source projects.

 Carefully select people to notify who will benefit from being exposed to this code

change and resulting discussion, i.e. engineers new to the project or teams heavily

dependent on the project or the change being made. Also decide who should not be

informed. Senior engineers especially are asked to participate in many reviews and

lessening their reviewing burden would be advantageous,

 Notify potential reviewers in advance that a challenging or unexpected review may

be forthcoming, earning their buy-in for such cases. If necessary, explain the change.

While responding to a review, authors should:

 Show gratitude to the reviewers and carefully consider their feedback in a

respectful manner.

 Promote dialog with the reviewers. Use rich communication channels to discuss the

reviews in progress if necessary, e.g., large or more complex changes.

 Track and confirm problems are fixed after receiving feedback.

Author best practices

While

preparing

a change

for review

 Be conscientious and read thoroughly through changes

 Aim for small, incremental changes, and easy to understand code

changes.

 Cluster related changes and submit the change including context

 Document the motivation, annotate and describe the change

 Test the change, if needed create tests for the change

 Run automated tools

 Know when to skip a review

While

selecting

reviewers

 Decide how many reviewers to include

 Select appropriate reviewers with the right expertise

 Allow reviewers to volunteer to perform a review

 Carefully select people to notify

 Notify potential reviewers in advance

While

responding

to a review

 Show gratitude to the reviewers

 Promote dialog with the reviewers

 Track and confirm problems are fixed

Table 1: A summary of author code reviewing best practices from Section 3.1.

3.2 Reviewer’s perspective

Also for reviewers several best practices should be considered. The goal of a good reviewer

is to provide constructive feedback to a change. As one of the interviewees explained,

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 14

While conducting the review, reviewers should:

 Set dedicated but bounded time aside for reviewing, taking enough time to

understand the code.

 Review frequently; fewer changes at a time but more often. This was also suggested

by (Rigby and Bird).

 Provide feedback as soon as possible which will help with code velocity and

capitalize on people's recent memory of the change.

 Focus on core issues first. The need to avoid emphasizing small problems at the

expense of the design or logic problems was also discussed by Rigby et al. (Rigby,

German and Storey)

 Use a checklist for the review, ideally one that is customized for the project's

particular context. Cohen et al. (Cohen, Brown and DuRette) also suggested this best

practice following their case study of code review at Cisco.

When giving feedback on the review, reviewers should:

 Choose communication channels carefully. Richer channels such as face-to-face

meetings may be preferred for contentious issues or to review complex code that

needs high degree of interaction to describe and understand.

 For non contentious or sensitive issues, use tools that provide traceability.

 Be aware how to give constructive and respectful feedback.

 Justify and explain the reason for rejecting a change.

Reviewer best practices

While conducting the

review

 Set dedicated but bounded time aside for reviewing,

 Review frequently

 Provide feedback as soon as possible.

 Focus on core issues first.

 Use a checklist for the review

When giving feedback on

the review

 Choose communication channels carefully

 For non-contentious or sensitive issues, use tools that

provide traceability

 Give constructive and respectful feedback

 Justify and explain the reason for rejecting a change

Table 2: A summary of reviewer code reviewing best practices from Section 3.2.

3.3 Organizational perspective

How an organization (whether a product team or company) sets the stage for reviewing

activities, and how it supports and values code reviewing, is critical to the success of code

reviews. In the following are emerged best practices for the organization, once again

stressing that these may not apply to all development contexts.

To maximize the value of code reviewing, a review policy that promotes the following

practices should be established:

 Build a positive review culture that sets the tone for feedback style. The importance

of reciprocity in the review process was also discussed by (Petre and Wilson) when

they studied how scientific programmers review code.

 Ensure time spent reviewing is ``counted'' and ``expected'' and that it is seen as an

important part of the development life cycle.

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 15

 But also watch for negative impacts of employee assessment or incentives that

may be based on or linked to code reviewing activity. While promoting engineers

who spend considerable effort reviewing their peer's code is to be encouraged,

penalizing engineers who do not (often with a good reason), will lead to gaming the

metrics.

 Ensure appropriate communication channels are used that match the desired

reviewing culture and that tools are widely adopted and integrate well with other

tools. Keep in mind the needs of distributed teams. The need for richer

communication channels was noted by (Bacchelli and Bird), whereby others have

noted the need for light-weight tools (Barnett, Bird and Brunet), (Cohen, Brown and

DuRette).

 Ensure the automated tools support the desired reviewing process: tools may

enforce or help with certain steps such as finding reviewers, automating feedback. It

is important that developers understand how automated tools are used and how they

relate to explicit or informal policies.

 Develop and constantly reflect and revise on code reviewing policies and

checklists. The organization should measure the impact of its policies and tools used

on its overall output (speed of development, development efficiency, product quality

and employee satisfaction).

 Discovered bottlenecks should be resolved, e.g. policy can help reduce notification

overload or define which reviews can be skipped.

 Ensure the reviewing process is free of bottlenecks and leads to fast turnaround.

The policy can help decide which reviews may be skipped (some reasons to skip were

discussed above).

 Organizations should have a process in place for identifying non appropriate or

aggressive communication.

 Organizations should ensure that there is sufficient training in place for code

reviewing activities and associated tools. One approach here is for junior developers

to work alongside senior developers during code review. (Petre and Wilson) also

noted the importance of training.

Organizational best practices

 Build a positive review culture

 Ensure time spent reviewing is ``counted'' and ``expected''
 Watch for negative impacts of employee assessment or incentives

 Ensure the automated tools support the desired reviewing process
 Develop and constantly reflect and revise on code review processed

 Ensure the reviewing process is free of bottlenecks and resolve discovered

bottlenecks

 Watch for non appropriate or aggressive communication

 Ensure that there is sufficient training in place for code reviewing activities

Table 3: A summary of organizational best practices from Section 3.3

4. Code Review Tradeoffs

The practices suggested above may not be applicable in all contexts and some even conflict

with each other. All development teams face resource, time, and scope constraints that

influence the choice of workflow and practices used. We discuss some of these trade-offs

here.

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 16

When faced with time constraints, it may be necessary to choose speed of the review over

rigor. For a blocking change, a code review should be done quickly to avoid impacting other

developers' work, but only if the change does not impact a critical or consistently buggy part

of the system.

Rigid policies, such as always requiring two sign-offs or execution of a complete test suite,

can lead to long delays in committing code. Developers, aware of the process burden, might

avoid making the change, or will bundle it with others, causing reviews to become larger,

less coherent, and harder to review. However, lax or unclear policies might reduce the value

a team gets from code reviews.

Several trade-offs have to be considered when choosing practices regarding reviewer

selection.

Getting feedback from experts and senior developers must be balanced with several

things. First of all, it may mean fewer opportunities for junior team members to learn and

to be mentored or fewer opportunities for knowledge dissemination while also distracting

the senior developers from directly working on other coding tasks.

Furthermore, requiring expert feedback might also create delays due to a lack of

availability of those reviewers. Thus, requesting less experienced reviewers can increase

review speed and balance the team's workload.

In terms of whether reviewers volunteer or not, reviewers who volunteer may be motivated

to do a good job but in some cases it may be more efficient to assign the review to ideal

experts than waiting for experts to self-select.

It may be prudent to trade traceability of review activities with richer communication

channels. Particularly tense situations call for face-to-face discussions but these discussions

are hard to capture and rarely documented. In some situations, recording every decision

might be required for legal compliance.

The policy and tools promoting awareness can lead to notification overload. A developer

may want to notify a large group about a review, but overload leads to notifications being

ignored.

The use of sophisticated tooling may save or waste time. Tools can automate some tedious

tasks (e.g., check code formatting), but may incur huge costs for configuration and

familiarization, or even slow down processes (e.g., handling false positives of static analysis

tools). Automation in the tool chain increases consistency but may lead to a feeling of loss of

control.

The only way to address these trade-offs is to be aware of them, to search for additional

trade-offs, and to periodically evaluate not just the workflow's velocity and code quality, but

also the impact the practices have on developer satisfaction, personal goals, and on team

culture.

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 17

5. Tool Needs and Opportunities

Tools play an important role in code review. (Rigby, German and Storey) studies

investigated how email is used for broadcasting and conducting reviews; (Cohen, Brown and

DuRette) studied how Code Collaborator enforces certain practices and collects metrics at

Cisco; (Bacchelli and Bird) report how CodeFlow is used at Microsoft; and (Gousios,

Pinzger and v. Deursen) and (Tsay, Dabbish and Herbsleb) report how pull requests support

code review in open and closed source projects. These studies also touch on the fact that

additional tools or communication channels are used in the code review process, although

how these other channels are used is not investigated in depth.

At Microsoft, the most commonly used tool is CodeFlow. In the course of our study,

participants shared with us their needs with regards to code review tools. Not surprisingly,

respondents value ease of use and performance of a tool. Integration with other services

and tools to reduce friction and help with the reviewing effort were also requested. In

particular, integration with static analysis, testing and continuous integration tools was

mentioned. Further, participants ask for integration of coding style plugins and search as well

as features that ease editing of code during review and the ability to execute code that is

being reviewed. Features were requested to aid in describing a change to reviewers such as

ability to create a code change narrative, attach enough auxiliary information to the review to

provide context, support discussion during review, integration with note-taking and

documentation tools, where architecture may be described, templates for common code

review comments. In general, seamless integration with external communication tools that

are also used to support code review activities is needed. Participants wish for

communication tools that integrate well with the code reviewing tool, supporting informal

communication and building awareness. Features were also requested to help manage

reviews with better notifications and tracking of the lifecycle of the feedback provided.

Although this was not requested explicitly, we noticed the importance of training and

increasing awareness because many of the requested features already exist in the tools used.

The research community has previously recognized improving tool support as an important

way to address the code reviewing challenges. Our respondents also brought up many of the

features previously reported:

 enforce a reviewing workflow to help engineers follow a team practice such as

desired sign-off criteria or checklists (Cohen, Brown and DuRette), (Rigby, Cleary

and Painchaud);

 help find right experts to review changes (Thongtanunam, Kula and Cruz);

 show test coverage of code under review (Morales, McIntosh and Khomh);

 cluster changes into groups of related entities for easier comprehension (Barnett,

Bird and Brunet);

 automate feedback when consistent patterns emerge thus freeing reviewing time

(Bacchelli and Bird);

 provide support for traceability of reviews (Bacchelli and Bird);

 provide dashboards to show metrics and pending reviews (Rigby and Bird).;

 reduce and manage more pertinent notifications (Rigby and Bird).; and

 support integration with other communication tools (Rigby and Bird).

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 18

We expect to see more elaborate tools becoming available for practitioners and open source

developers in the near future. However, some of the trade-offs we mentioned above should

be considered when such tools are selected or deployed. The tools will shape the practices

that are used and vice versa. Studying impact of the tools on the workflow is paramount.

6. Conclusion

In this article, we reported on a large industrial study where we closely observed developers

during code reviewing to bring situated insights, strengthened by a large follow-up survey.

We relate our findings to other literature, bringing some order to the widespread suggestions

published so far. We hope that these combined insights are useful to both practitioners and

researchers and will improve future code reviewing activities.

Appendix: In-Depth Survey Analysis

This document details the outcome of a survey concentrating on code review practices and

communication during code reviewing. The survey was conducted by Laura MacLeod,

Michaela Greiler, Chris Bird and Margaret-Anne Storey and was online in March 2015. 911

respondents shared their opinions about code reviewing, the challenges and its benefits. This

section highlights aggregated data of all respondents who indicated to practice code

reviewing.

Demographics

Job Title. Most of the respondents (~75%) are either Software Engineers (~20%), Software

Engineers 2 (~34%) or Senior Software Engineers (~21%). The rest consist mostly of

Principal Software Engineers, SE Leads, SE Managers as well as Program Managers (2

Principals). Details are illustrated in Table 1.

Table 1 Job title of respondents to the code review survey

34.10%

21.00%

20.10%
5.20%

3.80%

3.80%

3.00% 2.40% 2.10%

1.70%

1.50%

1.30%
Job Title

Software Engineer 2 Senior Software Engineer

Software Engineer All Other

Principle Software Engineer Program Manager 2

Senior Software Engineering Lead Principal Software Engineering Lead

Principal Software Engineering Manager Other (enter below)

Principle PM Manager Principal Program Manager

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 19

Most of the managers (~82%) indicate to regularly participate in code reviews. Only few of

the respondents manage other mangers (~7%).

The average team size is around 13 people, and the respondents indicate to work directly

with 7 people on average.

Experience. 87% of the respondents indicate that they worked at least 2 years in the software

industry. 70% more than 6 years, and 40% indicate to have more than 10 years of experience.

Similar, 72% indicate to work for Microsoft for at least 2-5 years, whereby 43% work at MS

for at least 6-10 years. 17% indicate to work at MS longer than 10 years.

Most of the respondents (~80.3%) who indicate to practice code reviewing have at least 2-5

years of experience, whereby almost 22% indicate more than 10 years of code review

experience.

Interestingly, many of the respondents who report not to practice code reviews are managers

with a long experience in the industry.

Co-location. Most teams are completely co-located (73%). Only 11% of the respondents

indicate that less than half or none of their team mates are close enough to get a coffee with

them.

When it comes to the people respondents interact with during code reviews, we see that code

review teams are more distributed than the actual team of the respondents (see Table 2 and

Table 3). Still, most respondents indicate to be collocated with at least half of their peers who

they interact on code reviews (86%), whereby roughly half of all respondents have all their

peers close enough to get a coffee with them (48%). Only 4% indicate to have none of their

peers they interact during code review near them.

Table 2 Co-location of team: Of the people you work with

on a daily bases what percentage of those people work

near you?

Table 3 Table 2 Co-location of code review team: Of the

people you work with on code reviews what percentage of

those people work near you?

3, 3% 7, 7%

17, 17%

73, 73%

None Less than half More than half All

4, 4%
11, 11%

37, 37%

48, 48%

None Less than half More than half All

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 20

Technical set-up

SourceDepot is still the predominant version control system within the selected population

(64%), followed by TFS (41%), and Git with 29%. Other version control systems only

account for 4%.1

Code review tool usage. A large majority of the respondents (89%) indicate to use

CodeFlow as their code reviewing tool. This is followed by Email used as code review tool

(15%) and the CodeFlow extension (13%) in Visual studio. Details are illustrated in Table 4.

In the category of Other: 2% use Collaborator from SmartBear, and 5% use one of the 30

other named tools.

Table 4 Code review tool usage

Development practices

A majority of the respondents indicate to use an agile development process (77%) or to

practice Scrum (69%). Also, 68% indicate to use automated tool support for code checkins

like Checkin Wizard.

On the other hand, only 16% indicate to practices pair programming, and even fewer (8%)

say they have a formal training on code review practices.

Code reviews

Frequency of performing code reviews. Most respondents indicate to review changes of

others at least once a day (39%), whereby 21% review even multiple changes per day. The

other large group indicates to review changes a couple of times during the week (36%). The

rest indicated to review changes once during the week (12%), or that they did not act as a

review during the last week (13%).

Naturally, respondents indicate to author code reviews less often than they act as reviewer.

Here, 17% indicate to author code reviews at least once a day, and of those only 5% says

they author several code reviews per day. Almost half (48%) say they author code reviews

1 Percentages don’t add up to 100% as many respondents use more than one source control

solution.

89

13
6 6 5 1

15
4 2 7

0
10
20
30
40
50
60
70
80
90

100

CodeFlowCodeFlow
plug-in in

Visual
Studio

Code
review

feature in
Visual
Studio

GitHub
pull

requests

VSO pull
requests

Atlassian Email Odd No tool Other

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 21

couple of times during the week, and the rest either indicates to have authored a review once

during the week (21%) or that they did not act as a review author in the last week (14%).

Importance of code reviews. 88% indicate that code reviewing is seen by their team as

important or even very important (43%). Only 3% say that their team perceives code review

as unimportant or very unimportant.

If they reflect on their own attitude towards code review, respondents paint an even more

positive picture. 94% of the respondents indicate that they perceive code reviewing as very

important (57%) or important (37%). Only 6% are either neutral (3%) or perceive code

review as unimportant or very unimportant.

Policies. It became very clear that most teams require a code review before a code change

can be checked in (94%). Also, 84.1% indicate that they have mechanisms in place to keep

team members aware of each other’s code reviews. On the other hand, respondents are split

between those that indicate that their team has rules or policies around code reviews (54%)

and those that indicate they have no policies or rules in place (46%). Similar 52% indicate

that their team reflects on their code review process, and 48% say they do not.

Code review impact. A large portion of the respondents indicate that the do not know or

haven’t thought about to what degree their performance in code reviews impacts their job

evaluation (42%) (see Table 5). Also, 29% indicate this has a minor impact, and even 17%

think it has no impact on their job evaluation. Only 12% think it plays a large impact for their

job evaluation.

Table 5 Perceived impact of code reviewing on job evaluation

Reasons for code reviews. The respondents had to rank several reasons that are important to

them for performing code reviews as listed in detail in Table 6. The top ranked reasons were

code improvements, followed by increased knowledge transfer, and finding alternative

solutions.

Table 6 Ranked reasons for code reviewing

11.96%

28.84%

17.13%

42.07%

Impact of CR on job evaluation

A large impact A minor impact No impact I don't know or I haven't thought about it

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 22

Reason for code reviewing Score* Overall Rank
Code improvement 2835 1
Find defects 2749 2
Increase knowledge transfer 1528 3
Find alternative solutions 1199 4
Improve the development process 979 5
Avoid breaking builds 957 6
Build team awareness 790 7
Lead to shared code ownership 717 8
Team assessment 235 9

Score is a weighted calculation. Items ranked first are valued higher than the following ranks, the

score is the sum of all weighted rank counts.

In the free text, several respondents added additional or slightly different from the pre-

defined reasons to review code. One of the reasons that came up most often for performing

code reviews is to teach junior or less experienced developers, and let them learn from more

experienced developers on the team. Slightly different but on the same track, several

respondents indicated that self-improvement, learning and improvement of coding skills is an

important reason for code reviewing. Another often named reason to perform code reviews is

that code reviews allow the team to develop a coding culture, be exposed to what is seen as

best practice within the team, and to learn new coding patterns and to avoid anti-patterns or

detect issues. Code reviewing therefore allows to build coherent solutions and code bases.

Similarly, several respondents indicate the need to enforce a quality bar, coding standards,

enforce clean code and style guidelines. Also, increasing maintainability and readability of

the code was also among the often appearing answers.

Another often expressed reason is to build awareness among the team, inform others as well

as to get subject matter or area experts’ opinions. Therefore, code reviews also help to put the

change into perspective, i.e., to get the bigger picture. Some respondents said that the effect

of knowing that others look at the changes increases code quality and accountability.

Code review as a tool to perform design, security and architecture reviews and therefore

improve the code with respect to those areas was also mentioned. Also testing, especially

verifying test coverage and supporting test planning was mentioned as reasons for code

reviews. Few respondents said that code reviewing helps them to transition from SDETs to

SEs.

Skipping code reviews. More than 400 respondents answered this free text from question on

when code review can be skipped. Around 5-7% indicate in their answers that code reviews

should never be skipped. During the analysis of the answer for reasons to skip code reviews

several common opinions emerged. First, the most common reason respondents believe code

reviewing can be skipped is for small, trivial or minor changes. The definition of small or

minor deviates obviously, but a common understanding of a small, trivial or minor change is

that it does not change the logic of the code, but addresses things like typos in comments,

formatting issues, renames of local variables, removal of dead code, changes to string literals

or style issues. Others are more liberal with their definition of small and mainly go by lines

of code touches. Here very often respondents indicate that one line changes, or changes

touching only few lines can be checked in without prior code review. Others think that such

small changes should be code reviewed by over the shoulder reviewing, so less formally than

through a tool chain.

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 23

Another very frequent occurring reason for skipping code reviews are build breaks. Here,

some respondents explicitly mention the time pressure of the build break as an additional

factor for permitting skipping the code review, whereby others such focus on the size of the

fix (i.e., if it is small or well-defined then skipping a CR is okay). Also quite a few

respondents talk about emergency situation, including build breaks, hot fixes during odd

times or issues with live sites where the time aspect has priority and code reviews can be

skipped. Some indicate to do after the fact code reviews for changes that are related to time

critical issues.

Integrations, FIs/RIs, merges without conflicts or code moves appear among the changes

that many respondents indicate as valid for skipping code review.

Also several respondents say that configuration changes do not necessarily have to be

reviewed. Here, some indicate general configuration changes, whereby others explicitly state

that the changes to the configuration must be small and/or well understood.

Other situations that several respondents feel permit skipping code review are changes to

code that is non-production code, private code, prototypes, internal tools or test code.

Few also talk about low-priority parts of the code base, and that changes in those areas might

skip code review.

Also code that has been developed during pair programming can be permitted into the code

base without additional code reviewing.

Another situation which permits skipping code review in the opinion of several respondents

is if the author of the change is the subject matter expert or the only person

knowledgeable in the area or with this part of the code base. Slightly related, some

respondents think that code review can be skipped if the change is small and the developer is

confident that the change is low risk, safe and does not break anything or that the fix is well

known.

Another category of changes that allow skipping code review has to do with the type of the

change. Many respondents indicate that non code changes (like changes to binaries,

packages, markup or data) can skip a code review. A few respondents also think version

number changes, script changes, changes related to logging or build can be skipped. Also

some indicate that changes to the UI that cannot break the build can be skipped during code

review.

Changes that only roll back or revert a previous change can also be skipped according to

the opinion of some respondents.

Some respondents talk about that changes that have been discussed before with team

member or the team lead or that were reviewed otherwise can skip the formal code review

process.

Also time constraints like deadlines and tight schedules might lead to a skip of code

reviewing practices.

Less frequent named reasons for skipping code reviews are if the code is well covered with

and verified by automated tests, if the change happens in legacy code, the code is the same

between several platforms or branches.

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 24

Very few indicate to only perform code reviews for very complex or large changes.

Challenges. The five main challenges developers face during code reviewing are receiving

feedback in a timely manner, the review size, managing time constraints and understanding

the code’s purpose (see Table 7). Other higher ranked challenges are understanding the

motivation for the change, obtaining insightful feedback and disputing minor issues while

more serious ones are overlooked.

Table 7 Ranked challenges faced during code review

Challenges faced during code reviewing Score* Overall Rank

Receiving feedback in a timely manner 1944 1

Review size 1406 2

Managing time constraints 1250 3

Understanding the code's purpose 1243 4

Understanding the motivations for the change 962 5

Obtaining insightful feedback 917 6

Bikeshedding (disputing minor issues while more serious

ones are overlooked)

883 7

Understanding how the change was implemented 687 8

Maintaining code quality 686 9

Reaching consensus 548 10

Finding relevant documentation 501 11

Managing multiple communication channels 315 12

Identifying who to talk to 286 13

Score is a weighted calculation. Items ranked first are valued higher than the following ranks, the

score is the sum of all weighted rank counts.

When it comes to acting as a reviewer, the majority of respondents (73%) indicate that

reviewing changes of others improves their confidence as programmers, as can be seen from

Table 8. Also 80% believe that they are thorough when looking through changes of others

and 89% say that the feel their feedback is respected and that the author considers the

feedback.

A less clear picture emerges from answers regarding relationships and judgmental behavior

during code reviewing. Here, around half of the respondents (53%) indicate that they do not

worry about others judging their abilities as programmers during reviewing. 20% are neutral,

22% agree and 5% strongly agree that they worry about having their abilities judged during

code reviewing.

Respondents are split between whether or not the personal relationships with those involved

in review have an impact on the code review. 44% believe this is not the case, whereby 34%

believe that their personal relationships do impact code reviews, and 22% are undecided2.

Table 8 Acting as a reviewer: Perception results

2 Detailed results about respondents’ perceptions as reviewer can be found in the appendix

Table 20 Acting as a reviewer: Detailed perception resultsTable 20.

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 25

Strongly disagree

or disagree Neutral

Agree or strongly

agree

When reviewing, I worry about others judging

my abilities as a programmer. 52.50% 20.20% 27.40%

It improves my confidence as a programmer

when I review the changes of others. 6.00% 21.00% 73.10%

I am thorough when I review the work of

others. 2.20% 18.00% 79.80%

As a code reviewer I feel that my feedback is

respected. 1.70% 9.60% 88.70%

My personal relationships with those involved

in a review have an impact on my code review. 43.70% 22.40% 33.80%

I am confident that the author considers my

feedback. 2.10% 9.30% 88.70%

As a review author, almost all respondents (96%) indicate that they appreciate the feedback

of the reviewers, as depicted in Table 9. Also, the majority of the respondents claim to

express appreciation to reviewers (85%), indicate that reviewing improves their confidence

(83%) and that they learn a lot when others review their code (78%). Also, 76% indicate that

they are more thorough because they know that the code will be reviewed. On the other hand,

a less clear picture emerges when respondents are asked about whether they worry about

being judged by others and whether or not the personal relationships impact the code review

process. Here, 34% of the respondents indicate to worry about being judged, and 31%

indicate that the personal relationships impact the code review process3.

We can observe that respondents indicate that the appreciate feedback they receive as authors

more positive, as they perceive that their feedback is respected during performing code

reviews. Also as review authors, respondents indicate a slight higher concern about

judgments of their skills then when acting as reviewers. Nevertheless, the observed

differences are indeed small.

Table 9 Acting as an author: Perception results

Strongly disagree

or disagree Neutral

Agree or strongly

agree

As a review author, I appreciate the feedback I

receive from reviewers.
0.70% 3.20% 96.10%

When others review my changes, I worry about

them judging my abilities as a programmer.
44.00% 22.50% 33.50%

It improves my confidence when others review

my changes
2.80% 13.90% 83.30%

3 Detailed results about respondents’ perceptions as authors can be found in the appendix

Table 21.

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 26

I feel that I am more thorough because I know

my code will be reviewed.
8.90% 15.20% 75.90%

My personal relationship to reviewers has an

impact when I author a code review.
42.00% 27.30% 30.70%

I express thankfulness to those who review my

code.
3.10% 12.00% 84.90%

 I learn a lot when other developers review my

code.
3.90% 17.60% 78.40%

Additional resources. To gather additional information relevant to code reviews,

respondents indicate to use the following three resources most often: contact the review

author (49% often, 10% always, 33% sometimes), look at the source code history in the

repository (32% often, 39% sometimes and 7% always), and look at source code not in the

code review (40% sometimes, 30% often, and 6% always).

On the other hand, the following three resources are not used or are used sparingly: 1)

mailing lists (43% never, 29% rarely), 2) style guides (29% never, 33% rarely) and 3) design

documentation (27% never, 33% rarely). More details can be found in the appendix in Table

22.

Table 10 Additional resources used during code review

Resources

Never or

rarely Sometimes

Often or

always

Bug reports 49.00% 32.10% 18.90%

Contacting the review author 8.00% 33.20% 58.90%

Contacting subject experts (besides the author) 47.10% 35.30% 17.70%

Source code not in the review 23.90% 40.20% 35.90%

Design documentation 60.00% 27.30% 12.60%

Mailing lists 71.70% 20.50% 7.80%

Style guides 62.00% 25.80% 12.10%

Source code history in the repository 23.10% 38.50% 38.40%

Communication channel choices per task. For getting a fast response, F2F discussions

(44%) and IM (38%) are the tool of preference for the respondents. Details are shown in

Table 11. Especially if there are issues that might reflect badly on someone, F2F

communication is preferred by 61% or the respondents compared with all other options.

Whereby the code review tool is the tool of choice ([38%-48%]) for asking questions, either

about the code change, its history or the reason for the change. The second ranked choice for

asking questions is the F2F discussion [24-26%]. To reach a consensus, negotiate a change or

find alternative solutions, respondents chose to use F2F discussions ([33-36%]) as well as the

code review tool ([27-38%]). Email is the tool of choice for coordination tasks such as

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 27

scheduling a meeting (72%) or coordinating with other teams (65%). Voice or video chat as

well as telephone are almost never used by respondents.

Table 11 Communication channel choice for certain tasks

Code

review

tool

F2F

discussi

on

F2F

discussi

on at a

whitebo

ard

Video or

voice

chat

Telepho

ne
Email IM

Respons

es

Get a fast response 7.20% 43.60% 3.70% 1.80% 2.00% 4.20% 37.60% 764

Explore alternative

approaches
27.30% 32.50% 23.60% 1.20% 0.30% 11.10% 4.10% 758

Communicate

issues that may

reflect badly on

someone

8.60% 61.00% 5.70% 1.10% 0.50% 12.00% 11.20% 753

Reach a consensus 33.60% 32.80% 14.30% 2.20% 0.80% 12.20% 4.10% 760

Schedule a meeting 1.90% 11.10% 3.50% 2.50% 0.70% 71.90% 8.50% 750

Coordinate with

other teams
13.30% 8.50% 4.30% 2.50% 0.50% 65.30% 5.60% 645

Negotiate changes 38.10% 35.80% 11.10% 1.70% 0.00% 8.60% 4.80% 651

Ask questions

about the code in

general

44.20% 25.80% 4.30% 0.60% 0.00% 13.50% 11.50% 651

Ask questions

about the history of

the code

38.40% 26.30% 2.60% 1.20% 0.20% 16.80% 14.50% 649

Ask questions to

understand a

change

48.10% 24.20% 6.40% 1.40% 0.20% 8.40% 11.30% 653

Ask questions to

understand the

reasons for a

change

45.60% 25.90% 4.40% 0.90% 0.50% 9.40% 13.30% 652

Not all tasks are faced equally often as highlighted in Table 12. Regarding which tasks the

respondents face most often during code reviews, the most often ask a question about the

change (45% often, 8% always), reach a consensus (37% often, 10% always) and get a fast

response (39% often, 5% always). On the other hand, the rarely or never schedule a meeting

(28% never, 52% rarely), communicate issues that may reflect badly (15% never, 51%

rarely), and coordinate with other teams (40% rarely, 10% never). More details can be found

in Table 23.

Table 12 Frequency of tasks faced during code reviewing

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 28

 Tasks Never or rarely Sometimes Often or always

Get a fast response 12.70% 43.10% 44.30%

Explore alternative approaches 14.60% 58.60% 26.80%

Communicate issues that may reflect badly on

someone
65.90% 28.20% 5.90%

Reach a consensus 14.50% 39.10% 46.40%

Schedule a meeting 79.80% 17.10% 3.10%

Coordinate with other teams 50.20% 37.90% 12.00%

Negotiate changes 22.50% 50.50% 27.00%

Ask questions about the code in general 15.90% 42.90% 41.10%

Ask questions about the history of the code 44.80% 40.00% 15.20%

Ask questions to understand a change 7.60% 39.50% 52.90%

Ask questions to understand the reasons for a

change
9.80% 45.60% 44.70%

Before sending out a code review, the majority of the respondents (65%) indicate to always

read through their changes looking for errors, and 48% also always run the tests. In total,

92% indicate to always or often read through changes, 79% run tests often or always before

sending out the review, and about half indicate to often or always write tests for a change.

Even though respondents indicate the importance of writing a detailed description about the

change, only 26% of them indicate to always follow this practice. Still, roughly half of the

respondents indicate to write a detailed description either often or sometimes. 17% indicate

to never or rarely write such a description. Respondents are split almost evenly on whether or

not they give their peers a heads-up on the change to review (35% sometimes, 33% rarely or

never, and 32% often or always). The practice less often used is to run static analysis. Here,

44% indicate that the never (25%) or rarely (19%) run static analysis before sending out a

code review. The results are highlighted in Table 13and more details can be found in the

appendix in Table 24.

Table 13 Tasks performed before sending out a code review

Before sending out a review
Never or

rarely
Sometimes Often or Always

Read through the changes looking for mistakes 2.80% 5.10% 92.20%

Write a detailed description of the code to be

reviewed
17.00% 28.30% 54.60%

Get advice from subject matter experts 21.70% 40.40% 37.90%

Give reviewers a heads-up about the review 32.70% 35.40% 31.90%

Run static analysis 44.30% 16.20% 39.50%

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 29

Run tests 8.70% 12.50% 78.80%

Create tests 17.80% 28.90% 53.30%

Increase feedback speed. Almost 500 developers used the free text format to express their

opinion on how to increase the feedback speed for code reviews. Among the many answers,

few very clear categories emerged. The most common suggestion of respondents was to

contact the code reviewers. Here, they either mentioned to ping or remind the reviewers

about the review either F2F, or by IM, email or phone. The also suggested to organize a short

code review meeting, and/or to let the reviewers know in advance that they are needed for a

code review. Several said that you have to ping early and often or/and set reminders.

Another very frequent occurring suggestion is to improve the code review or the code

review package. Improvement suggestions include to do small, incremental code reviews, to

be rigorous about providing a good description, title, and eventually add comments to

explain some code changes. In general, respondents highlighted the need to explain the

reason, the background and the motivation for the change to the reviewers.

Another coherent category is the need to build the right team culture and perception about

code reviews. Respondents stress that code review must be an essential part of the

development process, and this includes that it can account for time and also is rewarded.

Several respondents say that code review must be seen as top priority and acted upon (i.e.,

code reviews are done immediately).

Several respondents also expressed the need to ask the right reviewers to review the code.

This means to include people that are knowledgeable about the area, but also that have a

stake or interest in the code change. Also several respondents stress that it is important to

only include few reviewers on the code review and avoid sending out to whole teams or

mailing lists.

The last very frequent occurring suggestion was to review fast yourself (i.e., be part of the

solution not the problem).

Appendix: Survey Slices

Distributed teams versus collocated teams

Remote respondents are slightly more experienced with code reviewing i.e., they indicate

less often to have less than 2 years of experience and to not practice code reviewing. Also,

they indicate to have worked slightly longer in software industry, but appear to have similar

working times at MS.

Remote respondents said that specific practices are used less often, in particular practices like

scrum or agile methods. Remote managers indicate to participate less often in code reviews,

than their collocated counterparts (68% vs. 81%).

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 30

Regarding the importance of code reviews, the remote respondents rate the importance of

code reviews slightly less high in their teams’ perception than collocated respondents. The

same is true for their own opinion on code review importance.

Also, remote participants say less often that a code review is needed before checking in

(86.7% versus 94.1%).

Respondents that work remote from their team say that they use email more often as code

reviewing tool than the overall population (27% versus 15%).

Interestingly, even though less than half or even none of the immediate team works near the

respondents, 10% say that more than half of the people the interact with during code review

are near them, and another 5% say that all people the code review with are near them.

Distributed respondents rank “Understanding the motivations for the change” as the second

most occurring challenge during code review. For collocated teams this seems less

troublesome and only appears on rank 7. Also, distributed respondents rank “Understanding

the code's purpose” higher than “managing time constraints” – differing from collocated

teams.

Naturally, when choosing the “tool” of choice for several tasks related to code review,

remote participants count more on IM, the Code review tool and Email than on F2F

discussions. F2F discussions are only the main tool to communicate issues that may reflect

badly on others. To reach a consensus most participants use the code review tool, and also

13% of the participants use video conversation. Remote respondents also indicate to use IM

(22-23%) and Email (20-29%) much more frequent to ask questions about a code review

than collocated teams which prefer the code review tool (40-50%) and F2F conversations

(25-28%).

Interestingly, remote respondents indicate to worry less about others judging their abilities as

programmers when reviewing other people changes (64% remote respondents disagree to

worry vs. 51% that are collocated) and also indicate that they are less worried about others

judging their ability as programmers when sending out code review (59% remote

respondents disagree versus 43% or collocated) (see Table 14 and Table 15).

Remote respondents also indicate to more frequently express thankfulness than their

collocated counterparts (93% vs. 84%).

Remote respondents believe less that code reviewing makes them more thorough during

coding (64% vs. 77% agree to be more thorough).And they also indicate to be less thorough

when reviewing changes of others (68% vs 81% agree).

We tested the effects of remoteness for both, either the team of the respondent is not near or

the people that are on code reviews are not near the respondent. We could see similar effects

for both populations.

Table 14 Distributed versus Collocated respondents’ perception about reviewing others changes

Distributed Respondents Collocated Respondents

Strongly Neutral Agree

Strongly Neutral Agree or

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 31

disagree

or

disagree

or

strongly

agree

When reviewing,

I worry about

others judging

my abilities as a

programmer.

63.51%
17.57

%
18.92%

It improves my

confidence as a

programmer

when I review the

changes of

others.

4.11%
13.70

%
82.19%

I am thorough

when I review the

work of others.

1.37%
30.14

%
68.49%

As a code

reviewer I feel

that my feedback

is respected.

0.00% 9.59% 90.41%

My personal

relationships with

those involved in

a review have an

impact on my

code review.

44.59%
28.38

%
27.03%

I am confident

that the author

considers my

feedback.

1.35% 9.46% 89.19%

disagree

or

disagree

strongly

agree

When reviewing,

I worry about

others judging

my abilities as a

programmer.

51.27%
20.54

%
28.19%

It improves my

confidence as a

programmer

when I review

the changes of

others.

6.37%
21.81

%
71.81%

I am thorough

when I review

the work of

others.

2.26%
16.69

%
81.05%

As a code

reviewer I feel

that my feedback

is respected.

1.84% 9.75% 88.42%

My personal

relationships

with those

involved in a

review have an

impact on my

code review.

43.79%
21.75

%
34.46%

I am confident

that the author

considers my

feedback.

2.13% 9.22% 88.65%

Table 15 Distributed versus Collocated respondents’ perception as author

Distributed Respondents Collocated Respondents

Strongly

disagree

or

disagree

Neutral

Agree

or

strongly

agree

As a review

author, I

appreciate the

feedback I

receive from

reviewers.

0.00% 1.43% 98.57%

Strongly

disagree

or

disagree Neutral

Agree

or

strongly

agree

As a review

author, I

appreciate the

feedback I

receive from

reviewers.

0.74% 3.27% 95.99%

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 32

When others

review my

changes, I worry

about them

judging my

abilities as a

programmer.

59.42% 21.74% 18.84%

It improves my

confidence when

others review

my changes

0.00% 13.04% 86.96%

I feel that I am

more thorough

because I know

my code will be

reviewed.

11.59% 24.64% 63.77%

My personal

relationship to

reviewers has an

impact when I

author a code

review.

40.00% 31.43% 28.57%

I express

thankfulness to

those who

review my code.

0.00% 7.14% 92.86%

I learn a lot

when other

developers

review my code.

0.00% 21.43% 74.29%

When others

review my

changes, I

worry about

them judging

my abilities as

a programmer.

42.56% 22.62% 34.82%

It improves my

confidence

when others

review my

changes

3.27% 13.82% 82.91%

I feel that I am

more thorough

because I

know my code

will be

reviewed.

8.59% 14.37% 77.04%

My personal

relationship to

reviewers has

an impact

when I author

a code review.

42.35% 26.89% 30.76%

I express

thankfulness to

those who

review my

code.

3.56% 12.46% 83.98%

 I learn a lot

when other

developers

review my

code.

4.30% 17.36% 78.34%

Impact in the job evaluation

Respondents that say that code review has no impact on their job evaluation are also less

likely to practice some software methodologies such as scrum (63% vs. 73%), or agile

development (70% vs. 80%) compared with respondents that think code reviewing has a

large impact on their job evaluation. They also use less frequently automated tool support for

checkins (62% vs. 71%).

Respondents that think CR has no impact on their job evaluation (Respondentsno) also

indicate that code reviewing is seen as less important than the respondents that think CR has

a large impact (Respondentslarge). 78% of the Respondentsno say that code reviewing is

important (51%) or very important (27%), versus 94% of the Respondentslarge say that CR is

very important (67.3%) or important (26.5%) in their teams perspective.

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 33

Similarly, when judging their own attitude torwards code reviewing, we see a significant

shift in perceived importance between Respondentsno and Respondentslarge. 73% of the

Respondentslarge say that code reviewing is very important, compared to 43.5% of

Respondentsno. Most other Respondentsno (47%) say it is important, compared to 21% of

Respondentslarge.

As to be expected, respondents that say code review has no impact on their job evaluation

also report less rigorous practices around code reviews (as highlighted in Table 1Table 16).

Table 16 Slice Impact on Job evaluation: differences between code review process

CR has a large impact on job evaluation CR has no impact on job evaluation

 Yes No

Does your team subscribe to

rules or policies for

conducting code reviews?

61.90% 38.10%

Does a code change

normally require a code

review before it can be

checked in?

95.90% 4.10%

Does your team have

mechanisms to keep team

members aware of each

other's reviews?

89.70% 10.30%

Does your team review and

reflect on their code review

process?

69.10% 30.90%

 Yes No

Does your team subscribe to

rules or policies for

conducting code reviews?

50.40% 49.60%

Does a code change

normally require a code

review before it can be

checked in?

84.80% 15.20%

Does your team have

mechanisms to keep team

members aware of each

other's reviews?

77.50% 22.50%

Does your team review and

reflect on their code review

process?

35.80% 64.20%

Respondentsno also participated less frequently in code reviews during the last week, both as

authors and as reviewers. Whereby 32% of the Respondentslarge say the reviewed multiple

times a day, only 17% of the Respondentsno indicated to do so, and 10% of Respondentslarge

acted as a author compared with 3% Respondentsno. Also 19% of Respondentsno say they did

not act as a reviewer compared with 9% of Respondentslarge. 20% Respondentsno say they did

not act as an author compared to 12% Respondentslarge.

Respondents who indicate that code review does not have an impact on job evaluation, also

are less likely to experience that their confidence is improved when the review changes of

others (63% vs. 82%), they are less thorough when reviewing the work of others (63% vs.

82%), and slightly feel that their feedback is less respected (83% vs. 89%). See Table 17 for

more details. Also, they indicate to learn less during code reviewing, to express thankfulness

less often and are less likely to indicate that it improves their confidence when others review

their changes (for details see Table 18).

Table 17 Slice impact on job evaluation: perception as reviewer

CR has a large impact on job evaluation CR has no impact on job evaluation

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 34

Strongly

disagree

or

disagree

Neutral

Agree

or

strongly

agree

When

reviewing, I

worry about

others judging

my abilities as a

programmer.

56.52% 14.13% 29.35%

It improves my

confidence as a

programmer

when I review

the changes of

others.

4.35% 14.13% 81.52%

I am thorough

when I review

the work of

others.

1.09% 13.04% 85.87%

As a code

reviewer I feel

that my

feedback is

respected.

4.35% 6.52% 89.13%

My personal

relationships

with those

involved in a

review have an

impact on my

code review.

40.22% 18.48% 41.30%

I am confident

that the author

considers my

feedback.

4.35% 6.52% 89.13%

Strongly

disagree

or

disagree

Neutral

Agree

or

strongly

agree

When

reviewing, I

worry about

others judging

my abilities as a

programmer.

53.03% 21.21% 25.76%

It improves my

confidence as a

programmer

when I review

the changes of

others.

10.69% 26.72% 62.60%

I am thorough

when I review

the work of

others.

4.55% 21.21% 74.24%

As a code

reviewer I feel

that my

feedback is

respected.

2.27% 14.39% 83.33%

My personal

relationships

with those

involved in a

review have an

impact on my

code review.

37.88% 28.79% 33.33%

I am confident

that the author

considers my

feedback.

3.08% 11.54% 85.38%

Table 18 Slice impact on job evaluation: perception as author

CR has a large impact on job evaluation CR has no impact on job evaluation

Strongly

disagree

or

disagree

Neutral

Agree or

strongly

agree

As a review

author, I

appreciate the

feedback I

receive from

reviewers.

1.15% 4.60% 94.25%

Strongly

disagree or

disagree

Neutral

Agree or

strongly

agree

As a review

author, I

appreciate the

feedback I

receive from

reviewers.

1.60% 2.40% 96.00%

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 35

When others

review my

changes, I

worry about

them judging

my abilities as

a

programmer.

43.02% 27.91% 29.07%

It improves

my

confidence

when others

review my

changes

2.30% 5.75% 91.95%

I feel that I

am more

thorough

because I

know my

code will be

reviewed.

4.65% 17.44% 77.91%

My personal

relationship to

reviewers has

an impact

when I author

a code review.

48.28% 21.84% 29.89%

I express

thankfulness

to those who

review my

code.

1.15% 6.90% 91.95%

I learn a lot

when other

developers

review my

code.

4.60% 11.49% 83.91%

When others

review my

changes, I

worry about

them judging

my abilities

as a

programmer.

48.00%
23.20

%
28.80%

It improves

my

confidence

when others

review my

changes

4.00%
24.00

%
72.00%

I feel that I

am more

thorough

because I

know my

code will be

reviewed.

12.90%
12.90

%
74.19%

My personal

relationship

to reviewers

has an impact

when I author

a code

review.

34.68%
29.03

%
36.29%

I express

thankfulness

to those who

review my

code.

7.32%
11.38

%
81.30%

I learn a lot

when other

developers

review my

code.

6.45%
27.42

%
66.13%

Respondents that do not see an impact of their performance during code review on their job

evaluation are less likely to write a thorough description of the change, to get advice from

subject matter experts, to give reviewers a heads-up about the review, or to create tests before

sending out the review (see for Table 19 details).

Table 19 Slice impact on job evaluation: tasks before sending code review

CR has a large impact on job evaluation CR has no impact on job evaluation

Never or

rarely

Some-

times Often

or

Never or

rarely

Some-

times Often

or

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 36

always

Read through the

changes looking

for mistakes 2.38% 7.10% 90.48%

Write a detailed

description of

the code to be

reviewed 14.29% 20.20% 65.48%

Get advice from

subject matter

experts 14.12% 40.00% 45.88%

Give reviewers a

heads-up about

the review 23.53% 36.50% 40.00%

Run static

analysis 37.65% 17.60% 44.71%

Run tests 7.06% 11.80% 81.18%

Create tests 14.12% 22.40% 63.53%

Build and run

changes 2.53% 3.80% 93.67%

always

Read through

the changes

looking for

mistakes 4.20% 5.90% 89.92%

Write a detailed

description of

the code to be

reviewed 20.17% 34.50% 45.38%

Get advice from

subject matter

experts 30.51% 33.10% 36.44%

Give reviewers a

heads-up about

the review 36.97% 38.70% 24.37%

Run static

analysis 47.06% 11.80% 41.18%

Run tests 10.92% 10.90% 78.15%

Create tests 18.49% 26.10% 55.46%

Build and run

changes 5.56% 1.10% 93.33%

Appendix: Raw Results

In this section, the interested reader can find more details on the raw results for many of the

discussed survey sections.

Strongly

disagree

Disagre

e
Neutral Agree

Strongly

agree

Respons

es

When reviewing, I worry about others

judging my abilities as a programmer.
17.70% 34.80% 20.20% 22.00% 5.40% 779

It improves my confidence as a

programmer when I review the changes

of others.

1.50% 4.50% 21.00% 51.20% 21.90% 778

I am thorough when I review the work

of others.
0.10% 2.10% 18.00% 59.40% 20.40% 779

As a code reviewer I feel that my

feedback is respected.
0.50% 1.20% 9.60% 61.50% 27.20% 780

My personal relationships with those

involved in a review have an impact on

my code review.

14.30% 29.40% 22.40% 26.10% 7.70% 781

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 37

Table 20 Acting as a reviewer: Detailed perception results

Table 21 Acting as a review author: Detailed perception results

Strongly

disagree
Disagree Neutral Agree

Strongly

agree
Responses

As a review author, I appreciate the

feedback I receive from reviewers.
0.30% 0.40% 3.20% 41.20% 54.90% 743

When others review my changes, I

worry about them judging my abilities

as a programmer.

14.20% 29.80% 22.50% 25.90% 7.60% 741

It improves my confidence when

others review my changes
0.80% 2.00% 13.90% 52.00% 31.30% 742

I feel that I am more thorough because

I know my code will be reviewed.
2.30% 6.60% 15.20% 47.30% 28.60% 744

My personal relationship to reviewers

has an impact when I author a code

review.

14.40% 27.60% 27.30% 24.60% 6.10% 743

I express thankfulness to those who

review my code.
0.80% 2.30% 12.00% 51.60% 33.30% 744

 I learn a lot when other developers

review my code.
0.70% 3.20% 17.60% 47.80% 30.60% 744

Table 22 Additional resources used during code review: Detailed results

 Resources Never Rarely
Sometim

es
Often Always Total

Bug reports 19.40% 29.60% 32.10% 17.00% 1.90%
100%

(747)

Contacting the review author 3.10% 4.90% 33.20% 49.10% 9.80%
100%

(754)

Contacting subject experts

(besides the author)
17.20% 29.90% 35.30% 16.20% 1.50%

100%

(746)

Source code not in the review 7.90% 16.00% 40.20% 29.70% 6.20%
100%

(744)

Design documentation 26.80% 33.20% 27.30% 10.70% 1.90%
100%

(746)

Mailing lists 42.80% 28.90% 20.50% 7.30% 0.50%
100%

(743)

Style guides 29.40% 32.60% 25.80% 10.00% 2.10%
100%

(751)

Source code history in the

repository
6.70% 16.40% 38.50% 31.60% 6.80%

100%

(749)

I am confident that the author considers

my feedback.
0.40% 1.70% 9.30% 59.40% 29.30% 778

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 38

Table 23 Frequency of tasks faced during code reviewing: Detailed results

 Tasks Never Rarely
Sometime

s
Often Always Responses

Get a fast response 1.90% 10.80% 43.10% 39.00% 5.30% 641

Explore alternative

approaches
1.10% 13.50% 58.60% 24.30% 2.50% 643

Communicate issues that

may reflect badly on

someone

15.30% 50.60% 28.20% 4.80% 1.10% 642

Reach a consensus 1.60% 12.90% 39.10% 36.60% 9.80% 644

Schedule a meeting 27.60% 52.20% 17.10% 2.80% 0.30% 644

Coordinate with other

teams
10.00% 40.20% 37.90% 11.20% 0.80% 642

Negotiate changes 1.70% 20.80% 50.50% 24.50% 2.50% 644

Ask questions about the

code in general
0.60% 15.30% 42.90% 34.70% 6.40% 645

Ask questions about the

history of the code
4.80% 40.00% 40.00% 14.10% 1.10% 645

Ask questions to

understand a change
0.60% 7.00% 39.50% 45.10% 7.80% 643

Ask questions to

understand the reasons for

a change

1.10% 8.70% 45.60% 38.30% 6.40% 643

Table 24 Tasks performed before sending out code review: Detailed results

Before sending out a review Never Rarely
Sometim

es
Often Always Total

Read through the changes

looking for mistakes
1.40% 1.40% 5.10% 27.20% 65.00% 725

Write a detailed description of

the code to be reviewed
4.50% 12.50% 28.30% 28.90% 25.70% 727

Get advice from subject matter

experts
8.10% 13.60% 40.40% 28.90% 9.00% 726

Give reviewers a heads-up

about the review
14.40% 18.30% 35.40% 21.30% 10.60% 727

Run static analysis 25.10% 19.20% 16.20% 16.80% 22.70% 728

Run tests 3.60% 5.10% 12.50% 30.40% 48.40% 727

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 39

Create tests 6.50% 11.30% 28.90% 32.30% 21.00% 727

Appendix: Complete Survey

For the purposes of completeness and replication, we provide the complete text from the

survey deployed for this study below.

We are researchers from the Tools for Software Engineers team and Microsoft Research

investigating the code review work practices of developers at Microsoft. We would be

greatly appreciative if you would be willing to answer the following questions. The survey

shouldn't take more than 15 minutes.

This survey is completely anonymous and all questions are optional. No personal

information is required for particpation in this survey. If you have any questions or if you'd

rather not participate and want no further contact, please email Laura MacLeod or Christian

Bird. For survey participation, we are also hosting a raffle for two $50 Amazon gift

cards. Instructions for the raffle appear after participants submit their responses.

We invited participants by randomly selecting employees at Microsoft that fit our

demographic criteria such as their role at Microsoft. We are interested in hearing

from employees who have experience with code reviews (as either an author of changes, a

reviewer of changes or both). If you do not participate in code reviews, we ask that you still

complete the first two questions.

Demographics

The following questions ask about your background and role within Microsoft.

1) What is your title?

2) How many years have you practiced code reviewing?

() I do not practice code review () Less than 2 () 2-5 years

() 6-10 years () More than 10 years

If you do not participate in code reviews, please scroll to the bottom of the survey and click

submit so that we can still get your answers to the first two questions. Thanks!

3) If you are a manager, please answer the following questions.

Yes No

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 40

Do you regularly participate in code reviews? () ()

Do you manage other managers? () ()

4) How many years have you worked in the software industry?

() Less than 2 () 2-5 years () 6-10 years () More than 10 years

5) How many years have you worked at Microsoft?

() Less than 2 years () 2-5 years () 6-10 years () More than 10 years

Team Demographics

The following questions ask about your team's characteristics.

6) How many people make up your immediate team (including yourself)?

7) Of the number you listed above, how many people on your team do you directly work

with?

8) Of those people, what percentage work near you? (i.e. you could get a cup of coffee with

them)

() None

() Less than half

() More than half

() All

9) What version control system does your team currently use? (Please check all that apply)

[] TFS

[] SourceDepot

[] Git

[] Other: ___

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 41

10) For the following table, please indicate if your team implements any of the following

practices

Yes No

Pair programming () ()

Uses automated tool support for code check-ins (e.g., a Checkin Wizard). () ()

Provides formal training on code reviews practices () ()

Scrum () ()

An agile development process () ()

11) Based on your experiences, which of the following best describes your team's attitude

towards code reviews?

They consider it to be:

() Very unimportant () Unimportant () Neutral () Important () Very important

Team Code Reviews

The following questions ask about your team's code review practices.

12) Please answer if your team does any of the following:

Yes No

Does your team subscribe to rules or policies for conducting code

reviews?

() ()

Does a code change normally require a code review before it can be

checked in?

() ()

Does your team have mechanisms to keep team members aware of

each other's reviews?

() ()

Does your team review and reflect on their code review process? () ()

13) What code review tools does your team currently use? (Choose all that apply)

[] CodeFlow

[] CodeFlow plug-in in Visual Studio

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 42

[] Code review feature in Visual Studio

[] GitHub pull requests

[] VSO pull requests

[] Atlassian

[] Email

[] Odd

[] No tool

[] Other: ___

14) Of the people you work with on code reviews (either as an author or reviewer of

changes), what percentage of those people work near you? (i.e. you could get a cup of coffee

with them)

() None

() Less than half

() More than half

() All

15) To what degree does your performance in code reviews impact your job evaluation?

It has:

() A large impact () A minor impact () No impact

() I don't know or I haven't thought about it

Code Reviews

The next questions ask about why you do code reviews and for your opinions on the process.

16) Based on your experience, which of the following best describes your attitude towards

code reviews?

() Very unimportant () Unimportant () Neutral () Important () Very important

17) Why do you do code reviews? Below is a list of reasons developers do code reviews.

Please choose and rank your top 5 items (with 1 being the most important).

________Avoid breaking builds

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 43

________Code improvement

________Lead to shared code ownership

________Find defects

________Find alternative solutions

________Improve the development process

________Build team awareness

________Increase knowledge transfer

________Team assessment

18) If you have other important motivations you wish to share, please briefly explain them

below and indicate their level of importance.

19) Do situations occur where you find code reviews can be skipped? If so, briefly describe

those situations.

20) Below is a list of challenges developers face in code reviews.

Please choose and rank your top 5 challenges to code reviews (with 1 being the greatest

challenge).

________Understanding the motivations for the change

________Review size

________Understanding the code's purpose

________Finding relevant documentation

________Identifying who to talk to

________Obtaining insightful feedback

________Understanding how the change was implemented

________Receiving feedback in a timely manner

________Managing time constraints

________Maintaining code quality

________Reaching consensus

________Bikeshedding (disputing minor issues while more serious ones are overlooked)

________Managing multiple communication channels

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 44

Code Reviewing

The following question asks about your thoughts and actions as a reviewer on code reviews

(reviewing changes, not authoring them).

For the next set of questions we want you to think about the recent code reviews you have

been a part of in the past week and reflect on those experiences. If you did not act as a

reviewer, please answer the next question and skip the rest of the questions in this section.

21) In the past week, how often did you act as a reviewer on code reviews (reviewing

changes, not authoring them).

() I did not act as a reviewer

() Once during the week

() A couple times during the week

() At least once a day

() Multiple times a day

22) To what degree the following statements align with your recent experiences as a reviewer

on code reviews.

Strongly

disagree
Disagree Neutral Agree

Strongly

agree

When reviewing, I worry about

others judging my abilities as a

programmer.

() () () () ()

It improves my confidence as a

programmer when I review the

changes of others.

() () () () ()

I am thorough when I review the

work of others.

() () () () ()

As a code reviewer I feel that my

feedback is respected.

() () () () ()

My personal relationships with

those involved in a review have

an impact on my code review.

() () () () ()

I am confident that the author () () () () ()

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 45

considers my feedback.

23) Thinking about your actions as a reviewer on code reviews over the past week, how often

do you make use of the following resources to gather additional information relevant to code

reviews?

Never Rarely Sometimes Often Always

Bug reports () () () () ()

Contacting the review author () () () () ()

Contacting subject experts (besides

the author)

() () () () ()

Source code not in the review () () () () ()

Design documentation () () () () ()

Mailing lists () () () () ()

Style guides () () () () ()

Source code history in the repository () () () () ()

24) Generally as a reviewer on code reviews, indicate which communication channel you

would turn to first to do the following tasks:

Code

review

tool

Face to

face

discussion

Face to

face

discussion

at a

whiteboard

Video

or

voice

chat

Telephone Email IM

Get a fast response () () () () () () ()

Explore alternative

approaches

() () () () () () ()

Communicate

issues that may

reflect badly on

someone

() () () () () () ()

Reach a consensus () () () () () () ()

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 46

Schedule a meeting () () () () () () ()

Coordinate with

other teams

() () () () () () ()

Negotiate changes () () () () () () ()

Ask questions

about the code in

general

() () () () () () ()

Ask questions

about the history of

the code

() () () () () () ()

Ask questions to

understand a

change

() () () () () () ()

Ask questions to

understand the

reasons for a

change

() () () () () () ()

25) Generally as a reviewer on code reviews, indicate the frequency of which you find

yourself doing the tasks mentioned above:

Never Rarely Sometimes Often Always

Get a fast response () () () () ()

Explore alternative approaches () () () () ()

Communicate issues that may

reflect badly on someone

() () () () ()

Reach a consensus () () () () ()

Schedule a meeting () () () () ()

Coordinate with other teams () () () () ()

Negotiate changes () () () () ()

Ask questions about the code in

general

() () () () ()

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 47

Ask questions about the history of

the code

() () () () ()

Ask questions to understand a

change

() () () () ()

Ask questions to understand the

reasons for a change

() () () () ()

Code Authoring

The following question asks about your thoughts and actions as an author of code reviews

(submitting changes for others to look at).

For the next set of questions we ask you to think about the recent code reviews you have

been a part of in the past week, and to reflect on those experiences. If you did not act as an

author, please answer the next question and skip the rest of the questions in this section.

26) In the past week, how often did you act as an author of code reviews (submitting changes

for others to look at).

() I did not act as an author

() Once during the week

() A couple times during the week

() At least once a day

() Multiple times a day

27) Thinking as an author of code reviews this past week, how often did you do any of the

following before you sent out changes for review?

Never Rarely Sometimes Often Always

Read through the changes

looking for mistakes

() () () () ()

Write a detailed description of

the code to be reviewed

() () () () ()

Get advice from subject matter

experts

() () () () ()

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 48

Give reviewers a heads-up

about the review

() () () () ()

Run static analysis () () () () ()

Run tests () () () () ()

Create tests () () () () ()

Build and run changes () () () () ()

28) To what degree do you agree with the following statements based on your recent

experiences as an author of code reviews.

Strongly

disagree
Disagree Neutral Agree

Strongly

agree

As a review author, I

appreciate the feedback I

receive from reviewers.

() () () () ()

When others review my

changes, I worry about them

judging my abilities as a

programmer.

() () () () ()

It improves my confidence

when others review my

changes

() () () () ()

I feel that I am more thorough

because I know my code will

be reviewed.

() () () () ()

My personal relationship to

reviewers has an impact when

I author a code review.

() () () () ()

I express thankfulness to

those who review my code.

() () () () ()

I learn a lot when other

developers review my code.

() () () () ()

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 49

Best practices

The following questions ask about best practices for code reviews.

29) What do you think is the most important thing developers can do to increase feedback

speed on code reviews?

30) What do you think is the most important thing developers can do to increase feedback

usefulness on code reviews?

31) What do you think is the most important thing developers can do to increase code review

productivity?

32) Please list the top impediment to productivity you encounter on code reviews.

Thank you for taking the time to respond to our survey. We hope that the results of this study

will provide meaningful feedback, leading to changes in code review tool support and

practices.

33) If you are interested in participating in follow up sessions regarding this survey, or in

future studies, please enter your alias below. (Note: this step is completely voluntary. If you

wish to participate, but not associate your alias with the answers given in this survey, you

may email us separately)

34) Please use the following text box if you have any additional feedback or comments that

you feel would be helpful to our research in this area.

If you found anything unclear, or should be changed in this survey, we would love to hear

your feedback.

Microsoft Research Technical Report MSR-TR-2016-27

© 2016 Microsoft Corporation. All rights reserved. 50

Bibliography

Bacchelli, A. and C. Bird. "Expectations, outcomes, and challenges of modern code review."

Proceedings of the 2013 international conference on software engineering. IEEE

Press, 2013. 712-721.

Barnett, M., et al. "Helping developers help themselves: Automatic decomposition of code

review changesets." IEEE/ACM 37th IEEE International Conference on Software

Engineering. IEEE, 2015. 134-144.

Cohen, J., et al. Best kept secrets of peer code review. Smart Bear, 2006.

Gousios, G., M. Pinzger and A. v. Deursen. "An exploratory study of the pull-based software

development model." Proceedings of the 36th International Conference on Software

Engineering. ACM, 2014. 345–355.

Gurbani, V. K., A. Garvert and J. D. Herbsleb. "A case study of a corporate open source

development model." Proceedings of the 28th international conference on Software

engineering. ACM, 2006. 472–481.

Morales, R., S. McIntosh and F. Khomh. "Do code review practices impact design quality? a

case study of the qt, vtk and itk projects." Software Analysis, Evolution and

Reengineering (SANER). 2015. 171-180.

Petre, M. and G. Wilson. "Code review for and by scientists." arXiv preprint arXiv, 2014.

Rigby, P. C. and C. Bird. "Convergent contemporary software peer review practices."

Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering

(ESEC/FSE). 202–212: ACM, 2013.

Rigby, P. C., D. M. German and M.-A. Storey. "Open source software peer review practices:

A case study of the apache server." Proceedings of the 30th International Conference

on Software Engineering (ICSE). IEEE, 2008. 541-550.

Rigby, P., et al. "Contemporary peer review in action: Lessons from open source

development." Software Nov 2012: 56–61.

Tao, Y., et al. "How do software engineers understand code changes?: an exploratory study

in industry." roceedings of the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering. ACM, 2012. 15.

Thongtanunam, P., R. G. Kula and A. E. C. Cruz. "Improving code review effectiveness

through reviewer recommendations." Proceedings of the 7th International Workshop

on Cooperative and Human Aspects of Software Engineering (CHASE). IEEE, 2014.

119-122.

Tsay, J., L. Dabbish and J. Herbsleb. "Influence of social and technical factors for evaluating

contribution in github." Proceedings of the 36th international conference on Software

engineering. ACM, 2014. 356–366.

