
RRENCY CONTROL
AND RECOVERY
IN DATABASE SYSTEMS

Philip A. Bernstein
Wang Institute of Graduate Studies

Vassos Hadzilacos
University of Toronto

Nathan Goodman
Kendall Square Research Corporation

ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts n Menlo Park, California
Don Mills, Ontario n Wokingham, England q Amsterdam B Sydney
Singapore D Tokyo m Madrid n Bogot6 w Santiago H San Juan

This book is in the Addison-Wesley Series in Computer Science
Michael A. Harrison, Consulting Editor

Library of Congress Cataloging-in-Publication Data

Bernstein, Philip A.
Concurrency control and recovery in data-

base sy~stems.

Includes index.
1. Data base management. 2. Parallel

processing (Electronic computers)
I. Hadzilacos, Vassos. II. Goodman, Nathan.
III. Title.
QA76.9.D3B48 1987 004.3 86-14127
ISBN O-201-10715-5

Copyright 0 1987 by Philip A. Bernstein, Vassos Hadzilacos, and Nathan
Goodman.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that the
fast page of each copy bears this notice and the full citation including
title and authors. To copy othenvise, to republish, to post on servers or to
redistribute to lists, requires prior sp.ecific permission from the copyright
owner.

PREFACE

The Subject

For over 20 years, businesses have been moving their data processing activities
on-line. Many businesses, such as airlines and banks, are no longer able to
function when their on-line computer systems are down. Their on-line data-
bases must be up-to-date and correct at all times.

In part, the requirement for correctness and reliability is the burden of the
application programming staff. They write the application programs that
perform the business’s basic functions: make a deposit or withdrawal, reserve
a seat or purchase a ticket, buy or sell a security, etc. Each of these programs is
designed and tested to perform its function correctly. However, even the most
carefully implemented application program is vulnerable to certain errors that
are beyond its control. These potential errors arise from two sources: concur-
rency and failures.

Multiprogramming is essential for attaining high performance. Its effect is
to allow many programs to interleave their executions. That is, they execute
concwrently. When such programs interleave their accesses to the database,
they can interfere. Avoiding this interference is called the concurrency control
problem.

Computer systems are subject to many types of failures. Operating systems
fail, as does the hardware on which they run. When a failure occurs, one or
more application programs may be interrupted in midstream. Since the
program was written to be correct only under the assumption that it executed
in its entirety, an interrupted execution can lead to incorrect results. For exam-
ple, a money transfer application may be interrupted by a failure after debiting

. . .
III

iv PREFACE

one account but before crediting the other. Avoiding such incorrect results due
to failures is called the recocery problem.

Systems that solve the concurrency control and recovery problems allow
their users to assume that each of their programs executes atomically - as if
no other programs were executing concurrently - and reliably - as if there
were no failures. This abstraction of an atomic and reliable execution of a
program is called a transaction.

A concurrency control algorithm ensures that transactions execute atomi-
cally. It does this by controlling the interleaving of concurrent transactions, to
give the illusion that transactions execute serially, one after the next, with no
interleaving at all. Interleaved executions whose effects are the same as serial
executions are called serializable. Serializable executions are correct, because
they support this illusion of transaction atomicity.

A recozjery algorithm monitors and controls the execution of programs so
that the database includes only the results of transactions that run to a nor-
mal completion. If a failure occurs while a transaction is executing, and the
transaction is unable to finish executing, then the recovery algorithm must
wipe out the effects of the partially completed transaction. That is, it must
ensure that the database does not reflect the results of such transactions. More-
over, it must ensure that the results of transactions that do execute are never
lost.

This book is about techniques for concurrency control and recovery. It
covers techniques for centralized and distributed computer systems, and for
single copy, multiversion, and replicated databases. These techniques were
developed by researchers and system designers principally interested in trans-
action processing systems and database systems. Such systems must process a
relatively high voIume of short transactions for data processing. Example
applications include electronic funds transfer, airline reservation, and order
processing. The techniques are useful for other types of applications too, such
as electronic switching and computer-aided design - indeed any application
that requires atomicity and reliability of concurrently executing programs that
access shared data.

The book is a blend of conceptual principles and practical details. The
principles give a basic understanding of the essence of each probIem and
why each technique solves it. This understanding is essential for applying the
techniques in a commercial setting, since every product and computing
environment has its own restrictions and idiosyncrasies that affect the
implementation. It is also important for applying the techniques outside the
realm of database systems. For those techniques that we consider of most
practical vaIue, we explain what’s needed to turn the conceptual prin-
ciples into a workable database system product. We concentrate on those
practical approaches that are most often used in today’s commercial
systems.

PREFACE v

Serializability Theory

Whether by its native capabilities or the way we educate it, the human mind
seems better suited for reasoning about sequential activities than concurrent
ones. This is indeed unfortunate for the study of concurrency control algo-
rithms. Inherent to the study of such algorithms is the need to reason about
concurrent executions.

Over the years, researchers have developed an abstract model that
simplifies this sort of reasoning. The model, called serializability theory,
provides two important tools. First, it provides a notation for writing down
concurrent executions in a clear and precise format, making it easy to talk and
write about them. Second, it gives a straightforward way to determine when a
concurrent execution of transactions is serializable. Since the goal of a concur-
rency control algorithm is to produce serializable executions, this theory helps
us determine when such an algorithm is correct.

To understand serializability theory, one only needs a basic knowledge of
directed graphs and partial orders. A comprehensive presentation of this mate-
rial appears in most undergraduate textbooks on discrete mathematics. We
briefly review the material in the Appendix.

We mainly use serializability theory to express example executions and to
reason abstractly about the behavior of concurrency control and recovery
algorithms. However, we also use the theory to produce formal correctness
proofs of some of the algorithms. Although we feel strongly about the impor-
tance of understanding such proofs, we recognize that not every reader will
want to take the time to study them. We have therefore isolated the more
complex proofs in separate sections, which you can skip without loss of conti-
nuity. Such sections are marked by an asterisk (*). Less than 10 percent of the
book is so marked.

Chapter Organization

Chapter 1 motivates concurrency control and recovery problems. It defines
correct transaction behavior from the user’s point of view, and presents a
model for the internal structure of the database system that implements this
behavior - the model we will use throughout the book. Chapter 2 covers
serializability theory.

The remaining six chapters are split into two parts: Chapters 3-5 on
concurrency control and Chapters 6-8 on recovery.

In Chapter 3 we cover two phase locking. Since locking is so popuIar in
commercial systems, we cover many of the variations and implementation
details used in practice. The performance of locking algorithms is discussed
in a section written for us by Dr. YC. Tay. We also discuss non-two-phase
locking protocols used in tree structures.

In Chapter 4 we cover concurrency control techniques that do not use
locking: timestamp ordering, serialization graph testing, and certifiers (i.e.,

Vi PREFACE

optimistic methods). These techniques are not widely used in practice, so the
chapter is somewhat more conceptual and less implementation oriented than
Chapter 3. We show how locking and non-locking techniques can be inte-
grated into hundreds of variations.

In Chapter 5 we describe concurrency control for multiversion databases,
where the history of values of each data object is maintained as part of the
database. As is discussed later in Chapter 6, old versions are often retained for
recovery purposes. In this chapter we show that they have value for concur-
rency control too. We show how each of the major concurrency control and
recovery techniques of Chapters 3 and 4 can be used to manage multiversion
data.

In Chapter 6 we present recovery algorithms for centralized systems. We
emphasize undo-redo logging because it demonstrates most of the recovery
problems that all techniques must handle, and because it is especially popular
in commercial systems. We cover other approaches at a more conceptual level:
deferred updating, shadowing, checkpointing, and archiving.

In Chapter 7 we describe recovery algorithms for distributed systems
where a transaction may update data at two or more sites that only communi-
cate via messages. The critical problem here is atomic commitment: ensuring
that a transaction’s resuIts are installed either at all sites at which it executed or
at none of them. We describe the two phase and three phase commit protocols,
and explain how each of them handles site and communications failures.

In Chapter 8 we treat the concurrency control and recovery problem for
replicated distributed data, where copies of a piece of data may be stored at
multiple sites. Here the concurrency control and recovery problems become
closely intertwined. We describe several approaches to these problems:
quorum consensus, missing writes, virtual partitions, and available copies, In
this chapter we go beyond the state-of-the-art. No database systems that we
know of support general purpose access to replicated distributed data.

Chapter Prerequisites

This book is designed to meet the needs of both professional and academic
audiences. It assumes background in operating systems at the level of a one
semester undergraduate course. In particular, we assume some knowledge of
the following concepts: concurrency, processes, mutual exclusion, sema-
phores, and deadlocks.

We designed the chapters so that you can select whatever ones you wish
with few constraints on prerequisites. Chapters 1 and 2 and Sections 3.1, 3.2,
3.4, and 3.5 of Chapter 3 are all that is required for later chapters, The sub-
sequent material on concurrency control (the rest of Chapter 3 and Chapters
4-5) is 1argeIy independent of the material on recovery (Chapters 6-8). You
can go as far into each chapter sequence as you like.

PREFACE vii

Chapter 1

I
Chapter 2

I
Chapter 3

Sections 3.1, 3.2, 3.4, 3.5

/ \
Chapte; 3

Sections 3.3, 3.6 - 3.12

I
Chapter 4 Chapter 7

Sections 4.1 - 4.2

/\ I
Chapter 4 Chapter 5 Chapter 8

Sections 4.3 - 4.5

FIGURE 1
Dependencies between Chapters

A minimal survey of centralized concurrency control and recovery would
include Sections 3.1-3.7, 3.12, and 3.13 of Chapter 3 and Sections 6.1-6.4
and 6.8 of Chapter 6. This material covers the main techniques used in
commercial database systems, namely, locking and logging. In length, it’s
about a quarter of the book.

You can extend your survey to distributed (nonreplicated) data by adding
Sections 3.10 and 3.11 (distributed locking) and Chapter 7 (distributed recov-
ery). You can extend it to give a more complete treatment of centralized
systems by adding the remaining sections of Chapters 3 and 6, on locking and
recovery, and Chapter 5, on multiversion techniques (Section 5.3 requires
Section 4.2 as a prerequisite). As we mentioned earlier, Chapter 4 covers non-
locking concurrency control methods, which are conceptually important, but
are not used in many commercial products.

Chapter 8, on replicated data, requires Chapters 3, 6, and 7 as prerequi-
sites; we also recommend Section 5.2, which presents an analogous theory for
multiversion data. Figure 1 summarizes these prerequisite dependencies.

We have included a substantial set of problems at the end of each chapter.
Many problems explore dark corners of techniques that we didn’t have the
space to cover in the chapters themselves. We think you’ll find them interesting
reading, even if you choose not to work them out.

viii PREFACE

For Instructors

We designed the book to be useful as a principal or supplementary textbook in
a graduate course on database systems, operating systems, or distributed
systems. The book can be covered in as little as four weeks, or could consume
an entire course, depending on the breadth and depth of coverage and on the
backgrounds of the students.

You can augment the book in several ways depending on the theme of the
course:

CI Distributed Databases - distributed query processing, distributed data-
base design.

u Transaction Processing - communications architecture, applications
architecture, fault-tolerant computers.

o Distributed Computing - Byzantine agreement, network topology
maintenance and message routing, distributed operating systems.

u Fault Tolerance - error detecting codes, Byzantine agreement, fault-
tolerant computers.

u Theory of Distributed Computing - parallel program verification,
analysis of parallel algorithms.

In a theoretical course, you can augment the book with the extensive mathe-
matical material that exists on concurrency control and recovery

The exercises supply problems for many assignments. In addition, you
may want to consider assigning a project. We have successfully used two styles
of project.

The first is an implementation project to program a concurrency contro1
method and measure its performance on a synthetic workload. For this to be
workable, you need a concurrent programming environment in which process-
ing delays can be measured with reasonable accuracy, Shared memory between
processes is also very helpful. We have successfully used Concurrent Euclid for
such a project [Halt 831.

The second type of project is to take a concurrency controI or recovery
algorithm described in a research paper, formahze its behavior in serializability
theory, and prove it correct. The bibliography is full of candidate examples.
Also, some of the referenced papers are abstracts that do not contain proofs.
Filling in the proofs is a stimulating exercise for students, especially those with
a theoretica inclination.

Acknowledgments

In a sense, work on this book began with the SDD-1 project at Computer
Corporation of America (CCA). Under the guidance and support of Jim Roth-
nie, two of us (Bernstein and Goodman) began our study of concurrency

PREFACE ix

control in database systems. He gave us an opportunity that turned into a
career. We thank him greatly.

We wrote this book in part to show that serializability theory is an effective
way to think about practical concurrency control and recovery problems. This
goal required much research, pursued with the help of graduate students,
funding agencies, and colleagues. We owe them all a great debt of gratitude.
Without their help, this book would not have been written.

Our research began at Computer Corporation of America, funded by
Rome Air Development Center, monitored by Tom Lawrence. We thank Tom,
and John and Diane Smith at CCA, for their support of this work, continuing
well beyond those critical first years. We also thank Bob Grafton, at the Office
for Naval Research, whose early funding helped us establish an independent
research group to pursue this work. We appreciate the steady and substantial
support we received throughout the project from the National Science Founda-
tion, and more recently from the Natural Sciences and Engineering Research
Council of Canada, Digital Equipment Corporation, and the Wang Institute of
Graduate Studies. We thank them all for their help.

Many colleagues helped us with portions of the research that led to this
book. We thank Rony Attar, Catriel Beeri, Marco Casanova, Ming-Yee Lai,
Christos Papadimitriou, Dennis Shasha, Dave Shipman, Dale Skeen, and Wing
Wong.

We are very grateful to Dr. Y.C. Tay of the University of Singapore for
writing an important section of Chapter 3 on the performance of two phase
locking. He helped us fill an important gap in the presentation that would
otherwise have been left open.

We gained much from the comments of readers of early versions of the
chapters, including Catriel Beeri, Amr El Abbadi, Jim Gray, Rivka Ladin, ban
Rosenkrantz, Oded Shmueli, Jack Stiffler, Mike Stonebraker, and Y.C. Tay. We
especially thank Gordon McLean and Irv Traiger, whose very careful reading
of the manuscript caught many errors and led to many improvements. We also
thank Ming-Yee Lai and Dave Lomet for their detailed reading of the final
draft.

We are especially grateful to Jenny Rozakis for her expert preparation of
the manuscript. Her speed and accuracy saved us months. We give her our
utmost thanks.

We also thank our editor, Keith Wollman, and the entire staff at Addison-
Wesley for their prompt and professional attention to all aspects of this book.

We gratefully acknowledge the Association for Computing Machinery for
permission to use material from “Multiversion Concurrency Control -
Theory and Algorithms,” ACM Transactiox on Database Systems 8, 4 (Dec.
1983), pp. 465-483 (0 1983, Association for Computing Machinery, Inc.) in
Chapter 5; and “An Algorithm for Concurrency Control and Recovery in
Replicated Distributed Databases,” ACM Transactions on Database Systems
9,4 (Dec. 1984), pp. 596-615 (0 1984, Association for Computing Machin-

X PREFACE

ery, Inc.) in Chapter 8. We also acknowledge Academic Press for allowing us to
use material from “Serializability Theory for Replicated Databases,” Journal
of Computer a& Syster?z Sciences 3 1, 3 (1986) (0 19 86, Academic Press) in
Chapter 8; and Springer-Verlag for allowing us to use material from “A Proof
Technique for Concurrency Control and Recovery Algorithms for Replicated
Databases,” Distributed Computing 2, 1 (1986) in Chapter 8.

Finally, we thank our families, friends, and colleagues for indulging our
bad humor as a two-year project stretched out to six. Better days are ahead.

Tyngsboro, h4ass. P.A.B.
Toronto, Canada V.H.
Cambridge, h?ass. N.G.

	Contents:
	Index:

