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MULTIVERSION 
CONCURRENCYCONTROL 

5.1 INTRODUCTION 

In a multiversion concurrency control algorithm, each Write on a data item x 
produces a new copy (or version) of X. The DM that manages x therefore 
keeps a list of versions of X, which is the history of values that the DM has 
assigned to X. For each Read(x), the scheduler not only decides when to send 
the Read to the DM, but it also tells the DM which one of the versions of x to 
read. 

The benefit of multiple versions for concurrency control is to help the 
scheduler avoid rejecting operations that arrive too late. For example, the 
scheduler normally rejects a Read because the value it was supposed to read 
has already been overwritten. With multiversions, such old values are never 
overwritten and are therefore always available to tardy Reads. The scheduler 
can avoid rejecting the Read simply by having the Read read an old version.’ 

Maintaining multiple versions may not add much to the cost of concur- 
rency control, because the versions may be needed anyway by the recovery 
algorithm. As we’ll see in the next chapter, many recovery algorithms have to 
maintain some before image information, at least of those data items that have 
been updated by active transactions; the recovery algorithm needs those before 
images in case any of the active transactions abort. The before images of a data 
item are exactly its list of old versions. It is a small step for the DM to make 
those versions explicitly available to the scheduler. 

An obvious cost of maintaining multiple versions is storage space. To 
control this storage requirement, versions must periodically be purged or 
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archived. Since certain versions may be needed by active transactions, purging 
versions must be synchronized with respect to active transactions. This purg- 
ing activity is another cost of multiversion concurrency control. 

We assume that if a transaction is aborted, any versions it created are 
destroyed. In our subsequent discussion, the term “version” will refer to the 
value of a data item produced by a transaction that’s either active or commit- 
ted. Thus, when the scheduler decides to assign a particular version of x to 
Read(x), the value returned is not one produced by an aborted transaction. If 
the version read is one produced by an active transaction, recoverability 
requires that the reader’s commitment be delayed until the transaction that 
produced the version has committed. If that transaction actually aborts 
(thereby invalidating its version), the reader must also be aborted. 

The existence of multiple versions is only visible to the scheduler and DM, 
not to user transactions. Transactions still reference data items, such as x and 
3: Users therefore expect the DBS to behave as if there were only one version of 
each data item, namely, the last one that was written from that user’s perspec- 
tive. The scheduler may use multiple versions to improve performance by 
rejecting operations less frequently. But it must not change the system’s 
functionality over a single version view of the database. 

There are many applications of databases in which users do want to 
explicitly access each of the multiple versions of a data item. For example, a 
user may wish to maintain several versions of a design database: the last design 
released for manufacturing, the last design checked for correctness, and the 
most recent working design. The user may update each version of the design 
independently. Since the existence of these multiple versions is not transparent 
to the user, such applications are not appropriate for the multiversion concur- 
rency control algorithms described in this chapter. 

Analyzing Correctness 

To analyze the correctness of multiversion concurrency control algorithms, we 
need to extend serializability theory. This extension requires two types of 
histories: multiversion (MV) histories that represent the DM’s execution of 
operations on a multiversion database, and single version (IV) histories that 
represent the interpretation of MV histories in the users’ single version view of 
the database. Serial 1V histories are the histories that the user regards as 
correct. But the system actually produces MV histories. So, to prove that a 
concurrency control aIgorithm is correct, we must prove that each of the MV 
histories that it can produce is equivalent to a serial 1V history, 

What does it mean for an MV history to be equivalent to a 1V history? 
Let’s try to answer this by extending the definition of equivalence of 1V histo- 
ries that we used in Chapters 2-4. To attempt this extension, we need a little 
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notation. For each data item X, we denote the versions of x by xi, xj, . . . , where 
the subscript is the index of the transaction that wrote the version. Thus, each 
Write in an MV history is always of the form Wi[Xi], where the version 
subscript equals the transaction subscript. Reads are denoted in the usual way, 
such as ri[xj]. 

Suppose we adopt a definition of equivalence that says an MV history 
HM” is equivalent to a 1V history HIV if every pair of conflicting operations in 
Hbp, is in the same order in HIV. Consider the MV history 

H, = wobol co WEA cl rz[xol w,[yzl cz. 

The only two operations in H, that conflict are w,[x,] and r,[x,]. The operation 
w,[x,] does not conflict with either w,[x,] or r,[x,], because it operates on a 
different version of x than those operations, namely x,. Now consider the 1V 
history 

Hz = wo[xl co 4x1 ~1 ~z[xl w[yl cz. 

We constructed H, by mapping each operation on versions x0, x,, and yz in H, 
into the same operation on the corresponding data items x and y. Notice that 
the two operations in H, that conflict, w,[x,] and r,[x,], are in the same order 
in H, as in H,. So, according to the definition of equivalence just given, H, is 
equivalent to H,. But this is not reasonable. In H,, T, reads x from T,, whereas 
in H,, T, reads x from T,,.’ Since T2 reads a different value of x in H, and H,, it 
may write a different value in y. 

This definition of equivalence based on conflicts runs into trouble because 
MVand 1V histories have slightly different operations - version operations 
versus data item operations. These operations have different conflict proper- 
ties. For example, w,[x,] does not conflict with yz[xo], but their corresponding 
1V operations w,[x] and TJX] do conflict. Therefore, a definition of equiva- 
lence based on conflicts is inappropriate. 

To solve this problem, we need to return to first principles by adopting the 
more fundamental definition of view equivalence developed in Section 2.6. 
Recall that two histories are view equivalent if they have the same reads-from 
relationships and the same final writes. Comparing histories H, and H,, we see 
that T, reads x from T, in H,, but T, reads x from T, in H,. Thus, H, is not 
view equivalent to H2. 

Now that we have a satisfactory definition of equivalence, we need a way 
of showing that every MV history H produced by a given multiversion concur- 
rency control algorithm is equivalent to a serial 1V history. One way would be 
to show that SG( H) is acyclic, so H is equivalent to a serial MV history, Unfor- 
tunately, this doesn’t help much, because not every serial MV history is equiva- 
lent to a serial 1V history. For example, consider the serial MV history 

‘Recall from Section 2.4 that T; reads xfrom Tj in H if (1) tuj[x] < TJx], (2) aj Q ri[x], and (3) 
if there is some wk[x] such that Wj[x] < wk[x] < wi[x], then ak < r;[x]. 
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H, = w,,[x,,l w,[yol co r,[.Gl Y,[Yol Wi~,l WlrYll Cl YL[XOI YAYll C?. 

If we treat the versions of x and y as independent data items, then we get 

SG(H,) = T,, -+ T, -+ T,. 

Although H, is serial and SG(H,) is acyclic, H, is not equivalent to a serial 
1V history. For example, consider the 1V history 

We can show that I-I, is not view equivalent to H, by showing that they do not 
have the same reads-from relationships. In H,, TL reads x and y from T,. But in 
H,, T2 reads x from T,, and reads 3’ from T,. Since T, reads different values in 
H, and H,, the two histories are not equivalent. Similarly, H, is not equivalent 
to the 1V history 

Clearly, H, is not equivalent to any 1V serial history over the same set of trans- 
actions. 

Only a subset of serial MV histories, called l-serial MV histories, are 
equivalent to serial 1V histories. Intuitively, a serial MV history is I-serial if 
for each reads-from relationship, say T, reads x from T,, T, is the last trdnsac- 
tion preceding T, that writes any version of x. Notice that Ii, is not l-serial 
because TL reads x from T,), not T,, which is the last transaction preceding T2 
that writes x. 

All l-serial MV histories are equivalent to serial 1V histories, so we can 
define l-serial histories to be correct. To prove that a multiversion concurrency 
control algorithm is correct, we must show that its MV histories are equivalent 
to l-serial MV histories. We will do this by defining a new graph structure 
called a multiversion serialization graph (MVSG). An MV history is equivalent 
to a l-serial MV history iff it has an acyclic MVSG. Now proving multiversion 
concurrency control algorithms correct is just like standard serializability 
theory. We simply prove that its histories have acyclic MVSGs. We now 
proceed with a formal development of this line of proof. 

5.2 *MULTIVERSION SERIALIZABILITY THEORY’ 

Let T = {T,,, . . . T,} be a set of transactions, where the operations of T, are 
ordered by <i for 0 I i 5 n. To process operations from T, a multiversion 
scheduler must translate T’s operations on (single version) data items into 
operations on specific versions of those data items. We formalize this transla- 

‘This section requires reading Section 2.6 as a prerequisite. We recommend skipping this and 
other starred secrions of this chdpter on the first reading, to gain some intuition for mulriver- 
sion algorithms before studying their serializability theory. 
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tion by a function h that maps each wi[x] into w;[x;], each ri[x] into ri[q] for 
some j, each c; into c;, and each a; into ai. 

A complete multiversion (ML’) history H over T is a partial order with 
ordering relation < where 

1. H = h( U:‘J;) for some translation function h; 
2. for each Ti and all operations pi, 4; in Ti, if pi <i qi, then h(pJ < h(qJ; 
3. if h(rj[x]) = rj[xiJ, then w;[xJ < rj[Xi]; 

4. if w;[x] <i ri[x], then h(rJx]) = r;[xJ; and 
5. if h(r$x]) = rj[Xi], i # j, and cj E H, then C; < cj. 

Condition (1) states that the scheduler translates each operation submitted 
by a transaction into an appropriate multiversion operation. Condition (2) 
states that the MV history preserves all orderings stipulated by transactions. 
Condition (3) states that a transaction may not read a version until it has been 
produced.3 Condition (4) states that if a transaction writes into a data item x 
before it reads X, then it must read the version of x that it previously created, 
This ensures that His consistent with the implied semantics of the transactions 
over which it is defined. If H satisfies condition (4), we say that it preserves 
reflexive reads-from relationships. Condition (5) says that before a transaction 
commits, all the transactions that produced versions it read must have already 
committed. If H satisfies this condition we say it is recoverable. 

An M V history H is a prefix of a complete MV history. We say that an MV 
history preserves reflexive reads-from relationships (or is recoverable) if it is 
the prefix of a complete MV history that does so. As in 1V histories, a transac- 
tion Ti is committed (respectively aborted) in an MV history H if ci (respec- 
tively ai) is in H. Also, the committed projection of an MV history H, denoted 
C(H), is defined as for 1V histories; that is, C(H) is obtained by removing from 
H the operations of all but the committed trans,actions. It is easy to check that 
if H is an MV history then C(H) is a complete MV history, i.e., C(H) satisfies 
conditions (1) - (5) (see Exercise 5.2). 

For example, given transactions {TO, T,, T2, T,, T4}$ 

To = 
%[Xl \ 
wl[Yl 2 co 
wlkl 

T3 = 73[21 

/ %[)'I\ 

b w,[zl PC3 

T, = rl[x] - WSYI 
r&l - 

- Cl T4 = r&l - 6 
y [zl - 4 

T2 = 
721~1 \ 

7Szl j 

w,[xl - 6 

‘To ensure condition (3), we will normally include in our examples an initializing transaction, 
To, that creates the initial version of eacli data item. 
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the following history, H,, is a complete MV history over ET,,, T,, T,, T,, T4}. 

,411 compIete MV histories over a set of transactions must have the same 
Writes, but they need not have the same Reads. For exampIe, H- has ri[y,] 
instead of rj[v,]. 

MV History Equivalence 

Two 1V histories over the same transactions are uiew equivalent if they contain 
the same operations, have the same reads-from reIationships, and the same 
final writes. However, for MV histories, we can safely drop “and the same 
final writes” from the definition. If two histories are over the same transac- 
tions, then they have the same Writes. Since no versions are overwritten, all 
Writes are effectively final writes. Thus, if two MV histories over the same 
transactions have the same operations and the same reads-from relationships, 
then they have the same final writes and are therefore view equivalent. 

To formalize the definition of equivalence, we must formalize the notion of 
reads-from in A4V histories. To do this, we replace the notion of data item by 
version in the ordinary definition of reads-from for 1V histories. Transaction 
r, reads x from T, in MV history H if T, reads the version of x produced by T,. 
Since the version of x produced by XC, is x,, T, reads x from T, in H iff T, reads 
x,, that is, iff r,[xJ E H. 

Two h4V histories over a set of transactions Tare equivalent, denoted s, 
if they have the same operations and the same reads-from relationships. In 
view of the preceding discussion, having the same reads-from relationships 
amounts to having the same Read operations. Therefore, equivalence of MV 
histories reduces to a trivial condition, as stated in the following proposition. 

Proposition 5.1: Two MV histories over a set of transactions are equiva- 
lent iff the histories have the same operations. 3 
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Next we want to define the equivalence of an MV history HMv to a 1V history 
Hiv. We will only be interested in such an equivalence if Hiv is a valid one 
version view of Hbiv. That is, Hiv and H&Iv must be over the same set of trans- 
actions and their operations must be in one-to-one correspondence. More 
precisely, there must be a bijective (one-to-one and onto) function from the 
operations of H iv to those of Hbrv, mapping Ci to ci, a, to ai, r;[x] to l;.[xI] for 
some version xj of x and w,[x] to wJxJ. 

Given that the operations of Hi~v and Hrv are in one-to-one correspon- 
dence, we can talk about their, reads-from relationships being the same. We 
need not worry about final writes; all of the final writes in Niv must be part of 
the state produced by Hh?v, because HMv retains all versions written in it. So, 
just like MV histories, an MV history and 1V history are equivalent if they 
have the same reads-from relationships.’ 

Serialization Graphs 

Two operations in an MV history conflict if they operate on the same version 
and one is a Write. Only one pattern of conflict is possible in an MV history: if 
pi < qj and these operations conflict, then pi is w;[x,] and qj is r$x;] for some 
data item X. Conflicts of the form wf[xi] < wj[xi] are impossible, because each 
Write produces a unique new version. Conflicts of the form Yj[xi] < wi[x,] are 
impossible, because Tj cannot read xi until it has been produced. Thus, all 
conflicts in an MV history correspond to reads-from relationships. 

The serialization graph for an MV history is defined as for a 1V history. 
But since only one kind of conflict is possible in an MV history, SGs are quite 
simple. Let H be an MV history. SG(H) has nodes for the committed transac- 
tion in H and edges T; + Tj (i #:j) whenever for some X, Tj reads x from Ti. 
That is, T; + Tj is present iff for some X, rj[xf] (i # j) is an operation of C(H). 
This gives us the following proposition. 

Proposition 5.2: Let H and H’ be MV histories. If II = N’, then SG(H) 
= SG(H’). 0 

The serialization graphs of N, and H, follow. 

SG(H,) = T, 
/T2\ 
-T3- T., 
bl-1 

‘%vo 1V histories can be equivalent in this sense without being view equivalent to each other, 
because they don’t have the same final writes. 
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One Copy Serializability 

A complete MV history is serial if for every two transactions T, and Tl that 
appear in H, either all of T,‘s operations precede all of T’,‘s or vice versa. Nor all 
serial MV histories behave like ordinary serial 1V histories, for example, 

The subset of serial MV histories that are equivalent to serial 1V histories is 
defined as follows. 

A serial MV history H is one-copy serial (or I-serial) if for all i,i, and X, if 
T, reads x from T,, then i = j, or Ti is the Iast transaction preceding T, that 
writes into any version of X. Since H is serial, the word last in this definition is 
well defined. History H, is not l-serial because T2 reads x from To but w,[x,,] < 
w,[x,] < r2[x,]. History H,, which follows, is l-serial. 

An MV history is one-copy serializable (or ZSR) if its committed projec- 
tion is equivalent to a l-serial MV history.5 For example, H, is 1SR because 
C(H,) = H, is equivalent to H,, which you can verify by Proposition 5.1. 
C(H,) = Hi is equivalent to no l-serial history, and thus H7 is not 1SR. 

A serial history can be 1SR even though it is not l-serial. For example, 

H, = W,b”l 6 r,[x,l ~,[~,I Cl ~zE%l cz 
is not l-serial since TL reads x from To instead T,. But it is lSR, because it is 
equivalent to 

To justify the value of one-copy serializability as a correctness criterion, we 
need to show that the committed projection of every 1SR history is equivalent 
to a serial 1V history. 

Theorem 5.3: Let H be an MV history over ?: C(H) is equivalent to a 
serial, 1V history over T iff H is 1SR. 

Proof: (If) Since H is lSR, C(H) is equivalent to a l-serial MV history 
H,. Translate H, into a serial 1V hisrory Hi, by translating each WJXJ into 
wi[x] and Y,[x~] into Yj[x]. To show H, E HJ, consider any reads-from rela- 
tionship in Hs, say Tl reads x from T,. Since E?, is I-serial, no wk[xk] lies 
between wJx,] and u,[xJ. Hence no wk[x] lies between w,[x] and Qx] in H:. 

“It turns out that this is a prefix commit-closed property. Unlike view serializability, we need 
not require that the committed projection of every prefix of an MV history be equivalent to a 
l-serial MV history. This follows from the fact that the committed projection of the history 
itself is equivalent to a l-serial MV history (see Exercise 5.4). 
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Thus Tj reads x from T; in Hi. Now consider a reads-from relationship in 
Hi, Tj reads x from Ti. If rj[x] was translated from rj[x;] in H,, then Tj 
reads x from T, in H, and we’re done. So assume instead that rj[x] was 
translated from rj[xk], k # i. If i = j, then k = i by condition (4) in the 
definition of MV history and we’re done. If i + j, then since H, is l-serial, 
either wi[xi] < wh[xk] or rj[xk] < wJx,]. But then, translating these opera- 
tions into Hi implies that Tj does not read x from T; in Hi, a contradiction. 
Thus Tj reads x from Ti in H,. This establishes Hi, E H,. Since H, E 
C(H), C(H) = H: follows by transitivity of equivalence. 

(Only if) Let Hi be the hypothesized serial 1V history equivalent to 
C(H). Translate HJ into a serial MV history H, by translating each c; into 
ci, wi[x] into wi[x,], and T~[x] into rj[x;] such that Tj reads x from Ti in H:. 
We must show that H, is indeed a complete MV history. It is immediate 
that it satisfies conditions (1) and (2) of the complete MV history defini- 
tion. For condition (3), it is enough to show that each rj[x] is preceded by 
some w;[x] in Hi. Since H is an MV history, each Tj[Xk] in C(H) is preceded 
by wk[xk]. Since H1 has the same reads-from relationships as the MV 
history C(H), every Read in Hi, must be preceded by a Write on the same 
data item, as desired. To show H, satisfies condition (4), note that if wj[x] 
< rj[x] in Hi, then since Hi is serial, Tj reads x from Tj in Hi and rj[x] is 
translated into rj[Xj] in H,. Finally, for condition (5) we must show that 
if rj[x/] (i+j) is in H, then ci < cj. If rj[xi] is in H, then Tj reads x from T; 
in Hl. Since H: is serial and Ti, Tj are committed in it, we have ci < cl in 
Hi. By the translation then, it follows that c; < cj in H,, as wanted. This 
concludes the proof that H, is indeed an MV history, Since the transla- 
tion preserves reads-from relationships, so H, s Hi. By transitivity, 
C(H) = H,. 

It remains to prove that H, is l-serial. So consider any reads-from rela- 
tionship in HS, say Tj reads x from T;, where i # j. Since Hi is a 1%’ history, 
no wk[x] lies between wi[x] and rj[x]. Hence no wk[xk] lies between wi[xi] 
and rj[xi] in H,. Thus, H, is l-serial, as desired. 0 

The 1 -Serializability Theorem 

To determine if a multiversion concurrency control algorithm is correct, we 
must determine if all of its histories are 1SR. To do this, we use a modified SG. 
The modification is motivated by the fact that all known multiversion concur- 
rency control algorithms sort the versions of each data item into a total order. 
We use this total order of versions to define an appropriately modified SG. 

Given an MV history H and a data item x, a version order, <, for x in His 
a total order of versions of x in H. A version order for H is the union of the 
version orders for all data items. For example, a possible version order for H, 
is x0 < x,, y,, < y1 < y3, and z0 4 z3. 
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Given an MV history H and a version order 4, the multit,ersion serializa- 
tiort graph for H and <, MVSG(H, e), is SG(H) with the following version 
order edges added: for each Y~[x,] and u~,[x,] in C(H) where i, j, and k are 
distinct, if x, << ,y, then include T, -+ T,, otherwise include Tk + T,.’ (Note that 
there is no version order edge ifj = k, that is, if a transaction reads from 
itself.) For example, given the preceding version order for H,, 

The version order edges that are in MVSG(H,, e) but not in SG(H) are T, --f 
TL, T, + T,, and TL -+ T,. Except for T,, --) T,, all edges in SG(H) are also 
version order edges. 

Given an MV history H, suppose SG(H) is acyclic. We know that a serial 
MV history H, obtained by topologically sorting SG(H) may not be equivalent 
to any serial 1V history. The reason is that some of HS’s reads-from relation- 
ships may be changed by mapping version operations into data item opera- 
tions. The purpose of version order edges is to detect when this happens. If 
T~[x,] and w,[x,] are in C(H), then the version order edge forces UJ~[X,] to either 
precede wi[x,] or follow Y~[x,] in H,. That way, when operations on x, and xj are 
mapped to operations on x when changing H, to a IV history, the reads-from 
relationship is undisturbed. This ensures that we can map H, into an equiva- 
lent 1V history, Of course, all of this is possible onIy if SG(H) is stiI1 acyclic 
after adding version order edges. This observation leads us to the following 
theorem, which is our main tool for analyzing multiversion concurrency 
control algorithms. 

Theorem 5.4: An MV history H is 1SR iff there exists a version order 4 
such that MVSG(H, Q ) is acyclic. 

Proqf: (If) Let H, be a serial MV history T,, T,! . . . T,-, where T,,, T,,:, . . . 
T,. is a topological sort of MVSG(H, <). Since C(H) is an MV history, it 
follows that H, is as well. Since f-l, has the same operations as C(H), by 
Proposition 5.1, H, s C(H). 

‘Recali that the nodes of X(H) and. therefore, of h4VSG(H, 9) are the ~orrmi~trd UJ~SAC- 
lions in H. 
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It remains to prove that H, is l-serial. Consider any reads-from rela- 
tionship in Hs, say Tk reads x from T,, k # i. Let wi[xi] (i#i and if k) be 
any other Write on x.’ If xi 4 xj, then MVSG(H, < ) includes the version 
order edge Ti + Tj, which forces Tj to follow Ti in H,. If xj 4 xi, then 
MVSG( H, < ) includes the version order edge Tk -+ T,, which forces Th to 
precede Tj in H,. Therefore, no transaction that writes x falls in between 
Tj and Tk in H,. Thus, H, is l-serial. 

(Only if) Given H and -%, let MV(H, 4 ) be the graph containing only 
version order edges. Version order edges depend only on the operations in 
H and 4 ; they do not depend on the order of operations in H. Thus, if H 
and H’ are MV histories with the same operations, then MV(H, 4 ) = 
MV( H’, 4 ) for all version orders Q , 

Let H, be a l-serial MV history equivalent to C(H). All edges in SG( Hs) 
go “left-to-right;” that is, if T; + Tj then T, precedes TI in H,. Define < as 
follows: xi 6 x1 only if T; precedes Tj in H,. All edges in MV(H,, +) are 
also left-to-right. Therefore all edges in MVSG(H,, e) = SG(H,) U 
MV(H,, <) are left-to-right. This implies MVSG(H,, 4) is acyclic. 

By Proposition 5.1, C(H) and H, have the same operations. 
Hence MV(C(H), +) = MV(H,, 4). By Proposition 5.1 and 5.2 
SG(C(H)) = SG(H,). Therefore MVSG(C(H), +) = MVSG(H,, 4). Since 
MVSG( H,, < ) is acyclic, so is MVSG(C( H), 4 ), which is identical to 
MVSG(H, <). cl 

5.3 MULBBVERSlQN TllMESTAMP ORDERING 

We can define schedulers for multiversion concurrency control based on each 
of the three basic types of schedulers: 2PL, TO, and SGT. We begin with a 
multiversion scheduler based on TO because it is the easiest to prove correct. 

As for all TO schedulers, each transaction has a unique timestamp, 
denoted ts(Ti). Each operation carries the timestamp of its corresponding 
transaction. Each version is labeled by the timestamp of the transaction that 
wrote it. 

A multiversion TO (M VTO) scheduler processes operations first-come- 
first-served. It translates operations on data items into operations on versions 
to make it appear as if it processed these operations in timestamp ,order on a 
single version database. The scheduler processes ri[x] by first translating it into 
YJx~], where xk is the version of x with the largest timestamp less than or equal 
to ts(Ti), and then sending rj[xk] to the DM. It processes Wi[X] by considering 
two cases. If it has already processed a Read Tj[Xk] such that ts( Tk) < ts( Ti) < 
ts( Tj), then it rejects wi[x]. Otherwise, it translates’w,[x] into WJXJ and sends it 
to the DM. Finally, to ensure recoverability, the scheduler must delay the 
processing of ci until it has processed Cj for all transactions Tj that wrote 
versions read by Ti. 
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To understand MVTO, it is helpful to compare its effect to an execution, 
say Hiv, on a single version database in which operations execute in timestamp 
order. In Hiv, each Read, r,[xJ, reads the value of x with the largest timestamp 
less than or equal to ts(T,). This is the value of the version that the MVTO 
scheduler selects when it processes rr[xJ. 

Since MVTO need not process operations in timestamp order, a Write 
could arrive whose processing would invalidate a Read that the scheduler 
already processed. For example, suppose w,[xOJ < rL[xoJ represents the execu- 
tion so far, where ts(T,) = i for all transactions. Now if u/,[xJ arrives, the 
scheduler has a problem. If it translates wl[xJ into w,[x,] and sends it to the 
DM, then it produces a history that no longer has the same effect as a TO 
execution on a single version database. For in such an execution, rL[x] would 
have read the value of x written by T,, but in the execution w,,[xnJ r,[x,J w,[x,J, 
it reads the value written by To. In this case, we say that w,[xJ would have 
invalidated rz[xoJ. To avoid this problem, the scheduler rejects w,[x] in this 
case. In general, it rejects w,[xJ if it has already processed a Read r,[xk] such 
that ts( Tk) < ts( T,) < ts( T,). This is exactly the situation in which processing 
w,[xJ would invalidate r,[xkJ. 

To select the appropriate version to read and to avoid invalidating Reads, 
the scheduler maintains some timestamp information about operations it has 
already processed. For each version, say x,, it maintains a timestamp interval, 
denoted interval(x,) = [wts, rts], where wts is the timestamp of x, and rts is the 
largest timestamp of any Read that read x,; if no such Read exists, then rts = 
wts. Let intervals(x) = { interval(x,) 1 x, is a version of x>. 

To process ~~1x1, the scheduler examines intervals(x) to find the version x1 
whose interval, interval(x,) = [wts, rts], has the maximal wts less than or 
equal to ts( T,). If ts( T,) > rts, then it sets rts to ts( 17;). 

To process u/,[xJ, the scheduler again examines intervals(x) to find the 
version x1 whose interval [wts, rtsJ has the maximal wts less than ts( T1). If rts 
> ts( T;), then it rejects zu,[xJ. Otherwise, it sends w,[x,J to the DM and creates 
a new interval, interval(x,) = [wts, rts], where wts = rts = ts( T,). 

Eventually, the scheduler will run out of space for storing intervals, or the 
DM will run out of space for storing versions. At this point, old versions and 
their corresponding intervals must be deleted. To avoid incorrect behavior, it is 
essential that versions be deleted from oldest to newest. To see why, consider 
the following history, 

where ts( T,) = i for 0 5 i I 4. Suppose the system deleted x2 but not x,. If 
r3[xJ now arrives, the scheduler will incorrectly translate it into r3[xoJ . Suppose 
instead that the system deleted x0. If r,[xJ now arrives, the scheduler will find 
no version whose interval has a wts < ts( T,). This condition indicates that the 
DBS has deleted the version that T,[x] has to read, so the scheduler must reject 
r,[xJ* 



5.3 MULTIVERSION TIMESTAMP ORDERING 155 

‘Proof of Correctness 

To prove MVTO correct, we must describe it in serializability theory As usual, 
we do this by inferring properties that all histories produced by MVTO will 
satisfy. Using these properties as our formal specification of the algorithm, we 
prove that all histories produced by MVTO have an acyclic MVSG and hence 
are 1SR. 

The following properties describe the essential characteristics of every 
MVTO history H over (T,, . . . T,}. 

MVTO,. For each T;, there is a unique timestamp ts( T;); that is, ts( Tj) = 
ts( T1) iff i = j. 

M VTO,. For every rk[$ E H, wj[xjJ < rk[xjJ and ts(Tj) I ts(Tk). 

M VTO,. For every rk[X]J and w;[xiJ E H, i#i, either (a) ts( Ti) < ts( Tj) or 
(b) ts( Tk) < ts( Ti) or (c) i = k and Y~[x~] < wi[xiJ. 

M VTO,. If rj[xf] E H, i+i, and cj E H, then C; < cj. 

Property MVTO, says that transactions have unique timestamps. Property 
MVTO, says that each transaction Tk only reads versions with timestamps 
smaller than ts( Tk). Property MVTO, states that when the scheduler processes 
Q[x~], xj is the version of x with the largest timestamp less than or equal to 
ts( Tk). Moreover, if the scheduler later receives wi[xi], it will reject it if ts( Tj) < 
ts( T,) < ts( Tk). MVTO, states that H is recoverable. 

These conditions ensure that H preserves reflexive reads-from relation- 
ships. To see this, suppose not, that is, wk[xkJ < rk[xj] andj # k. By MVTO, 
andi # k, ts( Tj) < ts( Tk). By MVTO,, either (a) tS( Tk) < ts( Tj), (b) tS( Tk) < 
ts( Tk), or (c) Yk[XjJ < wk[xk]. All three cases are impossible, a contradiction. 

We now prove that any history satisfying these properties is 1SR. In other 
words, MVTO is a correct scheduler. 

Theorem 5.5: Every history H produced by MVTO is 1SR. 

Proof: Define a version order as follows: xi < Xj iff ts( T;) < tS( Tj). We 
now prove that MVSG(H, 4) is acyclic by showing that for every edge 
Ti + Tj in MVSG(H, 6), ts( Ti) < ts(Tj). 

Suppose T; + Tj is an edge of SG(H). This edge corresponds to a reads- 
from relationship. That is, for some X, Tj reads x from T;. By MVTO,, 
ts( Ti) 5 ts( Tj). By MVTO,, ts( T;) # ts(Tj). SO, ts( Ti) < ts( Tj) as desired. 

Let rk[xj] and wi[xi] be in H where i, j, and k are distinct, and consider 
the version order edge that they generate. There are two cases: (1) xi 4 Xj, 
which implies Ti + Tj is in MVSG(H, < ); and (2) xj 4 xi, which implies 
Tk -+ T; is in MVSG(H, + ). In case (l), by definition of -%, ts( Ti) < 
ts( Tj). In case (2), by MVTO,, either ts( Ti) < ts( Tj) or ts( Tk) < ts( Ti). The 
first option is impossible, because Xj % xi implies ts( Tj) < ts( T;). SO, ts( Tk) 
< ts( Ti) as desired. 
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Since all edges in MVSG( H, + ) are in timestamp order, hlVSG(H, + ) is 
acyclic. By Theorem 5.4, H is 1SR. [3 

5.4 MULTIVERSION TWO PHASE LOCKING 

Two Version 2PL 

In 2PL, a write lock on a data item x prevents transactions from obtaining read 
locks on x. We can avoid this locking conflict by using two versions of x. When 
a transaction T, writes into x, it creates a new version x, of x. It sets a lock on x 
that prevents other transactions from reading x, or writing a new version of x. 
However, other transactions are allowed to read the previous version of x. 
Thus, Reads on x are not delayed by a concurrent writer of x. In the language 
of Section 4.5, we are using 2PL for ww synchronization and version selection 
for rw synchronization. As we will see, there is also certification activity 
involved. 

To use this scheme, the DM must store one or two versions of each data 
item. If a data item has two versions, then only one of those versions was writ- 
ten by a committed transaction. Once a transaction T, that wrote x commits, 
its version of x becomes the unique committed version of x, and the previous 
committed version of x becomes inaccessible. 

The two versions of each data item could be the same two versions used by 
the DM’s recovery algorithm. If T, wrote x but has not yet cormmitted, then the 
two versions of x are Tl’s before image of x and the value of x it wrote. As we 
will see, T,‘s before image can be deleted once T, commits. So, an old version 
becomes dispensable for both concurrency control and recovery reasons at 
approximately the same time.’ 

A two version 2PL (2 VZPL) scheduler uses three types of locks: read locks, 
write locks, and certify locks. These locks are governed by the compatibility 
matrix in Fig. 5-l. The scheduler sets read and write locks at the usual time, 
when it processes Reads and Writes. When it learns that a transaction has 
terminated and is about to commit, it converts all of the transaction’s write 
locks into certify locks. We will explain the handling and significance of certify 
locks in a moment. 

When a 2V2PL scheduler receives a Write, u/,[x], it attempts to set 
wl,[xJ. Since write locks conflict with certify locks and with each other, the 
scheduler delays w,[x] if another transaction already has a write or certify lock 
on x. Otherwise, it sets t~jI,[xJ, translates w,[xJ into w,[x,J, and sends wi[xlJ to 
the DM. 

When the scheduler receives a Read, T,[x], it attempts to set v&[xJ. Since 
read locks only conflict with certify locks, it can set this lock as long as no 

-This firs especially \vell with the shadow page recovery techniques used, for example. in the 
no-undo/no-redo algorithm of Section 6.7. 
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FIGURE 5-i 
Compatibility Matrix for Two Version 2PL 

transaction already owns a certify lock on X. If Tj already owns wli[.u] and has 
therefore written xi, then the scheduler translates Y;[x] into YJxJ, which it sends 
to the DM. Otherwise, it waits until it can set a read lock, and then sets the 
lock, translates YJX] into rj[xj], where xj is the most recently (and therefore 
only) committed version of X, and sends ri[xj] to the DM. Note that since only 
committed versions may be read (except for versions produced by the reader 
itself), the scheduler avoids cascading aborts and, a fovtiori, ensures that the 
MV histories it produces are recoverable. 

When the scheduler receives a Commit, ci, indicating that T; has termi- 
nated, it attempts to convert T/s write locks into certify locks. Since certify 
locks conflict with read locks, the scheduler can only do this lock conversion 
on those data items that have no read locks owned by other transactions. On 
those data items where such read locks exist, the lock conversion is delayed 
until all read locks are released. Thus, the effect of certify locks is to delay T,‘s 
commitment until there are no active readers of data items it is about to over- 
write. 

Note that lock conversions can lead to deadlock just as in standard 2PL. 
For example, suppose T; has a read lock on x and Tj has a write lock on X. If Ti 
tries to convert its read lock to a write lock and Tj tries to convert its write lock 
to a certify lock, then the transactions are deadlocked. We can use any dead- 
lock detection or prevention technique: cycle detection in a WFG, timestamp- 
based prevention, etc. 

Since a transaction may deadlock while trying to convert its write locks, it 
may be aborted during this activity. Therefore, it must not release its locks or 
be committed until it has obtained all of its certify locks. 

Certify locks in 2V2PL behave much like write locks in ordinary 2PL. 
Since the time to certify a transaction is usually much less than the total time to 
execute it, 2V2PL’s certify locks delay Reads for less time than 2PL’s write 
locks delay Reads. However, since existing read locks delay a transaction’s 
certification in 2V2PL, the improved concurrency of Reads comes at the 
expense of delaying the certification and therefore the commitment of update 
transactions. 
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Using More than Two Versions 

The only purpose served by write locks is to ensure that only two versions of a 
data item exist at a time. They are not needed to attain l-serializability. If we 
relax the conflict rules so that write locks do not conflict, then a data item may 
have many uncertified versions (i.e., versions written by uncommitted transac- 
tions), However, if we follow the remaining 2V2PL locking rules, then only 
the most recently certified version may be read. 

If we are willing to cope with cascading aborts, then we can be a little 
more flexible by allowing a transaction to read any of the uncertified versions. 
(We could make the same allowance in 2V2PL, in which there is at most one 
uncertified version to read.) To get the same correct synchronization behavior 
as 2V2PL, we have to modify the scheduler in two ways. First, a transaction 
cannot be certified until all of the versions it read (except for ones it wrote 
itself) have been certified. And second, the scheduler can only convert a write 
lock on x into a certify lock if there are no read locks on certified versions of x. 

Essentially, the scheduler is ignoring a read lock on an uncertified version 
until either that version is certified or the transaction that owns the read lock 
tries to become certified. This is just like delaying the granting of that read lock 
until after the version to be read is certified. The only difference is that cascad- 
ing aborts are now possible. If the transaction that produced an uncertified 
version aborts, then transactions that read rhat version must also abort. 

*Correctness of 2V2PL 

To list the properties of histories produced by executions of 2V2PL, we need to 
include the operationf,, denoting the certification of T,. 

Let H be a history over {T,), . . . T,,) produced by 2V2PL. Then H must 
satisfy the following properties. 

2 V2PL,. For every T,,fi follows all of Ti’s Reads and Writes and precedes 
T/s commitment. 

2 V2PLL. For every rk[x,] in H, ifj + k, then cj < Q[x~]; otherwise wk[xk] 
< ~k[Xkl* 
2 V2lJL,. For every ZU~[X~] and Y~[x]] in H, if wk[xk] < Y~[x]], then j = k. 

Property 2V2PL, says that every Read YJXJ either reads a certified version 
or reads a version written by itself (i.e., Tk). Property 2V2PL, says that if Tk 
wrote x before the scheduler received rk[x], then it translates Y~[x] into rh[xbj’. 

2 v2 PL,. If Y~[xJ and w,[x,] are in H, then eitherf, < Y~[x,J or Y~[x]] < fi. 

Property 2V2PL, says that Y~[xJ is strictly ordered with respect to the certi- 
fication operation of every transaction that writes x. This is because each 
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transaction Ti that writes x must obtain a certify lock on X. For each transac- 
tion Tk that reads x, either Ti must delay its certification until Tk has been 
certified (if it has not already been so), or else Tk must wait for Ti to be certi- 
fied before it can set its read lock on h: and therefore read X. 

2 v2 PL,. For every Yk[Xj] and wi[xi] (i, j, and k distinct), if fi < rk[Xj], 
thenf, < ,$. 

Property 2V2PLj, combined with 2V2PL,, says that each Read rh[xj] 
either reads a version written by TK or reads the most recently certified version 
ofx. 

2 V2PL,. For every rk[q] and w/i[xi], i # j and i f k, if Th[xj] < fi, then 
fk < fi. 
Property 2V2PL, says that a transaction T; that writes x cannot be 

certified until all transactions that previously read a version of x have already 
been certified. This follows from the fact that certify locks conflict with read 
locks. 

2 V2PL,. For every wi[xi] and wj[Xj] 3 either fi < fi or fj < fi, 

Property 2V2PL, says that the certification of every two transactions that 
write the same data item are atomic with respect to each other. 

Theorem 5.6: Every history H produced by a 2V2PL scheduler is 1SR. 

Proof: By 2V2PL,, 2V2PL, and 2V2PL,, H preserves reflexive reads- 
from relationships and is recoverable, and therefore is an MV history. 
Define a version order 4 by x, e Xj only ifh < ,$. By 2V2PL,, < is indeed 
a version order. We will prove that all edges in MVSG(H, + ) are in certifi- 
cation order. That is, if T; + Tj in MVSG(H, e), then fi < f,. 

Let Ti -+ Tj be in SG(H). This edge corresponds to a reads-from rela- 
tionship, such as Tj reads x from T;. By 2V2PLz, 5 < r,[xJ. By 2V2PL,, 
Yj[Xl] < fj. Hence, h < h. 

Consider a version order edge induced by wJx,], wj[xj], and Y/Jxj] (i, j, 
and k distinct). There are two cases: xi 6 xj and Xj 6 xi. If xi < xj, then 
the version order edge is Ti -+ Tj, andJ, < /: follows directly from the defi- 
nition of 6. If Xj 4 xi, then the version order edge is Tk + Ti. Since xj + 
xi, /f < fi. By 2V2PL,, either fi < Yk[xj] or rk[x,] < fi. In the former case, 
2V2PL, implies fi < ,lj, contradicting fj < fi. Thus rk[xj] < fi, and by 
2V2PL,, fb < fi as desired. 

This proves that all edges in MVSG(H, <) are in certification order. 
Since the certification order is embedded in a history, which is acyclic 
by definition, MVSG(H, 4) is acyclic too. So, by Theorem 5.4, H is 
1SR. 0 
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5.5 A MULTIVERSION MIXED METHOD 

As we have seen, multiversions give the scheduler more flexibility in scheduling 
Reads. If the scheduler knows in advance which transactions will only issue 
Reads (and no Writes), then it can get even more concurrency among transac- 
tions. Recall from Section 1.1 that transactions that issue Reads but no Writes 
are called queries, while those that issue Writes (and possibly Reads as well) 
are called ~rpdat~rs. In this section we’ll describe an algorithm that uses MVTO 
to synchronize queries and Strict 2PL to synchronize updaters, 

When a transaction begins executing, it tells its TM whether it’s an 
updater or a query. If it’s an updater, then the TM simply passes that fact to the 
scheduler, which executes operations from that transaction using Stricr 2PL. 
When the TM receives the updater’s Commit, indicating that the updater has ter- 
minated, the TM assigns a timestamp to the updater, using the timestamp gen- 
eration method of Section 4.5 for integrating Strict 2PL and TWR. This ensures 
that updaters have timestamps that are consistent with their order in the SG. 

Unlike Basic 2PL, in this method each Write produces a new version. The 
scheduler tags each version with the timestamp of the transaction that wrote it. 
The scheduler uses these timestamped versions to synchronize Reads from 
queries using hlVT0. 

When a Thl receives the first operation from a transaction that identified 
itself as a query, it assigns to that query a timestamp smaller than that of any 
committed or active updater (and therefore, of any future updater 3s well). 
When 3 scheduler receives an r)[~] from a query T,, it finds the version of s 
with the largest timestamp less than ts( T,). By the timestamp assignment rule, 
this version was written by a committed transaction. Moreover, by the same 
rule, assigning this version of x to r)[s] will not invalidate the Read at any time 
in the future (so future Writes need never be rejected). 

Note that a query does not set any locks. It is therefore never forced to 
wait for updaters and never causes updaters to wait for it. The scheduler can 
always process a query’s Read without delay. 

In a centralized DBS, selecting the timestamp of a query is easy, because 
active updaters are not assigned timestamps until they terminate. In a distrib- 
uted DBS, TMs can ensure that each query has a sufficiently small timestamp 
by deliberately selecting an especinll~ small timestamp. Suppose that the local 
clocks at any two TMs are kno\vn to differ by at most 6. If a TM’s clock reads 
t, then it is safe to assign a new query any timestamp less than t - 6. Any 
updater that terminates after this point in real time will be assigned a time- 
stamp of at least t - 6, so the problem of the previous paragraph cannot arise. 

We can argue the correctness of this by using MVSGs as follows.’ Let H be 
a history produced by the method. Define the version order for H as in 

‘This pLlrngraph requires an understmding oi Section 5.2, on hluftiversion SeriAzabllity 
Theory, a starred section. 
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MVTO: X, 4 x, iff ts( T,) < ts(T,). We show that MVSG(H, 6) is acyclic by 
showing that for each of its edges T, -+ T,, ts(T;) < ts(Tj). First, consider an 
edge T, + Tj in SG(H). Each such edge is due to a reads-from relationship. If 
Tj is an updater, then by the way timestamps are assigned to updaters, ts( T;); 
< ts(T]) (cf. Section 4.5): If TJ is a query, then by MVTO version selection, 
ts( Ti) < ts( T,). Now consider a version order edge in lMVSG(H, 4 ) that arises 
because Tj reads x from T; and Tk writes x (i,i, k distinct). If xk 4 x,, then we 
have the edge Tk + T, in MVSG(H, 4) and ts(Tk) < ts(T,). Otherwise, we 
have the edge Tj + Tk, SO we must show ts(Tj) < ts(Tk). If Tj is an updater, 
then Tj released rIj[x] before Tk obtained wlk[x], so by the timestamp assign- 
ment method, ts( T;) < ts( Tk). If Tj is a query, then it is assigned a timestamp 
smaller than all active or future updaters. So again ts(T,) < ts(TJ. Thus, all 
edges in MVSG(H, 4) are in timestamp order, and MVSG(H, 6) is acyclic. 
By Theorem 5.4, H is 1SR. 

To avoid running out of space, the scheduler must have a way of deleting 
“old” versions. Any committed version may be eliminated as soon as the sched- 
uler can be assured that no query will need to read that copy in the future. For 
this reason, the scheduler maintains a non-decreasing value rnin, which is the 
minimum timestamp that can be assigned to a query Whenever the scheduler 
wants to release some space used by versions, it sets min to be the smallest 
timestamp assigned to any active query. It can then discard a committed 
version xi if ts( T;) < min and there is another committed version x1, such that 
ts( Tj) < ts(Tj). 

The main benefit of this method is that queries and updaters never delay 
each other. A query can always read the data it wants without delay Although 
updaters may delay each other, queries set no locks and therefore never delay 
updaters. This is in sharp contrast to 2PL, where a query may set many locks 
and thereby delay many updaters. This delay is also inherent in multiversion 
2PL and 2V2PL, since an updater T, cannot commit until there are no read 
locks held by other transactions on T{s writeset. 

The main disadvantages of the method are that queries may read out-of- 
date data and that the tagging and interpretation of timestamps on versions 
may add significant scheduling overhead. Both problems can be mitigated by 
using the methods described next. 

Replacing Timestamps by Commit Lists 

Tagging versions with timestamps may be costly because when a scheduler 
processes w;[x] by creating a new version of X, it doesn’t know T/s timestamp. 
Only after T, terminates can the scheduler learn T/S timestamp. However, by 
this time, the version may already have been moved to disk; it needs to be 
reread in order to be tagged, and then subsequently rewritten to disk. 

‘. 
One can avoid timestamps altogether by using instead a list of identifiers 

of committed transactions, called the commit list. When a query begins execut- 
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ing, the TM makes a copy of the commit list and associates it with the query. It 
attaches the commit list to every Read that it sends to the scheduler, essentially 
treating the list like a timestamp. When the scheduler receives r,[x] for a query 
T,, it finds the most recently committed version of x whose tag is in T,‘s copy of 
the commit list. To do this efficiently, all versions of a data item are kept in a 
linked list, from newest to oldest. That is, whenever a new version is created, it 
is added to the top of the version list. Since updaters use Strict 2PL, two trans- 
actions may not concurrently create new versions of the same data item. Thus, 
the order of a data item’s versions (and hence the version list) is well defined. 

Given this organization for versions, to process r,[x] for a query T,, the 
scheduler scans the version list of x until it finds a version written by a transac- 
tion that appears in the commit list associated with T,. This is just like reading 
the most recently committed version of x whose timestamp is less than ts( TI) (if 
T, had a timestamp). This technique is used in DBS products by Prime 
Computer, and in the Adaplex DBS by Computer Corporation of America. 

The problem with this scheme is the size and structure of commit lists. 
First, each list must be small. In a centralized system, every query will have a 
copy of the list consuming main memory. In a distributed system, every Read 
sent to a DM will have a copy of the list, which consumes communication 
bandwidth. Second, since the scheduler must search the list on every Read 
from a query, the list should be structured to make it easy to determine whether 
a given transaction identifier is in the list. 

A good way to accomplish these goals is to store the commit list as a bit 
map. That is, the commit list is an array, CL, where CL[I’] = 1 if T, is commit- 
ted; otherwise CL[I’] = 0. Using the bit map, the scheduler can easily tell 
whether a version’s tag is in the list. It simply looks up the appropriate position 
in the array. However, as time goes on, the list grows without limit. So we need 
a way to keep the list small. 

We can shorten the list by observing that old transaction identifiers eventu- 
ally become useless. A transaction identifier is only needed as long as there is a 
version whose tag is that identifier. Suppose we know that all versions whose 
tags are less than n (where n is a transaction identifier) have either been 
committed or discarded before all active queries began. Then when the sched- 
uler reads a version whose tag is less than n, it may assume that n is in the 
commit list. Only transactions whose identifiers are greater than or equal to n 
need to be kept in the list. 

The commit list can be kept short as follows. When the list has exceeded a 
certain size, the scheduler asks the TM for a transaction identifier, n, that is 
smaller than that which has been assigned to any active query or updater, or 
will be assigned to any future query or updater. The scheduler can then discard 
the prefix of the commit list through transaction identifier n! thereby shorten- 
ing the list. To process rl[x] of some query T,, the scheduler returns the first 
version in the version list of x written by a transaction whose identifier is either 
in, or smaller than any identifier in, the commit lisr given to T, when it started. 
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We are assuming here, as always, that when a transaction aborts, all versions it 
has produced are removed from the version lists. 

When the scheduler receives n from the TM for the purpose of reducing 
the size of the commit list, it can also garbage collect versions. In particular, it 
can discard a committed version of x, provided there is a more recent commit- 
ted version of x whose identifier is less than n. 

Distributed Commit Lists 

In a distributed DBS, using a commit list in place of timestamps requires 
special care, because the commit lists maintained at different sites may not be 
instantaneously identical. For example, suppose an updater T, commits at site 
A, where it updated x, and is added to CLA, the commit list at site A; but 
suppose T, has not yet committed at site B, where it updated y. Next, suppose 
an updater T, starts executing at A, reads the version of h: written by T,, writes 
a new version of z at site B, and commits, thereby adding its transaction identi- 
fier to CL,J and CLB. (T, still hasn’t committed at site B). Now suppose a query 
starts executing at site B, reads CLB (which contains T, but not T,), and reads y 
and z at site B. It will read the version of z produced by T, (which read h: from 
T,) but not the version of y produced by T,. The result is not 1SR. 

We can avoid this problem by ensuring that whenever a commit list at a 
site contains a transaction Ti, then it also contains all transactions from which 
Ti read a data item (at the same site or any other site). To do this, before an 
updater transaction Tj commits, it reads the commit lists at all sites where it 
read data items and takes the union of those commit lists along with { Tj}, 
producing a temporary commit list CLtemp. Then, instead of merely adding Tj 
to the commit list at every site where it wrote, it unions CLremp into those 
commit lists. Using this method in the example of the previous paragraph, T, 
would read CLA, which includes T,, and would union it into CLB. The query 
that reads CLB now reads T,‘s version of y, as required to be 1SR. 

Using this method, each query reads a database that was effectively 
produced by a serial execution of updaters. However, executions may not be 
1SR in the sense that two different queries may see mutually inconsistent 
views. For example, suppose TM, and TM, supervise the execution of queries 
T, and TX, respectively, both of which read data items x and y stored, respec- 
tively, at sites A and B. Consider now the following sequence of events: 

1. TM, reads CLA. 

2. TM, reads CLB. 

3. T, writes x at site A and commits, thereby adding T3 to CLA. 

4. T4 writes y at site B and commits, thereby adding T, to CLB. 

5. TM, reads CLB. 

6. TM, reads CLA. 
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Now, T, reads a database state that includes T4’s Write on 3~ but not T,‘s 
Write on X, while T, reads a database state that includes T,‘s Write on x but not 
T4's Write on 1: Thus, from T,‘s viewpoint, transactions executed in the order 
T, T, T,, but from TL's vieit-point, transactions executed in the order T, TL T,,. 
There is no serial 1V history including all four transactions that is equivalent 
to this execution. Yet, the execution consisting only of updaters is lSR, and in 
a sense, each query reads consistent data. We leave the proof of these proper- 
ties as an exercise (see Exercise 5.22). 

BIBLIOGRAPHIC NOTES 

The serializability theoretic model of multiversion concurrency control is from 
[Bernstein, Goodman 831. Other theoretical aspects are explored in [Hadzilacos, 
Papadimitriou 8.51, [Ibaraki, Kameda 831, [Lausen 831, and [Papadimitriou, Kanellakis 
841. The two version 2PL algorithm in Section 5.3 is similar to that of [Stearns, 
Rosenkrantz 811, which uses timestamp-based deadlock prevention. A similar method 
that uses SGT certification for rw synchronization is described in [Bayer et al. 801 and 
[Bayer, Heller, Reiser 801. A multiversion tree locking algorithm appears in [Silber- 
schatz, 821. Multiversion TO was introduced in [Reed 781, [Reed 791, and [Reed 831. 
hlultiversion mixed methods like those in Section 5.5 are described in [Bernsrein, 
Goodman 811, [Chan et al. 821, [Ch, an, Gray 8.51, [Dubourdieu 821, and [Weihl 851. 
[Dubourdieu 821 describes a method used in a product of Prime Computer. [Lai, 
Wilkinson 841 describes a multiversion 2PL certifier, where queries are never delayed, 
and each updater I, is certified by checking its readset and writeset against the writeset 
of all transactions that committed after T, starts. 

EXERCISES 

5.1” Consider the following history: 

a. Prove that this satisfies the definition of MV history. 
b. Is this history serializable? 
c. Is it one-copy serializable? If so, give a version order that produces an 

acyclic MVSG. 
d. Suppose we add the operation ra[yi] (where xj3[yj] < r4[y3]) to the 

history. Answer (c) for this new history. 

5.2* Give a careful proof of the fact that if H is an MV history then C(H) is 
a complete MV history. Suppose in the definition of MV histories we 
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required only conditions (1) - (4), but not recoverability. Prove that in that 
case, C(H) would not necessarily be a complete MV history. (Incidentally, 
this is the reason for making recoverability part of the definition of MV 
histories, whereas in 1V serializability theory we treated recoverability as 
a property that some histories have and others do not.) 

5.3” Prove Proposition 5.2. 

5.4” Prove that if H is a 1SR MV history, then so is any prefix of H. 
Lj . 5 :5 Suppose no transaction ever reads a data item that it previously wrote. 

Then we can redefine MV history, such that it need not preserve reflexive 
reads-from relationships (since they cannot exist). Using this revised defi- 
nition prove Theorem 5.3, making as many simplifications as possible. 

5.6 MVTO can reject transactions whose Writes arrive too late. Design a 
conservative MVTO scheduler that never rejects Reads or Writes. Prove it 
correct. To show why your conservative MVTO is not worse than single 
version conservative TO, characterize those situations in which the latter 
will delay operations while the former will not. Are there situations where 
the opposite is true? 

5.7 In MVTO, suppose that we store timestamp intervals in the data 
items themselves rather than in a separate table. For example, suppose the 
granularity of data items is a fixed size page and that each page has a 
header containing timestamp interval information. How does this organi- 
zation affect the efficiency with which the MVTO scheduler processes 
operations? How does it affect the way the scheduler garbage collects old 
versions? 

5.8 Since MVTO doesn’t use locks, we need to add a mechanism for 
preventing transactions from reading uncommitted data and thereby 
avoiding cascading aborts. Propose such a mechanism. How much 
concurrency do you lose through this mechanism? Compare the amount of 
concurrency you get with the one you proposed for Exercise 5.6. 

5.9 Show that there does or does not exist a sequence of Reads and Writes 
in which 

a. Basic TO rejects an operation and MVTO does not; 
b. Basic TO delays an operation and MVTO does not; 
c. MVTO rejects an operation and Basic TO does not; and 
d. MVTO delays an operation and Basic TO does not. 

That is, for each situation, either give an example sequence with the 
desired property, or prove that such a sequence does not exist. 

5.10 Modify MVTO so that it correctly handles transactions that write into 
a data item more than once. 

5.11 Describe the precise conditions under which MVTO can safely discard 
a version without affecting any future transaction. 
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5.12 It is incorrect to use MVTO for rw synchronization and TWR for ww 
synchronization. Explain why. 

5.13 Assume no transaction ever reads a data item that it previously wrote. 
Consider the following variation of standard 2PL, called 2P.L with delayed 
writes. Each TM holds all writes used by a transaction until the transac- 
tion terminates. It then sends all those held Writes to the appropriate 
DMs. DMs use standard 2PL. Compare the behavior of 2V2PL to 2PL 
with delayed writes. 

5.14” Let H be the set of all 1V histories equivalent to the MV histories 
produced by 2V2PL. Is H identical to the set of histories produced by 2PL? 
Prove your answer. 

5.15 Suppose we modify multiversion 2PL as follows. As in Section 5.5, we 
distinguish queries from updaters. Updaters set certify locks in the usual 
way. Queries set no (read) locks. To read a data item X, a query reads the 
most recently certified version of x. Does this algorithm produce 1SR 
executions? If so, prove it. If not, give a counterexample. 

5.16 Suppose no transaction ever reads a data item that it previously wrote. 
Use this knowledge to simplify the 2V2PL algorithm. Does your simplifi- 
cation improve performance? 

5.17 Show how to integrate timestamp-based deadlock prevention into 
2V2PL. If most write Iocks will eventually be converted into certify locks 
(i.e., if very few transactions spontaneously abort), is it better to perform 
the deadlock prevention early using write locks or later using certify locks? 

5.18* Prove the correctness of the extension to 2V2PL that uses more than 
two versions, described at the end of Section 5.4. 

5.19 Compare the behavior of the multiple version extension to 2V2PL to 
standard 2V2PL. How would you expect them to differ in the number of 
delays and aborts they induce? 

5.20* Prove that the mixed method of Strict 2PL and “MVTO” that uses 
commit lists for queries in a centralized DBS (in Section 5.5) is correct. 

5.21 Consider the distributed Strict 2PL and “MVTO” mixed method in 
Section 5.5 that uses commit lists for queries. The method only guarantees 
that any execution of updaters is lSR, and that each query reads consistent 
data. Propose a modification to the algorithm that ensures that queries do 
not read mutually inconsistent data; that is, any execution of updaters and 
queries is 1SR. Compare the cost of your method to the cost of the one in 
the chapter. 

5.22, Prove that the distributed Strict 2PL and “MVTO” mixed method in 
Section 5.5 that uses commit lists for queries is correct, in the sense that 
any execution of updaters and one query is 1SR. 

5.23 Design a multiversion concurrency controi algorithm that uses SGT 
certification for rw synchronization and 2PL for ww synchronization. 
Prove that your algorithm is correct. 
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