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Background: The relationship between sensitization to allergens
and disease is complex.
Objective: We sought to identify patterns of response to a broad
range of allergen components and investigate associations with
asthma, eczema, and hay fever.
Methods: Serum specific IgE levels to 112 allergen components
were measured by using a multiplex array (Immuno Solid-phase
Allergen Chip) in a population-based birth cohort. Latent
variable modeling was used to identify underlying patterns of
component-specific IgE responses; these patterns were then
related to asthma, eczema, and hay fever.
Results: Two hundred twenty-one of 461 children had IgE to 1 or
more components. Seventy-one of the 112 components were
recognized by 3 or more children. By using latent variable
modeling, 61 allergen components clustered into 3 component
groups (CG1, CG2, and CG3); protein families within each CG
were exclusive to that group. CG1 comprised 27 components
from 8 plant protein families. CG2 comprised 7 components of
mite allergens from 3 protein families. CG3 included 27
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components of plant, animal, and fungal origin from 12 protein
families. Each CG included components from different biological
sources with structural homology and also nonhomologous
proteins arising from the same biological source. Sensitization to
CG3 was most strongly associated with asthma (odds ratio [OR],
8.20; 95% CI, 3.49-19.24; P < .001) and lower FEV1 (P < .001).
Sensitization to CG1 was associated with hay fever (OR, 12.79;
95% CI, 6.84-23.90; P < .001). Sensitization to CG2 was
associated with both asthma (OR, 3.60; 95% CI, 2.05-6.29) and
hay fever (OR, 2.52; 95% CI, 1.38-4.61).
Conclusions: Latent variable modeling with a large number of
allergen components identified 3 patterns of IgE responses, each
including different protein families. In 11-year-old children the
pattern of response to components of multiple allergens
appeared to be associated with current asthma and hay fever
but not eczema. (J Allergy Clin Immunol 2015;nnn:nnn-nnn.)

Key words: IgE, childhood, component-resolved diagnostics, latent
variable modeling, allergens, asthma, wheeze, eczema, hay fever

Although the presence of specific IgE (sIgE) to allergens is a
major risk factor for asthma and hay fever, the relationship is
inconsistent, and IgE-mediated sensitization is neither necessary
nor sufficient for the expression of disease.1 In clinical practice
and research studies patients are usually assigned as being atopic
or not based on the results of skin prick or sIgE tests to extracts
made from whole allergen sources.2,3 One potential limitation
of using whole-allergen extracts is that the sources used for their
preparation contain multiple different allergenic proteins and that
a positive result might reflect cross-reactivity consequent to
homology between similar proteins in different allergen sources.4

The advent of molecular allergology has enabled investigators to
identify individual proteins within whole allergen sources and to
detect sIgE to individual allergen components.5 In patients with
food allergy, measuring sensitization to components is more
informative than measuring levels of IgE to whole extracts.4,6-8

For some allergen sources, there is a dominant component to
which most sensitized subjects will react (eg, Fel d 1 is positive
in almost all subjects with IgE to cat), but for others, no such
dominant allergen exists (eg, sensitization to Can f 1, 2, 3, and
5 identifies less than half of those with IgE to dog).9

The commercialization of molecular or component-resolved
diagnostics (CRD) has facilitated the development of products in
which sIgE to more than 100 allergen components can be
measured simultaneously by using small volumes of serum.10,11

One such technology is the multiplex Immuno Solid-phase
Allergen Chip (ImmunoCAP Immuno Solid-phase Allergen
Chip [ISAC]).12 We have recently reported that ISAC data might
facilitate better assessment of allergic airway diseases.13

The role of such ‘‘high-resolution’’ tools in clinical practice and
how best to interpret the complex data they generate is a matter of
1

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:angela.simpson@manchester.ac.uk
http://dx.doi.org/10.1016/j.jaci.2015.03.027


J ALLERGY CLIN IMMUNOL

nnn 2015

2 SIMPSON ET AL
Abbreviations used
CG: C
omponent group
CRD: C
omponent-resolved diagnostics
eNO: E
xhaled nitric oxide
ISAC: Im
muno Solid-phase Allergen Chip
ISU: IS
AC standardized units
OR: O
dds ratio
sIgE: S
erum IgE
some debate.14,15 Conventional analyses can overaggregate the
underlying complexity16 and do not capture the heterogeneity
in patterns of responses to multiple components, and therefore
more sophisticated approaches are needed. A particularly
appealing framework is that of latent variable models, in which
a latent underlying mechanism explains the presence of multiple
correlated items.17

We hypothesize that distinct patterns of component-specific
IgE are associated with different clinical presentations. We
propose that latent variable models can be used to identify such
patterns and might facilitate better understanding of how data on
sIgE to multiple allergen components can be interpreted within
individual patients. To address our hypotheses, we measured
levels of sIgE to 112 allergen components using a commercially
available multiplex array in a population-based birth cohort and
used a latent variable model to identify underlying patterns of
component-specific IgE responses; these patterns were then
related to asthma, eczema, and hay fever.
METHODS

Study population
The Manchester Asthma and Allergy Study is a population-based birth

cohort.18-22 Subjects were recruited prenatally and followed prospectively.

The study was reviewed by the local institutional review board, and parents

provided written informed consent. We used data collected at follow-up at

age 11 years for this study. Validated questionnaires were interviewer

administered to collect information on parentally reported symptoms,

physician-diagnosed diseases, and treatments received.23 We performed

spirometry and measured exhaled nitric oxide (eNO) levels and assessed

airway hyperreactivity in a 5-step methacholine challenge test.24
Definition of clinical outcomes
Current wheezewas defined as a positive answer to the following question:

‘‘Has your child had wheezing or whistling in the chest in the last

12 months?’’25

Current asthma was defined as a positive answer to 2 of 3 of the following

questions: ‘‘Has the doctor ever told you that your child had asthma?’’; ‘‘Has

your child had wheezing or whistling in the chest in the last 12 months?’’; and

‘‘Has your child had asthma treatment in the last 12 months?’’26

Current hay fever was defined as a positive answer to the following

question: ‘‘Does your child have hay fever now?’’27

Current eczemawas defined as a positive answer to the following question:

‘‘Has your child had an itchy rash that comes and goes in the last

12 months?’’25

Lung function was recorded as FEV1 and forced vital capacity values.28

Data were expressed as percent predicted FEV1
29 and the FEV1/forced vital

capacity ratio.

Airway hyperreactivitywas defined as a greater than 20% decrease in FEV1

by the final stage of the challenge (16 mg/mL). We also calculated he

dose-response slope to analyze the data as a continuous variable.19

eNO was recorded as a continuous variable in parts per billion.
CRD
Wemeasured levels of sIgE to 112 allergenicmolecules (components) from

51 sources using ImmunoCAP ISAC (Thermo Fisher Scientific, Uppsala,

Sweden). Levels of component-specific IgE antibodies were reported in ISAC

standardized units (ISU). We transformed (discretized) sIgE data using a

binary threshold of 0.3 ISU into 4 categories, according to the manufacturer’s

guidelines: no (<0.3 ISU), low (0.3-1 ISU), medium (1-15 ISU), and high

(>15 ISU) sensitization.
Statistical grouping of allergen components
Our statistical model assumed that there exist clusters of allergen

components to which subjects have a similar IgE responses (ie, either being

sensitized or not to most of the components within the same cluster). We refer

to these clusters as component groups (CGs). We restricted our analysis to 71

components for which there were at least 3 children with positive test results.

Components to which fewer than 3 children were sensitized are listed in Table

E1 in this article’s Online Repository at www.jacionline.org. We modeled

different patterns of IgE response in 221 children with any positive test results.

We inferred allergen clusters and child sensitization to each cluster using

Expectation Propagation,30 an algorithm for approximate Bayesian inference

(see a detailed description in Fig E1 in this article’s Online Repository at www.

jacionline.org). We relied on the Expectation Propagation implementation

(available in Infer.NET http://research.microsoft.com/infernet), a Microsoft-

owned library for large-scale Bayesian inference freely available for research

purposes. Inference was performed based solely on IgE responses without

using any information about protein structure or function or clinical

phenotypes. We assigned a component to a CG if the posterior cluster

membership probability was greater than 0.7 and characterized each child

as sensitized to a CG if the posterior sensitization probability was greater

than 0.5. Robustness and reproducibility of the results were assessed by

repeating the analysis on 20 random subsets of 200 subjects.
Sequence, structure, and function of allergen

components within CGs
We then investigated the sequence, structure, and functional properties of

components clustered within the inferred CGs. We compiled an allergen

sequence database (available on request) using allergens listed in the

ALLFAM database (http://www.meduniwien.ac.at/allergens/allfam; release

2011-09-12)31 downloaded from the UniProt database (http://www.uniprot.

org). Allergen sequences were grouped by Pfam clan/family designation

and aligned with ClustalW232 by using default settings. Dendrograms

(average distance, BLOSUM62) were drawn by using Jalview, version 2.7.

Dendrograms were colored and annotated by using Figtree, version 1.3.1

(http://tree.bio.ed.ac.uk/software/figtree). Within each protein family within

a CG where 3 or more family members were present, we used a Venn diagram

to map the distribution of sensitization.
Associations between CGs and clinical outcomes
Each child was assigned a probability of being sensitized to each CG on a

scale of 0 to 1. We then modeled the quantitative CG scores for each

participant as a latent variable predictor of clinical outcome using multivariate

logistic regression tests. In addition, we assigned each child as sensitized or

not to each of the CGs by using a posterior cutoff threshold of 0.5 or greater,

noting that each child could be sensitized to any combination of CGs, to

quantify the prevalence of sensitization to each CG and provide descriptive

statistics of the characteristics of children sensitized to each CG. Analyses

were performed with Stata 12.1 and SPSS 20 software (IBM, Armonk, NY).
RESULTS

Participant flow and demographic data
Among 1184 children born into the cohort, 822 attended

follow-up at age 11 years; of these, CRD data were obtained for
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FIG 1. A, Specific IgE for each child to each allergen (quaternary scale, color coded: black, negative; yellow,

low; orange, medium; and red, high). Allergen components are sorted according to CG membership, and

children are sorted according to CG sensitization. B, Probability of each allergen component belonging to

each CG (grayscale) based on the posterior distribution, indicating that for the 61 allergen components

assigned to a CG, the probability was generally high (white, usually >0.9) C, Probability of each child being

sensitized to each of the CGs (grayscale) based on the posterior sensitization probabilities, showing that

children were frequently sensitized to more than 1 CG and that all combinations of sensitization were seen.
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461 (56.1%). There were no significant differences in
demographic characteristics between children with and without
CRD data (see Table E2 in this article’s Online Repository at
www.jacionline.org). Of 461 children included in this study,
221 (47.9%) had a positive sIgE result to at least one of the 112
allergen components, and 58 (12.5%) had asthma.
Characteristics of CGs
Of the 71 allergen components included in the model, 61

clustered into 3 groups (CG1, CG2, and CG3; Fig 1, A, and see
Table E3 in this article’s Online Repository at www.jacionline.
org). The remaining 10 components did not strongly belong to
any cluster, and therefore we did not assign these to any CG
(non-CG components, see Table E3). The posterior distribution
used to assign components to groups is shown in Fig 1, B.
Most of the components were assigned to a single group with
very high probability (>0.9). Group membership was very stable,
as demonstrated by the component similarity matrix in Fig E2
in this article’s Online Repository at www.jacionline.org.
Repeating the analysis using quaternary data produced similar
results, with CG assignment differing in only 3 components
(see Table E4 in this article’s Online Repository at
www.jacionline.org). However, group membership was less
stable (see Fig E3 in this article’s Online Repository at
www.jacionline.org). Therefore we opted for the binary data
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TABLE I. Allergen components within each CG

CG Pfam protein family ISAC component

CG1 b-Expansins (including N- and C-terminal domains) C- and N-terminal domains: nCyn d 1, rPhl p 1,

N-terminal domain only: rPhl p 2

Ribonuclease rPhl p 5, rPhl p 6

Berberine bridge (FAD binding) nPhl p 4

Profilin rBet v 2, rHev b 8, rMer a 1, rPhl p 12

Bet v 1 like (PR10) rAln g 1, rBet v 1, rCor a 1.0101, rCor a 1.0401,

Mal d 1, rPru p 1, rGly m 4, rAra h 8, rApi g 1

Ole e 1 family rChe a 1, rOle e 1, rPhl p 11

CCD Jug r 2, MUXF3

Glycosylhydrolase family 28 (polygalacturonase and pectate lyase) nPla a 2, nCry j 1, nCup a 1

CG2 MD-2–related lipid recognition (ML) domain (group 2 mite allergens) rDer p 2, rDer f 2, rLep d 2

Cysteine protease nDer p 1, nDer f 1, nAct d 1

Mite allergen family 5 rBlo t 5

CG3 Prolamin rAra h 2, nAra h 6, nJug r 3, rPru p 3

Cupin rAra h 1, rAra h 3, nGly m 6

EF hand rBet v 4

Thaumatin family nAct d 2

Lipocalin rCan f 1, rCan f 2, rEqu c 1, rFel d 4, Mus m1

Serum albumin nBos d 6, nCan f 3, nEqu c 3, nFel d 2

Uteroglobulin-like rFel d 1

Kazal-type inhibitor nGal d 1

Tropomyosin nPen m 1, rAni s 3, nBla g 7, rDer p 10

ATP:guanido phosphotransferase (arginine kinase) nPen m 2

Superoxide dismutase rAsp f 6

Unique to fungi Alt a 1

Non-CG EF-hand rPhl p 7

Bet v 1 like rAct d 8

Cysteine-rich secretory protein family (venom antigen) rPol d 5, rVes v 5

Trypsin-like serine protease (peptidase S1) rCan f 5

Enolase rAlt a 6

Transferrin rGal d 3

Glycosyl hydrolases family 17 (b-glucanase) rOle e 9

g-Thionin (thionin with O-glycans; Art v 1 family) nArt v 1

Cupin nJug r 1

Pollen allergens are shown in boldface. Allergen nomenclature is based on that of the International Union of Immunological Societies Allergen subcommittee.33 PR10,

Pathogenesis-related class 10 proteins.
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representation because it was sufficient to find patterns in the data,
while requiring fewer model parameters.

The allergen components within each CG were then sorted by
protein family (Pfam), as presented in Table I33 (see detailed
accession numbers Table E5 in this article’s Online Repository
at www.jacionline.org). CG1 comprised 27 components
exclusively of plant origin belonging to 8 different protein
families. CG2 comprised 7 components almost exclusively
made up of mite allergens classified into 3 protein families.
CG3 was the most complex and included 27 components of plant,
animal, and fungal origin drawn from 12 protein families. Of note,
the protein families within each CG were exclusive to that group.

Ten non-CG allergens (to which there were generally fewer
positive test results) came from 9 protein families; 2 were venom
allergens, and 5 were from protein families not otherwise
represented on the microarray. The 3 remaining allergens in the
non-CG group are from protein families that already fall within
CGs but to which very few children reacted.
Sequence and structure of allergen components

within CGs
Unrooted dendrograms of allergens belonging to different

protein families within CGs and accompanying Venn diagrams
mapping the distribution of sensitization to each component
within each protein family (when >_3 family members were
present) are presented in Figs E4 to E8 in this article’s Online
Repository at www.jacionline.org. For some protein families,
almost all subjects were sensitized to a single dominant allergen.
Within the profilin family, the dominant allergens were Mer a 1
and Hev b 8, which bound IgE from all profilin-reactive subjects
(see Fig E4). For the expansin family, Phl p 1 was the dominant
allergen (see Fig E5). For the Bet v 1–like family, all but 1 child
was sensitized to Bet v 1 (see Fig E6). For pectate lyase, only 3 of
the 8 family members are represented on ISAC, andmost subjects
were sensitized to Cup a 1 (see Fig E7).

Similar relationships were observed for the CG2 components,
with the cysteine proteases being dominated by Der p 1, whereas
Der f 2 was the dominant allergen for the MD-2–related lipid
recognition domain (ML domain) proteins (see Fig E9 in this
article’s Online Repository at www.jacionline.org).

For CG3 (see Fig E10 in this article’s Online Repository at
www.jacionline.org), the cupin allergen family was dominated
by Ara h 1. For the prolamin family, Ara h 2 appeared to
predominate, and for the serum albumins, it was Fel d 2. Fel
d 1 was a frequent sensitizer in CG3, but it is the only member
of the uteroglobulin-like family identified as an allergen.
A dominant allergen was less likely to be identifiable where

http://www.jacionline.org
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FIG 2. Association between sensitization to CGs and clinical outcomes.

Error bars represent 95% CIs of the OR shown on a log scale.
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few children were sensitized to that protein family. Although few
children were sensitized to tropomyosins, most children were
sensitized to most allergens, without a clear dominant allergen.
For the lipocalins, the overlapping sensitization patterns were
not clear, although Can f 1 was the most common sensitizing
allergen.
Relationship between CG sensitization and clinical

outcomes
We investigated the association between sensitization to each

CG and clinical outcomes using the quantitative CG scores in a
multivariate analysis (Fig 2 and Table II). Children sensitized to
CG3 were more likely to have asthma (odds ratio [OR], 8.20;
95% CI, 3.49-19.24; P < .001), as were children sensitized to
CG2 (OR, 3.60; 95% CI, 2.05-6.29; P < .001) but not CG1.
A similar pattern was seen for wheeze. For hay fever, sensitization
to CG1 was the strongest predictor (OR, 12.79; 95% CI,
6.84-23.90; P < .001), with a smaller effect seen for sensitization
to CG2. For eczema, there was no significant association between
sensitization to any of the CGs.

For lung function, only children sensitized to CG3 had a
significantly poorer FEV1 percent predicted, with values in this
group on average 6.8% lower than in children not sensitized to
CG3 (95% CI, 2.69-11.06; P5 .001; Fig 3, A). Airway reactivity
was significantly greater in those sensitized to CG2, whether
expressed as a dose/response ratio or a positive or negative
methacholine challenge result (Fig 2). eNO levels were
significantly higher among children sensitized to each of the
CGs (P < .001; Fig 3, B).

We then assigned each child as sensitized or not to each of the
CGs using a posterior cutoff threshold of 0.5 or greater. Of the
149 children who were sensitized to 1 or more CGs, 99 were
sensitized to only 1, 34 were sensitized to 2, and 16 were
sensitized to all 3 CGs (see Fig E11 and Tables E6 and E7 in this
article’s Online Repository at www.jacionline.org). For the
nonsensitized group, two thirds of children were disease free,
and eczema was numerically the most common disease
(21.4%). For those sensitized to CG3, 28.6% had asthma,
eczema, and hay fever as comorbidities, and only 2 (5.7%)
children were disease free.
DISCUSSION
We demonstrated that different patterns of IgE responses to

multiple allergen components can be uncovered using latent
variable modeling and that each pattern bears different
associations with clinical outcomes. Within those children with
IgE responses, the allergen components towhich they had IgE fell
into 3major clusters. The clustering was robust, reproducible, and
biologically plausible. The review of the protein families towhich
the allergen components within each CG belonged indicated
striking patterns, with each protein family being exclusive to only
1 CG. (Of note, the algorithms by which CGs were identified did
not impose any prior clinical knowledge/information on protein
sequence or clinical phenotypes of children.) Importantly,
although children could be sensitized to more than 1 CG (and
frequentlywere), sensitization to each distinct cluster (or CG)was
associated with different patterns of disease. These results are
consistent with our recent findings, which suggested the existence
of multiple atopy phenotypes.34,35

The main limitation of our study is that there are a number of
potentially important allergens that are not included on the ISAC
chip, such as those from fungi (ISAC has only 6 of the 109 fungal
allergens identified in the International Union of Immunological
Societies). The use of recombinant allergens means posttransla-
tional modifications, such as proline hydroxylation, which are
important for IgE binding in some allergens, such as Ara h 2.36 It
is possible that the clustering would have been different if addi-
tional or alternative allergen components had been available.
We also observed that a proportion of children who were not
sensitized to any allergen reported symptoms of ‘‘allergic’’
disease, particularly eczema, which was reported in almost 20%
of these children. This has been observed in other studies37 and
reflects the heterogeneity of these diseases in the population.

Sensitization to CG1 (comprising allergens of 8 different
protein families of plant origin, all of which, apart from CCD,
can be found in pollens) was strongly associated with hay fever
(>12-fold compared with those not sensitized to CG1) but not
asthma or wheeze. In their classification of pollen allergens,
Radauer and Breiteneder38 identified that of the 2615 protein
families found in seed plants, 29 accounted for more than 150
pollen allergens described. Of the 9 most abundant protein
families that were identified as dominating the pollen allergen
landscape, all but one clustered in CG1. The remaining common
family (EF hand, represented by Bet v 4) clustered to CG3, but
only 5 children were sensitized to this allergen. Within individual
protein families in CG1, it was often possible to identify a
‘‘lead/dominant’’ allergen to which almost all children were
sensitized; for example, among the b-expansins, all children
reacted to Phl p 1. Bermuda grass is not found in the United
Kingdom, yet 115 subjects had IgE to Cyn d 1. It is likely that
this represents cross-reactivity with Phl p 1, which has
approximately 67% sequence identity to Cyn d 1. For the
profilins, all children were sensitized to Mer a 1 (pollen from
annual mercury, a weed commonly seen in Europe) and Hev b
8, and most were also sensitized to Phl p 12 and Bet v 2. For
the Bet v 1–like allergens, Bet v 1 was the allergen to which
most children were sensitized. It was interesting to observe that
for all protein families in CG1, the ISAC array contained at least
1 component known to be present in pollen (www.Allergome.
org), and for each individual protein family, the pollen allergen
or allergens are frequently the one or ones to which much of the

http://www.jacionline.org
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TABLE II. Association between sensitization to CGs and clinical outcomes

Sensitization to:

Current wheeze

(OR [95% CI]), P value

Current asthma

(OR [95% CI]), P value

Current hay fever

(OR [95% CI]), P value

Eczema (OR [95% CI]),

P value

CG1 1.48 (0.77-2.84), .24 1.61 (0.84-3.10), .15 12.79 (6.84-23.90), <.001 1.10 (0.57-2.13), .78

CG2 4.19 (2.41-7.30), <.001 3.60 (2.05-6.29), <.001 2.52 (1.38-4.61), .003 1.62 (0.91-2.90), .10

CG3 5.44 (2.42-12.24), <.001 8.20 (3.49-19.24), <.001 1.15 (0.44-3.00), .77 2.00 (0.89-4.49), .09

Values in boldface indicate statistical significance.

FIG 3. Estimated marginal means for FEV1 (percent predicted; A) and eNO (B) in those sensitized to CGs.
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children are sensitized, indicating that these might be the lead
allergens. At age 11 years, many children had sIgE to all of Phl
p 1, 2, 4, 5, 6, 11, and 12. This is in keeping with the concept of
‘‘molecular spreading,’’ as suggested by the analyses in the
German Multicenter Atopy Study 90 cohort.39

For CG2, the allergen components were predominantly from
dust mites and included the cysteine protease family, where Der p
1 was the allergen to which all children were sensitized, and the
group 2 mite allergens, where Der f 2 was the dominant
component. Sensitization to CG2 was associated with an
approximately 3-fold increase in asthma and a 2-fold increase
in hay fever; no association was seen with FEV1, but there was a
significant increase in airway hyperresponsiveness.

CG3 contained a broad range of protein families, many
represented by a single component, and this was the CG to which
fewest children were sensitized (8.5%). Sensitization to CG3 was
most strongly associatedwith asthma; FEV1was significantly less
in this group (almost 7% less than in those not sensitized to CG3),
with a trend for the airways to be more reactive to methacholine.
Almost all allergens from domestic pets clustered in this CG.
Within the lipocalin protein family, most children were sensitized
to Can f 1, and all those sensitized to Can f 2 were sensitized to
multiple lipocalins, with a few children sensitized only to Equ c
1 (n 5 5) or Fel d 4 (n 5 6). Of the 9 children sensitized to Can
f 2, all but 1 had asthma. In a recent description of the character-
istics of a pediatric population with severe asthma, Konradsen
et al9 identified that sensitization to the lipocalins Can f 2 and
Equ c 1 was associated with severe asthma, whereas for serum
albumins (Fel d 2, Can f 3, and Equ c 3), there was no difference
between severe and controlled disease. Furthermore, all children
sensitized to Can f 2 were in the severe asthma group. It has been
suggested that because of sequence similarity with endogenous
human lipocalins, these proteins lie at the borderline between
self and nonself, which could predispose to TH2 immunity.40

The patterns we observed can be explained in part by the
structural relationships of the allergen components within protein
families, as indicated by their sequence similarities (shown in the
unrooted dendrograms); that is, within protein families, there are
allergens from different biological sources that show significant
structural homology. In addition, the collection of protein families
within each CG appears to reflect the propensity to develop IgE
antibodies to multiple nonhomologous proteins arising from the
same biological source. For example, CG1 included almost all of
the pollen allergens tested, CG2 included almost all of the dust
mite allergens, and CG3 included animal and food allergens. That
individual subjects have detectable IgE to multiple members of
the same protein family is not in itself a novel observation, and it
is not surprising that such allergen components would be in the
same CG. As a consequence, each protein family is exclusive to
one of the 3 CGs. Indeed, in a study of patients recruited from
allergy clinic in Italy, Scala et al41 analyzed IgE component
results (from an earlier version of ISAC containing 73 allergen
components) in more than 3000 patients with IgE reactivity to
any member of 3 ‘‘panallergen’’ groups (tropomyosins, profilins,
and pathogenesis-related class 10 proteins). They identified a
significant direct relationship between different representative
molecules within each panallergen group (correlation coefficient
usually >0.7). However, when they performed supervised
clustering on these data, the components clustered within these
panallergen groups, with little evidence of sensitization to more
than 1 panallergen. This contrasts with our findings (where
pathogenesis-related class 10 protein and profilin components
were in the same CG), which might reflect differences in the
components included, populations studies, and clustering
methodologies used.

The mechanism of development of IgE to a diverse range of
proteins from a common biological source is unclear. The nature
of T-cell responses to specific environmental allergens might be
determined in part by relative expression of different pattern
recognition receptors on the surfaces of antigen-presenting
cells,42 and the role of component-specific IgE on the uptake of
the component by dendritic cells is another intriguing finding.43

Genetic variation within the HLA locus can also influence the
pattern of development of IgE to multiple allergens.44,45
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In conclusion, our results suggest that distinct patterns of IgE
responses to different protein families are associated with
different clinical symptoms. Latent variable modeling might
help identification of these patterns and development of
algorithms that can facilitate better interpretation of multiple
sIgE allergen component data. However, our findings need to
replicated in other populations before such algorithms can be
developed and applied in the clinic.
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Key messages

d IgE responses to allergen components in a multiplex array
(ISAC) cluster into 3 main groups in a population of
11-year-old children.

d These groups contain both homologous proteins from
different sources and nonhomologous proteins from the
same source.

d IgE responses to clusters of allergens can be differentially
associated with respiratory allergies but not with eczema.
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