
Making Sense of Temporal Queries with Interactive
Visualization

Leilani Battle1, Danyel Fisher2, Robert DeLine2, Mike Barnett2, Badrish Chandramouli2,
Jonathan Goldstein2

MIT
Cambridge, Massachusetts 02139

leilani@csail.mit.edu

Microsoft Research
Redmond, Washington 98052

{danyelf, rdeline, mbarnett, badrishc,
jongold}@microsoft.com

ABSTRACT
As real-time monitoring and analysis become increasingly
important, researchers and developers turn to data stream
management systems (DSMS’s) for fast, efficient ways to
pose temporal queries over their datasets. However, these
systems are inherently complex, and even database experts
find it difficult to understand the behavior of DSMS
queries. To help analysts better understand these temporal
queries, we developed StreamTrace, an interactive
visualization tool that breaks down how a temporal query
processes a given dataset, step-by-step. The design of
StreamTrace is based on input from expert DSMS users; we
evaluated the system with a lab study of programmers who
were new to streaming queries. Results from the study
demonstrate that StreamTrace can help users to verify that
queries behave as expected and to isolate the regions of a
query that may be causing unexpected results.

Author Keywords
Streaming Data; Data Visualization; Data Analysts

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Academia, industry, and individuals are increasingly
monitoring temporal data. Companies track changes in sales
and inventory; app designers on the Internet of Things
coordinate and monitor continuous signals from home,
office and wearable devices. Medical and health-monitoring
devices contain logic to process multiple temporal signals,
combining GPS, heart rate, and accelerometers to determine
and log when the user is running, walking and even
sleeping. In e-businesses, cloud-hosted services capture
both user behavior and service performance into live

telemetry data. Analysts create dashboards from this data to
monitor software quality and to produce game leaderboards,
search results, and other client-facing products. Given the
integral role of streaming data in these endeavors,
programmers and data scientists need tools to analyze
temporal data quickly and efficiently.

To make temporal analyses scale to massive datasets, the
database community has developed data stream manage-
ment systems (DSMS’s) [1],[4],[5],[8],[24]. DSMS’s
support fast, continuous computation over temporal data
streams. A DSMS supplements a classic relational database
management system (DBMS) by maintaining a first class
notion of time. Time is not simply an extra column in a
relational table. Rather, streams of temporal data represent
facts and relationships that vary over time. Each “row” in a
stream, called a stream event, has a start and end time.
Entities and relationships are valid only within their
temporal range.

To write a DSMS query, a data analyst reasons about both
the data’s content and temporal range. For instance,
consider an online store with a data stream of customer
shopping transactions. Both the number of customers and
the contents of their carts vary over time. A simple query in
a relational data model—for example, the average number
of items per cart—instead becomes a windowed moving
average in a streaming system. This requires the data
analyst to consider temporal issues, like the duration of the
window for the moving average and how to combine the
time range of a customer’s shopping session with the time
ranges of items in the cart. In short, queries within DSMS’s
can be confusing for data analysts to understand and
construct (Figure 1).

In this paper, we look at data analysts as a user group with
specialized skills and distinctive needs (as in Fisher et al.
[12] and Kandel et al. [19]). Supporting data analysts who
work with streaming data raises unique and difficult
challenges; we address them by applying user-centric
design principles and methodologies.

We make the following contributions in this paper:

1) We discuss the complexity of understanding and
debugging DSMS queries, and explore a case study;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.	
CHI'16, May 07-12, 2016, San Jose, CA, USA	
© 2016 ACM. ISBN 978-1-4503-3362-7/16/05…$15.00
DOI: http://dx.doi.org/10.1145/2858036.2858408

Natural User Interfaces for InfoVis #chi4good, CHI 2016, San Jose, CA, USA

5433

2) We present a visualization design for illustrating the
behavior of DSMS queries;

3) We present results from a user study showing that this
visualization can help analysts better understand and
construct queries.

CHALLENGES FOR USERS WITH DSMS QUERIES
The fundamental difference between streaming and
relational databases is reflected in the way that these
systems respond to queries. While relational queries in
DBMS’s produce static results (e.g., the count is 3), stream
queries in DSMS’s produce result streams (e.g., the count is
3 at time stamp 1, then 4 at time stamp 2, etc.). This
distinction makes interpreting query output challenging for
users who are unfamiliar with DSMS’s: users need to learn
to track how answers in the output stream change over time,
and verify that these shifts match the input.

If interpreting stream query results can be difficult and
error-prone, writing stream queries is even more
challenging. DSMS’s utilize specialized stream query
languages, which are designed to support both relational
and temporal operations. Some operations in a stream query
language, like filtering (“where”) and projection (“select”),
are the same as in relational query languages. However,
other query operators, like join, are “false friends” in that
they have different interpretations from their relational
counterparts. For example, a relational join over two tables
compares every row in the first table with every row in the
second, and outputs any matching pairs that are found. In
contrast, a join in a DSMS will only output a matching pair
of stream events if the events also overlap in time. Some
DSMS operations have no equivalent operation in relational
languages, such as trimming the duration of stream events,
or shifting the start and end times of events.

Nor is understanding each operator individually enough:
streaming queries often entail multiple phases of projection,
joining, and filtering; events flow through a series of
operators before they reach their final state. Analysts can
find it challenging to see how those components combine,
and to connect output events to the input they came from.

Expert Interviews on the Challenges of DSMS Queries
To better understand how these complexities affect users,
we interviewed two expert DSMS users. Both work on data
science teams at a large software company1. John processes
the history of software modifications across a very large
codebase; his temporal queries look at how the codebase
and its contributors are changing over time.

Mark supports advertising features for a large-scale
website. He produces live dashboards for advertisers on the
effectiveness of their campaigns, and runs spot analyses of
tools and features to understand adoption and usage.

1 Names were changed to protect the privacy of these users.

In building their analytics, whether for offline use (as John
does) or live streaming (as Mark does), both analysts create
streaming queries in the DSMS – and, as such, can run into
questions of whether their query is doing the right thing.
We are generally interested in the process of constructing,
testing, and iterating on a query; activities we collectively
call “debugging”.

Small-Scale Versus Large-Scale Debugging
John and Mark both reported that they typically debug their
queries in two phases: first a small-scale prototyping phase;
then a large-scale performance-testing phase. In the
prototyping phase, they use small test datasets (less than 20
stream events) to manually track each input in the data
stream and each output from the query. Here, each input
event represents a specific test case-–a strategy reminiscent
of unit tests in software engineering. During this phase,
they carefully check their queries for correctness, and
improve their understanding of how query operators behave
and interact. Once they are confident that their queries
exhibit correct behavior, they try a larger dataset for full-
scale performance testing. This performance testing can
sometimes drive them to change the underlying query, and
they return to the prototyping phase.

John and Mark also told us that they lack tools for
effectively debugging their queries during the prototyping
phase. Instead, they manually create query diagrams on the
whiteboard in order to manually trace them. There is a
design opportunity to support the prototype phase. A design
can trade scalability for specificity, and show how queries
act on small-scale data examples, rather than its aggregated
effect on the dataset as a whole.

Challenges in Writing & Debugging Streaming Queries
Consider a motivating example based on a scenario from
Mark, who wants to analyze user session data for a new
online store. The raw data is stored as a single stream of
aggregated shopping cart events, where each stream event
represents the current number of items in a particular user’s
cart. An example of the stream is provided in the left-hand
table in Figure 2a. Mark wants to write a single DSMS
query to answer the following questions every 60 minutes:

• How many users are signed into the store over
time?

• On average, how many products are in their
shopping carts?

The DSMS query needed to answer Mark’s questions is
shown in Figure 1a (written in Trill-LINQ2 [8]). This query
demonstrates a common pattern for computing multiple
statistics over streams. There is no guarantee that two
queries will process the same stream events at the exact

2 Trill-LINQ is a DSMS written in functional query
language supported by the .NET Framework; the techniques
in this paper apply equally for other DSMS dialects.

Natural User Interfaces for InfoVis #chi4good, CHI 2016, San Jose, CA, USA

5434

same time, and thus no guarantee they will provide
matching results. This mismatch can be problematic for
dashboards and other use cases that require a suite of
statistics over fixed time windows. Hence relevant statistics
must be computed within a single query.

In this example, a correct approach to thinking about how
to construct the stream query is to consider how to augment
or redirect the flow of timeline events. For example, if we
want to compute multiple statistical operations in parallel
over the stream, we can think of this process as creating
multiple branches (or copies) of the stream (known as
Multicasting the stream), and applying a different statistical
operation to each branch. Similarly, to produce a single
stream of statistics, we can view this process as joining the
two Multicast branches back together, which will
consolidate the duplicated events. In the query shown in
Figure 1(a), these operations are represented as: 1) mapping
the aggregated result to non-overlapping, 60-minute

windows (TumblingWindowLifetime); 2) copying the
stream into two identical branches (Multicast); 3)
computing a separate aggregate statistic on each branch
(Aggregate + Count, Aggregate + Average); and 4) joining
the two branches together to consolidate the aggregate
statistics (Join).

Mark originally wrote the erroneous query shown in Figure
1b. Though very similar to the correct query at left, Mark’s
query contains one error, at the letter E. When Mark’s
query is executed, it produces the incorrect result shown in
Figure 2b, which is not broken into the desired 60-minute
intervals. We see in Figure 2b that the time windows
produced by Mark’s query seem random and hard to fix,
but Mark’s query was actually very close to being correct.
He chose the correct windowing operator
(TumblingWindowLifetime), and even placed it in a
reasonable location (on the first of the two Multicast
branches). However, Mark failed to notice that the second
branch of the Multicast operation was not mapped to 60-
minute windows. This error is exacerbated when the two
branches are then joined together: the events from each
branch end up overlapping at weird times, resulting in
output events with strange durations.

The correct query moves the TumblingWindowLifetime
operator to be before the Multicast operator, eliminating the
issue of applying windowing to each branch separately.
However, when looking only at Mark’s query in Figure 1b,

 (a) Correct Query (b) Mark’s (Incorrect) Query

Figure 1. A correctly written example query (left), and Mark’s query (right). Mark’s error – placing the
TumblingWindowLifetime inside the Multicast, rather than outside -- is labeled as E.

Figure 3. Expert-drawn diagram showing timed events. It
shows (at left) a query plan, and (at right) horizontal bars

showing time segments.

 (a) Shopping cart input (b) Query output (c) StreamTrace diagram.

Figure 2. Table and Timeline representations for Mark’s query (right-hand side of Figure 1). The results of the left-side
TumblingWindowLifetime (at E) are out of step with the results of the right-side Aggregate

Natural User Interfaces for InfoVis #chi4good, CHI 2016, San Jose, CA, USA

5435

or the output stream in Figure 2b, it is very challenging to
detect and fix the error.

The Need for Visualizations
When Mark recounted this story during our interview, we
noticed that although he was not able to produce the correct
DSMS query to his problem, he was able to easily describe
the correct behavior of the query. Mark provided us with
hand-drawn diagrams showing the behavior he wished to
see; John similarly provided us with Figure 3 to show how
he thinks about temporal data and DSMS operators. As this
language is an intuitive way of thinking about queries, we
(manually) produced a visualization of the logic behind
Mark’s erroneous query shown in Figure 2(c).

This visualization highlights Mark’s logical error: while the
Multicast operation creates two separate branches, only the
left branch is extended to 60-minute windows using the
TumblingWindowLifetime operator. As a result, in Figure
2c, the events in the left-hand branch look noticeably
different from the events in the right-hand branch.

John and other DSMS users shared these difficulties with
writing stream queries: while they can reason about the
high-level logic behind a query, they can have difficulties
externalizing that into a correct query. With the help of a
visualization, they can quickly identify the effects of each
operation, and how these operations interact with each other
across multiple data streams.

Common Mistakes in Writing Streaming Queries
We followed up our conversations with John and Mark with
broader interviews, speaking to their teams and two other
teams who create and use DSMS queries. In the interviews,
we learned that even accomplished developers on their
teams often had trouble formulating queries that behaved in
the ways they expected; DSMS experts found it extremely
difficult to explain temporal queries to novices.

We asked our interviewees to provide us with examples of
their challenging DSMS queries, and access to the datasets
they used to test the queries. The most challenging queries
consistently included operators that both cause two streams
to interact (such as join operations), and that change the
temporal scope of an event (such as windowing functions).
Data streams only interact with each other when their
events overlap in time; as such, subtle bugs can arise from
mismatched temporal extents in queries (like in Mark’s
query in Figure 1(b)). When these challenges are
considered together, we found that they can be grouped into
three categories of unmet needs:

1) Users have trouble inferring the combined behavior of
multiple operators pipelined together in a single query.

2) Users struggle to mentally track temporal extents when
validating the output of DSMS queries, and often have
to write out timelines by hand.

3) Users lack intuition for the DSMS-specific temporal
manipulation operations.

These three categories of challenges, combined with our
focus on supporting query prototyping, represent our high-
level design goals. In the remainder of this paper, we
describe our visualization design, and show how it can be
used to address these challenges and help DSMS users to
better write and interpret temporal queries.

A Visual Approach to Reducing Complexity
We propose a new approach for capturing and visualizing
the behavior of stream queries, making them easier to
understand and debug. Our tool, StreamTrace, incorporates
this visualization into an interactive DSMS. Our
visualization is designed to help improve users’
understanding of both how individual DSMS operators
manipulate the data being queried, and the relationships
between these operators. It visualizes the intermediate state
of the query output after executing each operator, in order
to show how each step of the query impacts the final result.

Our visualization scheme is based on in-person interviews
and iterative design sessions with domain data analysts who
work with a DSMS on a daily basis. We evaluated
StreamTrace by conducting a lab study of 15 developers
who were new to DSMS’s, and conclude from our
qualitative surveys from the study that StreamTrace can
improve their ability to understand temporal query results
and produce accurate DSMS queries in less time.

BACKGROUND
The StreamTrace system integrates aspects of several well-
known visualization types, and builds upon existing
software and concepts from several research domains.

Leveraging Existing Debugging Concepts
Parnin and Orso’s debugging model [28] consists of three
phases: fault localization (identifying the erroneous code);
fault understanding (understanding the cause); and fault
correction (fixing the bug). Translating this model for
DSMS queries requires incorporating debugging features to
figure out what a query is doing, trace the causes of query
errors, and confirm that bugs are fixed. Unfortunately, most
querying systems function as a black box, so users cannot
see the results of intermediate steps. Our goal is to open that
box to expose the interactions to users.

Several dataflow-focused debugging tools inspired our
system design for analyzing DSMS queries. The Java
Whyline [20] allows users to backtrack and identify the
steps carried out by a program; users can ask why specific
objects were assigned given values. JIVE [23] visualizes
the steps of a procedural execution of a program to help a
user understand what paths were chosen. Both of these
visually lay out the progress that data makes through
complex code, and to work forward and backward between
outputs, antecedents, and inputs.

Temporal Visualizations
Temporal data analysis and exploration is a well-studied
area of data visualization [2]. Coordinating multiple
timelines can help users understand how data relates

Natural User Interfaces for InfoVis #chi4good, CHI 2016, San Jose, CA, USA

5436

between different groups. Kosara and Miksch [21] use a
hierarchical arrangement of coordinated timelines to
visualize clinical guidelines as time-based plans.
Gschwandtner et al. [15] use a hierarchical arrangement of
timelines to support exploration of patient outcomes given
time-stamped clinical treatment information. We similarly
use a timeline approach, coordinated with other views, to
help unpack temporal data.

Another area of work highlights alternative techniques for
specifying event patterns as temporal searches
[11],[18],[22],[26], where the focus is on creating new
languages or specification schemes, rather than debugging
queries for existing systems.

Related Visual Debugging Systems
To the best of our knowledge, StreamTrace is the first GUI-
based tool for open-ended temporal query writing and
debugging. The visualization systems that are most closely
related to StreamTrace are focused primarily on monitoring
complex scientific workflows. VisTrails [29] is an
interactive workflow analysis system that supports data
analysis and exploration. It is oriented toward allowing
users to re-execute a precise workflow, and to modify that
workflow in a predicable way. The Perfopticon
visualization system supports interactive analysis of
workflows that perform batch execution of queries on a
distributed DBMS [27].

We know of only one other system intended for direct
interaction with data streams. System S [10] is a visual
debugger based on showing the query plan, or the low-level
sequence of compiled operations that describes how the
query will be executed. In contrast, StreamTrace operates at
the user level, showing the stages of the query that map
directly to the clauses in the user’s input. However both
visualizations share a timeline view, and track the histories
of individual events. We believe that the results from our
user test would also speak to the System S visualizations.

THE DESIGN OF STREAMTRACE
Our visualization scheme is designed both to help new
DSMS users quickly learn how DSMS queries work, and to
support the techniques that experts like John and Mark
already use when interpreting temporal queries. As such,
we chose three goals for the design of our visualizations,
one for each class of debugging problems we found through
our interviews. DSMS visualizations should:

1) Clarify the input-output relationships between all
stream operators in the query, to show how these
operators are connected.

2) Illustrate the timeline relationships between events
at each stage of operations, as in John and Mark’s
hand-drawn diagrams.

3) Convey how individual events flow through each
stream operator in a query, to show how these
individual operators behave.

Given that the open-endedness of scripting has been shown
to be a good fit for data exploration tasks [12],[19], we
chose to support a scripting-based design for users to write
and edit their queries, alongside our DSMS visualizations.

In the remainder of this section, we explain how we
distilled our design goals into concrete visualization
components, implemented these components, and validated
our design choices through feedback from Mark and a third
DSMS expert Hank3.

Three Visualization Components
In choosing how to visualize query execution, we looked to
ways that the experts thought about DSMS queries. During
our expert interviews, we noticed John and Mark already

3 John had moved to a new job role by the time our
StreamTrace prototype was completed, and could not
provide feedback.

Figure 4. A debugging visualization produced by StreamTrace, with the following components: (A) a workflow diagram; (B) a

timeline; (C) provenance highlighting, where one time entry is highlighted; and (D) a tooltip. This query Multicasts the
runningProcesses stream to two branches (or copies), applies an Aggregate operation to each branch, and consolidates

the final statistics by joining the two branches together.

Natural User Interfaces for InfoVis #chi4good, CHI 2016, San Jose, CA, USA

5437

had diagrams visible in their offices of query sequences: a
real example from John’s office can be seen in Figure 3;
Hank sent us sample queries that included an ASCII
representation of a query timeline (Figure 6).

Mark explained that he also manually generates workflow
diagrams of query operations. In these diagrams, he works
with his team to decide what data they want the query to
represent, and work out the sequence of operations that will
generate it. These hand-drawn diagrams support the first
design goal, of illustrating events on a timeline.

We developed three major components for StreamTrace’s
visualizations. Figure 4 is a screenshot of a StreamTrace
visualization. First, StreamTrace draws a workflow diagram
representing the input streams and the sequence of query
operations executed on the inputs (labeled A). Second,
StreamTrace draws a timeline view for each operator (and
input) in the workflow diagram (labeled B), where the
timeline view captures the result of executing this particular
query operator. Last, StreamTrace provides linked
highlighting across timeline views (labeled C), allowing the
user to explore the complete history of an individual stream
event—both what that event would become later in the
query, and where this event came from. We refer to this
history as the provenance of the event.

The first design goal is addressed through StreamTrace’s
workflow diagram. This diagram acts as a flow chart,
showing the order in which the operators are executed, and
which operators are responsible for producing the inputs to
future operators later in the diagram.

StreamTrace’s timeline views support the second design
goal. Each streaming operator updates the output stream as
the query is executed. The series of timeline visualizations
allows a user to pinpoint which operator introduced errors.

StreamTrace’s linked highlighting across timeline views
addresses the third design goal. The linked highlighting
feature allows users to figure out how a single event
changes in duration or temporal position, no matter how
complex, by tracing its provenance forward and backward.
This fine-grained view enables users to get a very detailed
view of their data

Implementation of Visualization Components
Here, we provide a more detailed description of the design
of the three visualization components.

Workflow Diagram
StreamTrace represents the workflow diagram as a directed
acyclic graph. Root nodes in the graph are inputs to the
query; other nodes are query operators. The edges represent
the ordering and relationship between query operators:
operators that take a single input are drawn as straight lines,
while operators that take multiple inputs or that produce
multiple outputs are drawn as branches. The diagram is read
from top to bottom; we narrow the layout to ensure that it
could be seen as an annotation for the timelines.
StreamTrace italicizes labels for query operator nodes; this
allows users to distinguish easily between query operators
and inputs.

For example, the workflow diagram in Figure 4 has one
starting node, labeled runningProcesses, which is the
only input stream to the query. This input is passed to a
single Multicast operation, which we see in the graph by
the edge between the starting node and the node labeled
Multicast. The Multicast operation creates two
branches (i.e., copies) of the stream, shown by the two
outgoing edges from the Multicast node. The right-hand
branch contains a TumblingWindowLifetime operation
and an Aggregation operation. The left contains only a
single Aggregation node. Last, the branches are brought
back together with a Join operation.

While the workflow diagram resembles familiar DBMS
query execution plans, there is an important difference: an
execution plan shows the path after the database system has
optimized it, which might include a number of
transformations that users do not expect, such as the
reordering of operations. As StreamTrace is meant to
support the logical stages of query construction, we chose a
workflow diagram that is a direct translation of the
operations in the original query.

Timeline View
The timeline view is designed to help users understand how
each stream event is manipulated by a given query. Inspired
by diagrams drawn by our experts—as in Figures 3 and 7—
the timeline view is represented as a series of bars, each
representing an event in the stream. The position and length
of each bar is mapped to the start time and duration of the
event. All of the events that emerge from a single operator
are arranged in a lane together; within that lane, vertical

Figure 5. Four major operators in Trill, with their visual
representation in StreamTrace. “Tumbling Window”

manipulates the timeline, while the others keep events in their
fixed timeslots.

Natural User Interfaces for InfoVis #chi4good, CHI 2016, San Jose, CA, USA

5438

position is arbitrary, but chosen to prevent overlap between
events. When a user hovers over an event, a tooltip at the
right side (labeled D in Figure 4) shows the detailed begin
and end times for the event, as well as any contents
associated with the event.

Figure 5 shows a selection of Trill operators that
manipulate either query graphs (e.g., Multicast) or temporal
operators (e.g., TumblingWindowLifetime). The
combination illustrates how StreamTrace uses bars to
present temporal changes and extents.

Linking Timeline Views
The goal of this feature is to allow the user to ask why a
specific event is part of the output—or to figure out what
happened to an event as it propagated through the query.
When a user hovers over a specific event in the timeline,
StreamTrace displays this link using provenance
highlighting, which shows the history of the event. In
Figure 4, the user has hovered their mouse over an output
event from executing a TumblingWindowLifetime
operation; all relevant stream events are highlighted (i.e.,
colored black) by StreamTrace. Events highlighted above
the current event represent inputs that contributed to the
creation of the current event earlier in the query’s
execution; we call this backward provenance. For example,
StreamTrace highlights the events in the input stream(s)
that were used to compute the current event. Similarly,
events highlighted below the current event represent
intermediate and final outputs that the current event
contributed to later in the query’s execution; we call this
forward provenance.

Validation through Expert Feedback
After we created our initial prototype of StreamTrace, we
showed it to Mark and Hank to collect feedback. Hank is
the lead of a performance analysis team. Like John and
Mark, Hank is the DSMS expert for his team of six people.
We met with Hank and the rest of his team, all of whom
were in the process of learning Trill, after our first designs
for StreamTrace were implemented.

They expressed interest in having a canonical set of basic
queries for training their team. This inspired us to add
tutorial materials as part of the StreamTrace design: a view
in the analytics environment that shows core operations and
allows the user to see their implementations; and a tutorial
booklet with StreamTrace views of common Trill operators.
After seeing the final design, Hank and his team expressed
immediate interest in using StreamTrace to analyze their
existing DSMS queries, and explained how they saw clear
value in using a tool like StreamTrace in the future.

After learning more about StreamTrace’s final design, Mark
said that StreamTrace would allow his team to verify that
they are doing the right thing, and that their plan is being
carried out correctly.

THE IMPLEMENTATION OF STREAMTRACE
StreamTrace’s back-end design is based on a notion of
tracing fine-grained provenance through queries. To capture
the intermediate steps of a query, we developed a new
approach for provenance recording. The key aspect is to
have each event store its own list of the previous input
events that contributed to it. To do this, each stream event is
assigned a provenance identifier. As a query is executed,
these identifiers are propagated through each query operator
to the related output events. We implement these
provenance lists in two parts: (1) each event is annotated
with a list of past inputs; and (2) the core Trill operators are
wrapped in specialized code to propagate provenance
identifiers from input events to the corresponding output
events. The wrapper code executes outside of the DSMS,
making it applicable to other systems beyond Trill.

Without provenance tracking, StreamTrace would lack the
necessary metadata for visualizing query behavior. This
technique was inspired by past work in the database
community on recording provenance for workflows [17]
and data streams [16],[31],[13],[14]. The focus of these
projects is to ensure that provenance data can be efficiently
tracked and stored. This past work does not address how to
make the resulting histories easy to interpret for non-DSMS
experts, which is precisely what we address in StreamTrace.

StreamTrace breaks each operation out of the query
expression separately through a process of query rewriting.
Query rewriting happens automatically behind the scenes;
users still see the original query when provenance is
enabled. Users enable StreamTrace with a single click,
which triggers provenance annotations, rewrites the current
query, executes this new query, and shows the output.
Provenance tracking is enabled for all core Trill operators;
as such, StreamTrace supports all of standard relational
algebra, with enhancements for time manipulations.
Collectively, these operations are common to other DSMS
streaming engines, too; there is nothing specific to Trill
about the broader design.

LABORATORY STUDY
After iteratively refining StreamTrace with expert users, we
validated our design with a laboratory study.

Hypotheses and Tasks
The goal of our quantitative evaluation was to learn
whether users better understand and debug temporal queries

Figure 6. This comment, embedded in a sample query from

Hank, shows a timeline view drawn with ASCII art.

Natural User Interfaces for InfoVis #chi4good, CHI 2016, San Jose, CA, USA

5439

with the assistance of our visualization. The feedback we
received from expert DSMS users encouraged us to believe
that StreamTrace would be good for helping novice users
understand queries. We carried out a laboratory user study
to test two hypotheses: using StreamTrace, subjects will

H1: identify errors in Trill queries more easily.
H2: find queries easier to write.

To test these hypotheses, we wanted to observe analysts in
the process of working through specific queries. We created
four synthetic datasets, each containing roughly a dozen
events. We chose these datasets to help participants debug
the intent of the temporal query, as opposed to its runtime
performance where larger datasets would be necessary. For
guidance, we directly referenced the test datasets given to
us by our experts John and Mark when creating our own
synthetic datasets. This ensured that our datasets had the
same structure and relative size as test datasets used in the
real world. We then created one query per dataset that we
expected users to be able to solve in the study.

In choosing our tasks, we strove for a balance to
accommodate the lab setting: we chose tasks that were
complex enough to manifest query comprehension and
authoring problems, but not so complex to overwhelm and
intimidate participants. To achieve this, we collected real
queries from our DSMS experts to use as starting points for
our tasks, grouped the queries by difficulty (e.g., easy,
medium and hard), and modified the queries as necessary to
match our test datasets and reflect appropriate difficulty
levels for the study. The final tasks challenged users either
to expand a simpler query into a more complex one or to
debug an erroneous complex query. Each query required
the user to tweak two or three operations. For example, one
task asked users to change a query from filtering and
showing a single value, to showing a value across multiple
filters in parallel. In doing so, users would need to change
from a filtering operator to a grouping one, and find the
appropriate syntax. Figure 4 illustrates the initial conditions
for Task B in the visualization condition. Users were told
they needed to debug the query so that that all of the output
was mapped to a set of fixed time windows (as in our
motivating example with Mark).

We carried out a series of pilots to ensure that the queries
were of roughly similar difficulty. To reduce learning
effects, we ensured the tasks had minimal overlap—none of
the four require the same Trill operators in their solutions.

The study was carried out within-subjects. Participants
carried out four rounds of tasks, alternating between with-
and without the StreamTrace enhancements. We alternated
which condition was first. We used a Latin-square design to
counterbalance tasks and conditions in order to balance out
difficulty and learning effects.

We measured the amount of time to get a correct query for
each task. All sessions were audio- and video-recorded.
Users filled out a brief survey after completing each of the

four tasks, then a concluding survey that compared tasks to
each other. After each session, we interviewed users to get
additional thoughts on their experience with the system.

Testing Environment
StreamTrace is implemented within the experimental data
science environment Tempe [9], which executes its data
analysis operations in Trill. Tempe works in an interactive
C# interpreter designed for live coding, which allows a user
to modify any line of a program, and see a recomputed
result immediately. Tempe also provides intelligent code-
completion; when a user types part of a command, the
system shows available methods on an object, the
parameters of a method call, and what objects match the
appropriate types. This allows us to focus on query
semantics, rather than syntax.

Study Procedure
We first introduce users to Trill with a paper guide
specifically created for the study, a modification of the
guide we created for Hank. The guide illustrates the syntax
and grammar for the eight Trill operators used in the study.
While Trill has dozens of other operators, this subset allows
us to capture all of the query types provided by our experts.
The guide illustrates its functions in a number of different
ways, including timelines similar to the visualization. After
spending approximately ten minutes reading the Trill guide,
subjects are then introduced first to the analytics
environment, then to the StreamTrace visualizations. They
are given a list of queries; the experimenter works with
them for another five minutes to ensure that they can
correctly write a query, accurately interpret the results of
queries; the experimenter also answers subjects’ questions.

Each of the four timed tasks began with two simple “warm-
up” tasks to teach subjects about the current dataset and to
familiarize them with the Trill operators they might need
for the task. When the subject announces that they are ready
to proceed, the experimenter starts a timer and the subject
starts on the test query. When the participant announces
they are done, the experimenter records the time and checks
their answer. Participants were asked to continue attempting
the task until they found the correct answer. Participants
who did not complete the task correctly were stopped after
twenty minutes per task and marked as “did not finish”.

Table 1: The four tasks for the user study

 Task Description Operations
A Find the max temperature

across multiple CPUs in one
stream

GroupApply;
Aggregate

B Ensure that a multicast stream
has consistent time windows.
(e.g., Figure 2(c))

Multicast;
TumblingWindow-
Lifetime

C

Join a stream with a second
stream on a key

Join; Where

D Match “start” and “end” pairs
within a log

AlterEventDuration;
ClipEventDuration

Natural User Interfaces for InfoVis #chi4good, CHI 2016, San Jose, CA, USA

5440

Participants
We recruited professional developers, data scientists, and
data-oriented testers from within a large software company.
We chose a random sample from three internal distributions
lists. We sent personalized email invitations to screen for
experience in C# and LINQ, and interest in data analysis.

From this pool, 18 participants took part in the study. We
dismissed three for lacking the required skills. The
remaining 15 (1 female) reported an average of

• 8.3 years of professional experience;
• 5.7 years of C# experience; and
• 3.4 years of LINQ experience;

In terms of job roles, 8 described themselves as developers,
4 as testers, and 3 as data scientists. We noted that seven
participants had just 1 or 2 years of experience with LINQ.
This was the first time any of our study participants
encountered any DSMS, including Trill.

RESULTS

Observations
We watched each user work through the problems and
recorded both screen captures and sessions. This allowed us
to track how users were interacting with the visualizations.

We found the visualizations were useful for different
types of queries. P1, a LINQ beginner, started with the
visualization for his first task. When he moved on to the
second task (task B) he said “The visualization would really
help here!” Task B requires the user to align time windows
together; the visualization makes it immediately apparent
which items are out of alignment (as shown in Figure 4).
Without the visualization, he was more frustrated. P11, also
working on Task B without the visualization, similarly
complained, “I couldn’t tell why the data didn’t correspond
to the correct [temporal] window.”

During times when users felt they had strong intuitions, this
verification was less important: P13 did not use the
visualization on Task C: “This one,” he said, “uses standard
[non-temporal] LINQ queries; I don’t need it.”

The visualizations were helpful to verify and confirm that
a query was working as expected. P1, for example, did not
use the visualization during the course of working on Task
C—but used afterward to show that he had succeeded.
Similarly, P13 used the visualization after he had completed
Task A to check whether he had the segments he expected.
P8 said, “visually seeing the result, it’s easier to verify
correctness instead of reading individual items.”

Last, the visualization helped shape people’s mental
models. P5 did not use the visualization during his study at
all. However, during his tutorial period, he spent a long
time studying the visualizations and their interactions.

Afterward, he reported that the visualization was “helpful”
but not quite worth turning on. We interpret P5 as building
a more-detailed mental model of the queries based on the
visualizations.

Three Phases of Debugging
We used these observations to assess StreamTrace’s
effectiveness across the three phases of the debugging
process as described by Parnin and Orso [28]: fault
understanding, fault localization, and fault correction. We
found that StreamTrace was generally helpful across a
majority of these phases.

For tasks like Task B, where participants greatly benefitted
from seeing the temporal scope/alignment of events, we
found that our visualizations helped with the fault
understanding phase of debugging for some participants.

Some users also found the visualizations to be helpful
during the fault localization phase of debugging queries.
P12, for example, reported that he found Task B to be
ambiguous—but when he saw the initial view, he figured
out what needed to be done. P15 was struggling with Task
D—after he turned to the visualization to walk step-by-step
through the behavior he expected to see, he was able to
quickly solve the problem.

Our visualizations also had their limitations. Several users
struggled with the Trill syntax; while fighting compiler
errors, the visualization had no extra information to show
them. Thus our visualizations were less effective during
fault correction. As we note above, some users found
StreamTrace effective for verifying that their fixes had
worked; this phase is not accounted for in this model.

Quantitative and Survey Results
We measured time to accurate completion for each
question. All participants were able to make it through all
four questions within twenty minutes each; most took far
less. However, with programming tasks, there is often high
variability within users on task performance, and our study
was no exception. For example, there was high variance
both within- and between-users across tasks in our study.
Even when compared within the same condition and for the
same user, completion times could vary by 6 minutes or
more for over a third of our participants. Correcting syntax
errors, or understanding the question, often took some time.
Disappointingly, as Figure 7 shows, the visualizations did
not obviously make users quicker for any of the tasks. But
we were not surprised when there was no “home run"
performance measure that clearly shows a large difference
between conditions. We believe that this variability is
inherent in the complexity of the streaming concepts and
the tasks, rather than a flaw of our study.

Natural User Interfaces for InfoVis #chi4good, CHI 2016, San Jose, CA, USA

5441

We turn, then, to our survey results. Amidst other
questions, we asked users to estimate the value of the
visualization to them. Figure 8 shows that users felt that the
visualization was more helpful for B and D, the temporal
queries, than for the others. We saw similar results for the
statement “the visualization helped me solve the task
faster;” and (reversed) for “the visualization was useless.”

DISCUSSION
The laboratory experiment tested very specific scenarios.
High variance, both within- and between-subjects, meant
that we did not come to a quantitative result showing that
users were faster to debug or create queries using
StreamTrace. However, we did see that the visualizations
assisted in query debugging in a variety of ways. Users
used the visualizations, guide, and the tutorial to better
understand how Trill queries were structured and to how to
think about the sequence of events. During the tasks, they
used StreamTrace to identify what was wrong with the data,
and to check that they got the right answer at the end.

Some types of queries seem more amenable to this
visualization than others: in tasks that entail manipulation
of the timeline, the visualization could help users keep track
of the time. As a result, users talked much more often about
the visualization challenges of the temporal tasks B and D
over the non-temporal tasks, A and C.

The real queries carried out by the experts tended to
combine temporal and non-temporal aspects. As a result, it
is likely that StreamTrace might be more generally useful
for them then for the more specialized queries.

We conclude that seeing how events flow through
streaming queries helps users with two specific debugging
subtasks: identifying faulty code regions, and identifying
the causes of erroneous or unexpected behavior within these
code regions. We attribute these benefits to the use of
timelines to make temporal semantics explicit, and the
ability to “drill in” to see the effect of individual operators
on specific stream events. Alternative query debugging
designs, such as for non-temporal queries, can still utilize a
“drill in” feature to show users how individual records are
modified as they are processed by a query. Our timeline-
based visualization design could potentially be applied to
high-level pipelines outside of DSMS’s (e.g., command-
line scripts, execution workflows), given appropriate input-
output provenance data.

Future Opportunities
Our study focused primarily on evaluating small-scale
debugging techniques. As such, it is unclear how
StreamTrace scales up in both visualization design and
dataset size. For example, in the current implementation,
the timeline remains fixed; this is a limitation on visual
scalability. We plan to extend our visualizations and
provenance tracking to larger event streams, which will
allow users to do both small-scale prototyping and large-
scale performance testing within a single debugging tool.

Both the expert users and our participants provided many
suggestions to improve the system. Our participants
suggested several new features and colorings to improve
StreamTrace’s visualizations. With aggregate operations,
users wanted to directly render aggregation values on the
timeline bars, perhaps even transforming the result into a
line chart. This would make the visualization more
powerful as a signal processing view. Several users also
wanted to be able to link the query text itself to the
visualization by cross-highlighting between the workflow
diagram on the left and the text above. These features
would enhance the StreamTrace experience.

CONCLUSION
In this paper, we have presented a visualization design to
help DSMS users better understand their temporal queries.
Our prototype, StreamTrace, helps improve users’
understanding of how individual DSMS operators
manipulate data streams, and the relationships between
these operators within temporal queries. We evaluated
StreamTrace by carrying out a lab study with 18 analysts
new to DSMS’s. We concluded from our user study that
StreamTrace can help users at two critical points in
debugging tasks: when locating faulty code regions in their
queries, and when understanding and identifying the causes
for unexpected query behavior.

ACKNOWLEDGEMENTS
We thank Remco Chang for his insightful feedback and
suggestions, which helped improve the paper. We also
thank the DSMS experts who helped design our
visualizations for StreamTrace.

REFERENCES
[1] Abadi, D., et al. The Design of the Borealis Stream

Processing Engine. In Proc. CIDR 2005, 277-289.

Figure 8. Likert survey question: agreement by task: “The
visualization was helpful for this task.” Scale from dark red

(“Strongly Disagree”) to dark blue (“Strongly agree”)

Figure 7. Time distribution for each query, by condition. The

visualization did not obviously speed users.

Natural User Interfaces for InfoVis #chi4good, CHI 2016, San Jose, CA, USA

5442

[2] Aigner, W., Miksch, S., Schumann, H., & Tominski, C.
Visualization of time-oriented data. Springer Science &
Business Media (2011).

[3] Amsterdamer, Y., Davidson, S.B., Deutch, D., Milo, T.,
Stoyanovich, J., Tannen, V. Putting Lipstick on Pig: Enabling
Database-style Workflow Provenance. In Proc. VLDB
Endow. 5, 4 (2011), 346–357.

[4] Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom,
J. Models and issues in data stream systems. In Proc. PODS
2002, ACM Press (2002), 1-16.

[5] Babu, S., and Widom, J. Continuous Queries over Data
Streams. SIGMOD Record 30, 3 (2001), 109-120.

[6] Cao, J., Rector, K., Park, T.H., Fleming, S. D., Burnett, M.,
and Wiedenbeck, S. A Debugging Perspective on End-User
Mashup Programming. In Proc. IEEE Symp. on VL/HCC
2010, ACM (2010), .

[7] Carney, D., et. al. Monitoring streams: a new class of data
management applications. In Proc. VLDB 2002, VLDB
Endowment (2002), 215-226.

[8] Chandramouli, B., et al. Trill: A High-performance
Incremental Query Processor for Diverse Analytics. In Proc
VLDB Endow 8 (2014), 401–412.

[9] DeLine, R., Fisher, D., Chandramouli, B., Goldstein, J.,
Barnett, M., Terwilliger, J. F. and Wernsing, J. Tempe: Live
Scripting for Live Data, In Proc. of IEEE Symp. on
VL/HCC 2015, ACM (2015).

[10] De Pauw, W., Leţia, M., Gedik, B., Andrade, H., Frenkiel,
A., Pfeifer, M., and Sow, D. Visual Debugging for Stream
Processing Applications. In Proc. RV, Springer-Verlag
(2010), 18-35.

[11] Fails, J. A., Karlson, A., Shahamat, L. & Shneiderman, B. A
Visual Interface for Multivariate Temporal Data: Finding
Patterns of Events across Multiple Histories. in Visual
Analytics Science And Technology, 2006 IEEE Symposium
On 167–174 (2006).

[12] Fisher, D., DeLine, R., Czerwinski, M., and Drucker, S.
2012. Interactions with big data analytics. interactions 19, 3
(May 2012), 50-59.

[13] Glavic, B., Esmaili, K.S., Fischer, P.M., Tatbul, N. The Case
for Fine-Grained Stream Provenance. In Proc. BTW
Workshops 2011.

[14] Glavic, B., Esmaili, K.S., Fischer, P.M., Tatbul, N. Ariadne:
managing fine-grained provenance on data streams. In Proc.
DEBS 2013, ACM (2013), 39-50.

[15] Gschwandtner, T., Aigner, W., Kaiser, K., Miksch, S.,
Seyfang, A. CareCruiser: exploring and visualizing plans,
events, and effects interactively." Pacific Visualization
Symposium (PacificVis), IEEE Computer Society (2011), 43-
50.

[16] Huq, M.R., Wombacher, A., and Apers, P.M. Inferring fine-
grained data provenance in stream data processing: reduced
storage cost, high accuracy. In Proc. DEXA 2011, Springer
Berlin Heidelberg (2011), 118-127.

[17] Ikeda, R., Park, H., and Widom, J. Provenance for
Generalized Map and Reduce Workflows. In Proc. CIDR
2011.

[18] Jin, J. & Szekely, P. Interactive querying of temporal data
using a comic strip metaphor. in 2010 IEEE Symposium on
Visual Analytics Science and Technology (VAST) 163–170
(2010).

[19] Kandel, S., Paepcke, A., Hellerstein, J. M., and Heer, J.
(2012). Enterprise data analysis and visualization: An
interview study. Visualization and Computer Graphics, IEEE
Transactions on, 18, 12 (2012), 2917-2926.

[20] Ko, A.J. and Myers, B.A. Finding Causes of Program Output
with the Java Whyline. In Proc. CHI 2009, ACM (2009),
1569-1578.

[21] Kosara, R., and Miksch, S. Metaphors of movement: a
visualization and user interface for time-oriented, skeletal
plans. Artificial Intelligence in Medicine 22 (2001), 111-131.

[22] Krause, J., Perer, A. & Stavropoulos, H. Supporting Iterative
Cohort Construction with Visual Temporal Queries. IEEE
Transactions on Visualization and Computer Graphics 22,
91–100 (2016).

[23] Lessa, D., Jayaraman, B., and Chomicki, J. A Temporal Data
Model for Program Debugging. In Proc. DBPL 2011.

[24] Madden, S. and Franklin, M.J. Fjording the Stream: An
Architecture for Queries over Streaming Sensor Data. In
Proc. ICDE 2002, IEEE Computer Society (2002), 555.

[25] Meijer, E. The world according to LINQ. Comm. ACM 54, 10
(October 2011), 45-51.

[26] Monroe, M. et al. The Challenges of Specifying Intervals and
Absences in Temporal Queries: A Graphical Language
Approach. in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems 2349–2358 (ACM,
2013).

[27] Moritz, D., Halperin, D., Howe, B. & Heer, J. Perfopticon:
Visual Query Analysis for Distributed Databases. Comput.
Graph. Forum 34 (2015), 71–80.

[28] Parnin, C. and Orso, A. Are Automated Debugging
Techniques Actually Helping Programmers? In Proc. ISSTA
2011, ACM (2011), 199-209.

[29] Scheidegger, C., Koop, D., Santos, E., Vo, H., Callahan, S.,
Freire, J., and Silva, C. Tackling the provenance challenge
one layer at a time. Concurrency and Computation: Practice
and Experience 20, 5 (2008), 473-483.

[30] Subrahmaniyan, N., Beckwith, L., Grigoreanu, V., Burnett,
M., Wiedenbeck, S., Narayanan, V, Bucht, K., Drummond,
R., and Fern, X. Testing vs. Code Inspection vs. What Else?:
Male and Female End Users' Debugging Strategies. In Proc.
CHI 2008, ACM (2008), 617-626.

[31] Vijayakumar, N., and Plale, B. Tracking Stream Provenance
in Complex Event Processing Systems for Workflow-Driven
Computing. In VLDB EDA-PS Workshop 2007.

Natural User Interfaces for InfoVis #chi4good, CHI 2016, San Jose, CA, USA

5443

