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Abstract
Time-travel debugging (TTD) lets developers step back-
ward as well as forward through a program’s execution.
TTD is a powerful mechanism for diagnosing bugs, but
previous approaches suffer from poor performance due to
checkpoint and logging overhead, or poor fidelity because
important information like GUI state is not tracked.

In this paper, we describe how to provide high-
performance and high-fidelity TTD to programs written
in managed languages. Previous high-performance de-
buggers treat components external to the program like
the GUI as black boxes, but that is not sufficient for high-
fidelity time-travel. Instead, we advocate for a gray-box
approach that keeps these components live and in sync
with the program during time-travel. The key insight is
that managed runtime APIs expose most of the function-
ality required to do this; where it does not, we extend the
runtime with a small number of non-intrusive interroga-
tive interfaces. To demonstrate the power of our gray-box
approach, we implement REJS, a time-traveling debug-
ger for web applications. REJS imposes imperceptible
tracing overhead, and its logs typically grow less than 1
KB/s. As a result, REJS is performant enough to be de-
ployed in the wild; real client machines can ship buggy
execution traces across the wide area to developer-side
machines for debugging.

1 Introduction

Developers spend a large amount of time debugging. To
fix a particular bug, a developer first determines the inputs
that trigger the problem. Then, the developer launches the
program within a debugger and find the root cause of the
bug. If the developer steps too far forward in the program,
or fails to place a breakpoint in the correct location, the
developer may pass by the problematic line of code; the
developer will then have to adjust her breakpoints and
restart the debugging process.

Time-traveling debuggers [23, 14, 5] offer the promise
of removing much of this frustration. Using these sys-
tems, a developer only needs to record a problematic ex-
ecution once; the developer can then step forward and
backward through the recorded execution. If time travel
were sufficiently fast, it could be used as a primitive by
question-guided debuggers [24, 25] and automated root
cause extractors [9, 16, 20, 22]. If execution logs were
sufficiently small, they could be shipped across the wide
area, letting developers receive bug traces from real end-
users [32]. If replay fidelity were sufficiently high, devel-
opers could use time-travel debugging to diagnose race
conditions and other subtle faults.

Unfortunately, there is a tension between the fidelity
of replay and the efficiency of program tracing and subse-
quent time travel. For example, a hypervisor has an om-
niscient view of how a guest application interacts with
the rest of the system. Thus, a hypervisor can record
all of the nondeterministic inputs to the guest, and later
perform instruction-precise replay [14, 23]. The replay
will accurately reconstruct low-level hardware and OS
state, but knowledge of such state is often unnecessary
for an application-level developer who is trying to fix
an application-level bug. In these debugging scenarios,
the performance and space overheads of instruction-level
TTD are excessive.

To reduce these overheads, one can define a higher-
level virtual machine boundary. For example, a time-
traveling debugger can mediate a program’s interactions
with the POSIX interface [43]; alternatively, the debug-
ger can mediate interactions with a managed language
runtime like .NET or JVM [5]. With fewer, higher-level
interactions to log, execution tracing is more efficient, and
logs are smaller. Unfortunately, a high-level virtual ma-
chine interface excludes important application state that
may be needed at debug time. For example, consider a de-
bugger that logs and replays interactions with the POSIX
layer. Using calls like fcntl(int fd,. . .), a program
can query the state associated with a file. At logging time,



the debugger can record the return values for such calls,
but fundamentally, the debugger must treat the file system
as a black box—the underlying file system state is main-
tained outside of the virtual machine boundary, within the
OS. Thus, the debugger has no insight into how the file
system’s state might change between explicit application
queries of that state. If the program fails to acquire a lock
on a file, the developer may want to call fcntl during re-
play to query for file locks set by other processes, posing
a challenge to the debugger. The debugger can disallow
the query by fiat (and thereby diminish the quality of the
debugging experience). Alternatively, the debugger can
maintain an internal model of how the OS might update
the file system, and return an fcntl() value from the
simulated replay-time file system. Unfortunately, simulat-
ing program-external components is brittle and difficult
to implement correctly [8, 32].

Given the preceding discussion, there seems to be a
stark partition in the design space for time-traveling de-
buggers: precise but heavyweight, or imprecise but effi-
cient. In this paper, we demonstrate that this partition is
not fundamental. We introduce a new type of time-travel
debugger which has the fidelity associated with low-level
logging, but the efficiency associated with high-level log-
ging. The key insight is that black-box components below
the virtual machine boundary can be modified to expose
just enough additional state to let high-level logs support
high-fidelity replay; we call this approach gray-box vir-
tualization.1 The amount of additional exposed state is
small; thus, execution tracing remains efficient, and logs
remain small. For example, we could augment the POSIX
interface to fire upcalls whenever a file’s lock set changes,
letting the logging infrastructure track modifications to
formerly hidden file state.

That being said, this paper focuses on gray-box virtual-
ization at the managed runtime layer, not the POSIX layer.
There are two reasons for this approach. First, the nec-
essary gray-box modifications are simpler to enumerate
and easier to correctly implement at the higher level of ab-
straction that managed runtimes provide. Second, by log-
ging and replaying at this higher level of abstraction, we
demonstrate that high-fidelity time-travel debugging be-
comes so efficient that it is deployable in production envi-
ronments at production speeds: real end-users can enable
logging with imperceptible performance impact; logs are
small enough to send to remote developers over poor net-
work connections; and developers can replay those buggy
executions in real-time or faster. We demonstrate the ef-
fectiveness of gray-box virtualization with REJS, a new
time-traveling debugger for client-side web applications
that uses the JavaScript runtime as the virtualization layer.

1This modification of black-box components is similar in spirit to
paravirtualization [4], which modifies a guest OS to be more amenable
to x86-level virtualization.

REJS leverages gray-box techniques to capture important
state like animation metadata that resides in the (formerly
black box) rendering engine. REJS can faithfully replay
interactions that previous high-performance JavaScript
debuggers cannot (§3.2) while avoiding the heavyweight
tracing of previous high-fidelity approaches (§2), produc-
ing application snapshots that are three orders of magni-
tude smaller than snapshots from Hyper-V, a state-of-the-
art, x86-level hypervisor. Furthermore, our unoptimized
REJS prototype can generate a full application check-
point in a few hundred milliseconds. For many use cases,
such fast checkpoints obviate the need for the complex
snapshotting techniques that are required in x86-level vir-
tualization environments [10, 45].

In summary, this paper provides four contributions.
• We introduce gray-box virtualization and describe

how it enables high fidelity TTD without the per-
formance overheads of low-level execution trac-
ing (§3).
• We describe REJS, a concrete implementation of a

gray-box virtualization system (§4), and evaluate its
efficiency and fidelity on a wide variety of applica-
tions (§5).
• We demonstrate that gray-box virtualization enables

other services besides TTD, including cheap appli-
cation migration (§4.5).
• We discuss how gray-box virtualization could be

adapted to other managed runtimes, such as the
.NET Common Language Runtime and the Java Vir-
tual Machine (§6).

REJS has been incorporated as part of the debugging plat-
form of the open-source ChakraCore JavaScript engine
from Microsoft [36].

2 Background

In the context of time-travel debugging, a program has
two types of state. Internal state resides above the vir-
tualization boundary, and can be explicitly manipulated
and inspected by a program. For example, in a POSIX
application, the user-mode memory pages and the open
file descriptors are internal state. Managed languages do
not expose raw memory or file descriptors, but the ana-
logues (e.g., object references and IO objects) belong to
the internal state of the managed program.

External state resides beneath the virtualization bound-
ary, and is partially or totally hidden from the program,
or updated by events that are not directly exposed to the
program. In the POSIX example from Section 1, a file de-
scriptor’s lock metadata is external state: a process may
query or update lock state, but that state can be concur-
rently modified by a second process without triggering an
explicit event in the first one. In a managed language,
GUI resources are a classic example of external state.



Application-facing Interface
Resource State Web Browser JVM .NET CLR

CPU Thread Status None ThreadGroup Process.Threads

Active IPC Listeners postMessage listeners None IpcChannel

RNG State Math.random() Math.random() Random

Thread Locks None Object Monitor

Perf. Monitoring None sun.management.counter.* PerformanceCounter

Memory Heap Indirect Indirect Indirect
Stack Indirect Indirect Indirect

Storage Storage Contents localStorage, Cookies FileSystem System.IO.*

Clock Current Time Date System.currentTimeMillis DateTime

Timer Status setTimeout, setInterval Timer Timer

Display GUI Contents DOM AWT, Swing WPF, WinForms, WinRT

Device Input Event Listeners DOM Events EventListener KeyEventHandler, . . .
Pending Events Indirect EventQueue Dispatcher

Network Connection Status XMLHttpRequest Socket Socket

Data Listeners DOM Events AsynchronousSocketChannel Socket + AsyncCallback

Table 1: Managed runtimes provide a high-level interface to low-level system resources. In the table above, we sum-
marize those resources, and provide examples of the APIs which expose those resources. In the “interface” columns,
Indirect means that a program’s interactions with a low-level resource are implicit, i.e., the interactions do not use an
explicit interface in the managed runtime. None indicates that the runtime does not expose a particular resource at all.

GUIs are typically implemented in native code, by con-
currently executing processes that live outside of the man-
aged runtime’s interpreter/JIT environment. As a result, a
managed program lacks access to low-level GUI events,
rendering buffers, or animation timers, even though the
program can indirectly read and write that state. Thus,
logging that state is crucial for accurately replaying the
program (§3.2).

By interposing on the virtualization boundary, a TTD
framework can trace and replay interactions across the
boundary. The primary challenge of efficient TTD is iden-
tifying the minimal amount of internal plus external state
which must be tracked to faithfully replay a program.
TTD performance suffers if a framework logs and replays
extraneous state, i.e., state which is unnecessary for un-
derstanding the program under investigation.

In the rest of this section, we provide a more detailed
overview of how managed runtimes expose low-level re-
sources. We then describe how prior solutions for time-
travel debugging deal with the problem of external state;
this discussion motivates gray-box virtualization, which
is described in depth in Section 3.

2.1 Managed Runtimes

Table 1 compares the interfaces for three managed run-
times: the JavaScript runtime that is exported by web

browsers [15], the Java Virtual Machine (JVM) [26], and
the .NET Common Language Runtime (CLR) [33]. Each
runtime uses idiosyncratic methods to expose the same
low-level OS resources, but most resources are exposed in
equivalently expressive ways across each runtime. How-
ever, the JavaScript interface is higher-level than that of
the JVM or CLR. As a result, JavaScript programs have
more external state than semantically equivalent JVM/-
CLR programs. Furthermore, a JavaScript program can-
not express some behaviors that are possible in the other
runtimes. For example, the JavaScript runtime does not
provide direct access to the host file system. Instead, a
JavaScript program must interact with persistent storage
via key/value interfaces like localStorage; those inter-
faces are private, per-origin resources, meaning that two
origins that need to communicate must use IPC as there
is no shared file system. The JVM and CLR runtimes
also allow a single execution context to contain multiple
threads, whereas JavaScript does not. Thus, the JVM and
CLR runtimes expose locking primitives that are unnec-
essary for JavaScript programs.

All of the managed runtimes provide an abstracted
view of memory. Raw memory addresses are hidden, and
programs use opaque object references to manipulate
data. Such memory abstraction has an important rami-
fication for time-travel debugging: at logging time, the
debugger does not need to track address-precise object



locations, and at replay time, the debugger does not need
to recreate objects in their exact logging-time memory lo-
cations. Instead, replay only needs to provide application-
visible referential integrity. In other words, at each mo-
ment in the replayed execution, the TTD framework only
needs to ensure that application-visible objects have the
same referential relationships. The replay system has the
freedom to map those objects to arbitrary virtual memory
locations.

2.2 Prior TTD Systems
Imagine that we desire to log and replay the following
web program:
<script type="text/javascript">
window.addEventListener('load ', function () {

var callbackId = setInterval(function () {
var box1 = document.getElementById('box1 ');
var box2 = document.getElementById('box2 ');
var box1Text = box1.innerText;
box1.innerText = box2.innerText;
box2.innerText = box1Text;

}, 100);
});
</script >
<div id="box1">Now I'm Here!</div>
<div id="box2">Now I'm There!</div>

This program waits for the page to load, and then registers
a timer that runs every 100 milliseconds and swaps the
contents of the two <div> tags.

Suppose that we log and replay the program at the
x86 layer. With this approach, the program has no ex-
ternal state, since there is no state that lives below the
x86 layer. However, for a web developer who is only in-
terested in application-level bugs, x86-level virtualization
captures a large amount of extraneous internal state. For
example, in a JavaScript program, the raw memory ad-
dresses of objects are extraneous state, since they cannot
be observed by JavaScript programs. The raw contents
of graphics memory are irrelevant, since the JavaScript
runtime wraps low-level graphics hardware in the abstrac-
tion of the DOM [18]. Furthermore, all of the low-level
memory layout is extraneous, since the JavaScript pro-
gram only cares about the heap’s referential integrity,
not its raw pointer integrity. x86-level traces also record
the content and timing of low-level hardware events like
timer interrupts and IO interrupts. However, JavaScript
programs only perceive the indirect side-effects of those
events, through high-level interfaces like setTimeout()
and XMLHttpRequest; thus, instruction-precise timings
for hardware-level events are extraneous. Due to the large
amount of extraneous state, program checkpoints can be
very large, even with delta encoding [10, 45].

To reduce the overwhelming amount of extraneous
state, a TTD system can interpose on the virtualization
boundary defined by the managed runtime [5, 32]. At
logging time, the TTD framework observes the output
from each call to a managed runtime API; additionally,

the framework wraps some inputs to API calls with code
that assists with event logging. In the simple web pro-
gram above, the TTD system logs the return value from
setInterval(), and wraps the input function with code
that logs the timer ID and the current time before invoking
the program-provided function. At replay time, the TTD
framework intercepts each call to a runtime API, and ei-
ther directly returns a logged value, or allows the call to
issue to the live, replay-time managed environment under
the assumption that the interaction is deterministic. A tra-
ditional time-traveling debugger like Tardis [5] would do
the former, but Mugshot [32] does the latter for modifica-
tions to DOM state like box1.innerText.

Unfortunately, both approaches are problematic. If the
TTD framework only returns logged values for interac-
tions with black-box state, then the replay-time debugger
cannot query that state at arbitrary moments (§1), and
the associated state cannot be recreated at replay time
(e.g., a replayed web application will have no GUI state,
only JavaScript state). Alternatively, if the TTD frame-
work allows the replayed application to invoke APIs on
live replay-time black boxes, the concurrently executing
black boxes may race with the portion of the application
that the debugger does control. These races can lead to
erroneous replays (§3.2).

3 Gray-box Virtualization

A managed runtime presents applications with an inter-
face to system resources like the network, the display,
and local storage. Since the managed interface uses a
high level of abstraction, some of the state which be-
longs to a program resides beneath the managed inter-
face, inside the managed runtime itself. For example,
when JavaScript code registers a timer via setTime-

out(callback, waitMs), the browser adds the two-
tuple <callback, invocationTime> to a C++ queue
of pending timers. The browser’s managed runtime does
not expose the timer queue to JavaScript code. However,
a time-traveling debugger must log updates to the timer
queue, so that timers can be dispatched at the appropriate
moments during replay.

To expose such black-box state to debuggers, we use
gray-box virtualization. Gray-box virtualization makes
small modifications to the managed runtime to introduce
interrogative interfaces that expose previously hidden ap-
plication state. Gray-box virtualization tweaks the man-
aged runtime to make application logging and checkpoint-
ing easier; this approach is similar in spirit to paravirtu-
alization [4], which tweaks a guest OS to make it more
amenable to x86-level virtualization. Note that our new in-
terrogative interfaces are only exposed to debuggers, i.e.,
applications perceive no difference in how the managed
runtime operates.



Figure 1: A system diagram of REJS. Program checkpoints and event logs only concern state from the shaded boxes,
from which the runtime can derive OS and hardware state.

In the remainder of this section, we enumerate the
interrogative interfaces that we added to a commercial-
strength web browser (§3.1). We also discuss how inter-
rogative interfaces allow debuggers to handle logging-
time data races which cause replay-time problems for
prior debuggers (§3.2).

3.1 Browser Implementation

Figure 1 illustrates the architecture of our modified web
browser. We use Table 1 to frame our discussion of the
implementation details.

Heap: In a managed runtime, the bulk of an application’s
state lives in the heap. Efficient heap snapshots are there-
fore a prerequisite for a variety of program analyses and
debugging tools. Fortunately, managed languages already
ship with fast garbage collectors that can walk the heap
and discover live objects. We extend the browser’s pre-
existing garbage collector with an interrogative interface
that can serialize the live portion of the current object
graph. We add another interface that can reinflate a previ-
ously serialized heap.

Stack: A JavaScript application is completely event-
driven. Thus, there is no application-level stack state be-
tween the dispatch of two events. If a debugger only gen-
erates checkpoints during the quiescent period between
events, the debugger does not require interrogative meth-
ods for inspecting the stack. Deferring checkpoints until
event handler termination does not unduly postpone the
checkpoints, since an event handler typically only runs
for a few milliseconds to keep the UI responsive [41].

RNG state: JavaScript applications use Math.random()
to generate random numbers. However, applications can-
not read or write the internal state of the PRNG. We add
an interrogative interface that allows a debugger to query
and reset the PRNG state. At logging time, the debugger
can record the initial PRNG state; at replay time, the de-

bugger can properly initialize the PRNG before allowing
the application to execute.

Current time: The JavaScript runtime exposes a Date

interface that lets a debugger observe the current time,
which it queries from the OS directly. We add an interrog-
ative interface that lets a debugger act as the clock source
for the application. When the application requests the cur-
rent time, the runtime consults the debugger, which can
choose what value to return.

Timer status: JavaScript applications create one-shot
timers via setTimeout(), and recurring timers via set-
Interval(). Each timer is assigned a unique ID that is
determined arbitrarily by the runtime. The runtime does
not provide a mechanism for applications to enumerate
the set of active timers, their IDs, and their activation
dates. We add an interrogative interface which exposes
that information to a debugger.

GUI contents: JavaScript code uses the Document Ob-
ject Model (DOM) to interact with the display [18]. Each
HTML tag in a page has a corresponding element in
the DOM tree (a JavaScript-visible data structure). Each
DOM element provides access to tag-specific state, such
as the URL for an <img> tag, or the rendered size of a
<div> tag. However, the DOM interface does not expose
the CSS animation state of an HTML tag—that state re-
sides within the black-box renderer. If a debugger can-
not read CSS animation tick counts, the debugger cannot
record an animation’s progression with respect to con-
currently executing JavaScript code; this ignorance pre-
vents the debugger from faithfully recreating the behavior
at replay time. To enable high-fidelity replays of anima-
tions, we add an interrogative interface to the black box
renderer, allowing a debugger to read and write the tick
counts which belong to active CSS animations.

A web page often includes external objects, i.e., HTML
tags which specify a src attribute and whose content
must be fetched from remote servers. When the content



finishes loading, the browser silently updates the applica-
ble DOM node with attributes, such as the height and
width of an image. We add interrogative methods to the
black-box network stack, allowing a debugger to log, in-
ject, or suppress these fetches. The interrogative methods
allow the debugger to recreate nondeterministic network
events at replay time.

Event listeners: A JavaScript program can register
handlers for other event types besides network events.
For example, a program can register handlers for GUI
events, or for message events which contain data from
other iframes. Applications can register event listeners
in three ways: through properties on HTML tags (e.g.,
<div onclick="someFunction()">), properties on
the DOM elements (e.g., div.onclick = someFunc-

tion;), or through the addEventListener() DOM
interface (e.g., div.addEventListener('click',

someFunction)). Applications can enumerate event
listeners which were registered using the first two
approaches, since the listeners are simple properties
of the associated DOM objects. However, the browser
runtime does not allow JavaScript code to enumerate
handlers which were registered via addEventLis-

tener(). Furthermore, the runtime dispatches events
to event handlers in the order in which the handlers
were registered, regardless of the registration technique
employed. The runtime does not expose this order (which
must be recreated at replay time).

In JavaScript, all objects which generate events imple-
ment the EventTarget interface. Using an interrogative
extension to that interface, we allow debuggers to enumer-
ate all event handler information that is associated with
an EventTarget. Using the interrogative extension, a de-
bugger can track handler orders at logging time. At replay
time, the debugger can restore the necessary handler or-
ders using the preexisting handler registration interfaces.

Pending events: Each JavaScript execution context is
single-threaded and completely event-driven. An execu-
tion context iteratively dequeues the event at the head
of its event queue, and executes any handlers that are
associated with that event type. When the queue is ex-
hausted, the thread will wait for a new event to arrive.
While an event handler call chain is executing, the run-
time can schedule additional events by appending them
to the queue. The runtime does not expose the queue to
JavaScript code, but queue state is important for replay
because it determines the order in which events should
be dispatched. So, we add an interrogative interface that
allows a debugger to read and write the event queue.

Connection status: JavaScript applications communi-
cate with remote servers via XMLHttpRequest objects.
Each one encapsulates the state of a single HTTP con-
nection. At logging time, the debugger can observe the

state of each connection using existing methods on
XMLHttpRequest objects. However, at replay time, the
debugger needs a mechanism to recreate logged XML-

HttpRequests without creating actual network connec-
tions. Using new interrogative interfaces, we allow the
debugger to create XMLHttpRequests from scratch, and
set their internal connection state to arbitrary values.

Storage: Web pages manage persistent local data using
cookies and the localStorage interface [18, 17]. Both
mechanisms export a key/value API. The browser cre-
ates a separate storage area for each origin,2 and prevents
different origins from accessing each other’s data. The
debugger has access to all of these origins from inside the
runtime, and can manipulate them using the same inter-
faces that are exposed to regular applications.

Performance monitors: CPUs and managed runtimes
define a wide variety of performance counters [19, 34].
Browsers do not expose these performance monitors to
JavaScript code, and their values do not affect JavaScript-
visible state. However, performance monitors are crucial
for time-traveling debuggers, which require visibility into
execution timings and branching activity (§4.2).

We extend the browser runtime with two performance
monitors. The branch trace store contains the last branch
that was taken by each function that is currently on the
call stack. The timestamp store contains the timestamp
of each function on the call stack. A timestamp is repre-
sented as a two-tuple of the function’s call count since
enabling performance monitoring and the number of ba-
sic blocks executed thus far in the function call.

For simplicity, we implemented the two stores by aug-
menting the browser’s JavaScript interpreter. When a per-
formance monitor is enabled, we disable the browser’s
JIT compiler, forcing JavaScript execution to use the in-
terpreter. A time-traveling debugger only requires per-
formance monitoring when a replayed execution nears a
target line of interest (§4.1), so our design has minimal
performance impact.

3.2 Preventing Data Races

In some cases, a managed runtime will update internal
runtime state in parallel with the execution of the man-
aged program. Such data races are normally benign, but
they are problematic in the context of time-travel de-
bugging. For example, a web browser executes CSS an-
imations and network requests using OS-level threads
that reside beneath the JavaScript virtualization bound-
ary; this means that DOM modifications can occur at the
same time that JavaScript code executes. Normally, such
concurrent execution is unproblematic—when JavaScript

2A page’s origin is a 3-tuple consisting of the protocol, hostname,
and port in the page’s URL.



code queries the DOM, the runtime retrieves a snap-
shot of the DOM at that instant in time. However, to
perform accurate execution replay, a debugger must en-
sure that replay-time queries retrieve the DOM snap-
shot that would have been seen at the equivalent time
in the original execution run. JavaScript replay tools
like Mugshot [32] fail to guarantee this property, since
those tools replay JavaScript interactions with the DOM
without controlling for replay-time data races between
JavaScript code and black-box components.

To make the problem concrete, suppose that a web
page uses CSS to make a <div> tag periodically change
its color. Further suppose that JavaScript code wishes to
query the current color of the <div>:
<style type="text/css">
@keyframes color_change {

from { background -color: blue; }
to { background -color: red; }

}
.picker {

animation: color_change 5s infinite alternate;
}
</style >
<script type="text/javascript">
var div = document.getElementById('picker ');
var color = getComputedStyle(div).backgroundColor;
// Check if color is blue
if (color === 'rgb(0, 0, 255) '){

x = 0;
} else{

x = 1;
}
</script >

The browser updates the DOM in parallel with JavaScript
execution, so the value of color in the JavaScript code is
nondeterministic. If this nondeterminism is not faithfully
recreated at replay time, subsequent program behavior
may diverge from the logging-time behavior. In the ex-
ample above, divergence would result in the replay-time
program taking a different branch than the logging-time
program, leading to a divergent assignment to x.

To eliminate these problems, gray-box virtualization
constrains the times at which animation state and network
state can change. At logging time, our interrogative code
prevents animation threads and network threads from
executing while JavaScript code executes. JavaScript
code is single-threaded, so our policy results in anima-
tions and network events firing between the dispatch of
JavaScript events. JavaScript event handlers are short
in duration [41], so our policy does not result in user-
perceived sluggishness of animations or network events.
At replay time, the debugger uses log information to mod-
ify the GUI and replay network events before dispatching
the next JavaScript event.

4 REJS

We build REJS, a time-traveling debugger for web ap-
plications, atop the gray-box virtualization support de-

scribed in Section 3. REJS provides reverse-facing com-
plements to existing debugger features (e.g. step back
is the reverse of step forward). REJS uses interrogative
interfaces to take periodic program checkpoints and to
capture nondeterminism in an event log during program
execution; Figure 1 displays an architectural diagram.

4.1 Time-Travel Overview
During normal program execution, i.e., before a time
travel debugging session has started, REJS enables the
event log and creates checkpoints at regular intervals. The
checkpoint interval places an upper bound on the cost to
seek to an arbitrary point in the program’s execution.

To quickly time-travel an application to statement s at
time t, REJS loads the last checkpoint taken before t and
replays the event log. When execution is close to t, REJS
enables the branch trace store and timestamp store via
the performance monitoring interrogative interface and
places a breakpoint on s conditioned on t. When there is
no target time travel time, as is the case when the devel-
oper manually initializes replay from a particular snap-
shot, REJS must enable the performance monitors in or-
der to respond to fine-grained time-travel requests at any
given moment, e.g. “step back to the previous statement”.

If the checkpoint interval is too large, jumping through
time is slow, since REJS will replay many events to reach
the desired execution point. On the other hand, if REJS
records too many checkpoints during normal program ex-
ecution, the program may suffer poor performance. At
replay time, REJS can opportunistically generate check-
points to reduce the latency of future time travel opera-
tions. In particular, if REJS is time traveling towards t,
and must start from a “far-away” checkpoint (where dis-
tance is defined in terms of events), REJS generates a
new checkpoint just prior to t. This optimization is mo-
tivated by common debugging scenarios in which devel-
opers explore a set of program states that are temporally
clustered together. When a checkpoint exists that is close
to t, returning to t is as fast as stepping forward to the
next statement in a traditional debugger (§5).

4.2 Debugger Features
REJS provides a full suite of reverse-facing complements
to existing debugger features. Due to space constraints,
we only discuss step back in this section; the remaining
features are implemented in a similar fashion.

Step back complements step forward, and lets the de-
veloper return to the previously-executed program state-
ment. Given that the debugger is paused at the statement
s at logical time t = (c,b), where c is the number of times
the function has been called since enabling performance
monitoring and b is the number of basic blocks executed



in the current function call, the debugger must determine
the statement and logical time of the previously-executed
statement, s′ and t ′:
• If s is not the entry point of a basic block, then s′ is

the previous statement in the block and t ′ = t.
• If s is the entry point of a basic block, then s′ is the

source statement of the previously taken branch.
• If s′ is the current statement in the calling func-

tion, then t ′ is the logical time associated with
the caller’s call frame.

• Otherwise, s′ is from the same function call as
s, and t ′ = (c,b−1).

Finally, REJS places a breakpoint on s′ conditioned on
t ′, and triggers replay from the previous checkpoint that
is closest to the target logical time. If a checkpoint is not
close to the target time, REJS deposits a new checkpoint
just before the target JavaScript event.

4.3 Checkpoint Engine
Gray-box virtualization provides REJS with an omni-
scient view of the application’s state. Using the interfaces
described in Section 3.1, REJS can checkpoint the appli-
cation’s state into a snapshot on disk in a straightforward
manner. The same interfaces let REJS restore the pro-
gram to a previous state from a checkpoint.

4.4 Event Log
All of the nondeterminism in a web application stems
from interactions with the state in Table 1. REJS uses the
interrogative interfaces described in §3.1 to log nondeter-
ministic updates to this state, and to keep the state in sync
with JavaScript execution during replay.

In JavaScript, many interfaces in Table 1 are determin-
istic, and require no entries in the event log to replay. A
few types of state need to be explicitly handled, which we
discuss below.

Current Time: An interrogative interface lets REJS be-
come the clock source for the application. REJS uses this
interface to log clock values and to return logged values
during replay.

Connection Status: REJS records updates to the
program-observable fields on XMLHttpRequest objects
into the log. During replay, REJS uses an interrogative
interface to produce and update mock XMLHttpRequest

objects that contain the recorded state, but do not open
a network connection. Since XMLHttpRequest state up-
dates become program-visible during quiescent points be-
tween JavaScript events, REJS can trivially apply them
at the appropriate logical time during replay.

Timer Status: JavaScript timer interfaces are represented
by a unique numeric ID, which the program uses as a

token to cancel the timer. An interrogative interface lets
REJS determine these IDs; REJS logs the IDs it issues,
and replays them to the application. In addition, during
replay, REJS prevents the runtime from triggering timer
events itself as REJS replays the logged events from the
original execution.
Pending Events: At log time, REJS records each event
as it exits the event queue and executes. Each event is a
tuple of the EventTarget, the target JavaScript function
to invoke, and an event object that describes the event,
which must be serialized into the log.

REJS tags each EventTarget object with a unique ID
when the program first registers an event listener on it,
and maintains a map from these IDs to objects. REJS
represents the EventTarget object in the log using this
ID. For the handler, REJS uses an interrogative interface
to determine the handler’s position in the corresponding
handler list on the EventTarget, and represents the han-
dler in the log as its position in the list. Finally, the event
object itself contains static information that REJS can
simply log as primitive values. During replay, REJS pre-
vents the JavaScript runtime from inserting new events
into the queue, and replays events from the log.

When an EventTarget is a DOM element in the GUI,
REJS cannot guarantee that it has tagged the element
prior to the event. The program can create DOM elements
and attach JavaScript event listeners to it in HTML, which
occurs without the JavaScript engine’s cooperation. How-
ever, since the DOM element must be visible in the DOM
tree, we can ID the element as its tree path, which is an
array of numbers that uniquely identifies the path to the
element in the DOM tree. At replay time, REJS can use
the path to identify the correct element in the live DOM.

Timer events are an anomaly, and do not have an
EventTarget object or an event object. Timers are repre-
sented using a unique numeric ID, which maps to exactly
one JavaScript function that should be invoked when the
timer fires. REJS logs these events using the timer’s ID,
which it has access to via an interrogative interface. Dur-
ing replay, REJS looks up the JavaScript function associ-
ated with the ID, and invokes it manually.
GUI Contents: Most interactions with the DOM are
completely deterministic, but there are a few exceptions.
Concurrent with JavaScript execution, components in the
browser can silently update properties on DOM nodes in
response to external entities, leading to nondeterminism
that REJS must log (§3.2).

HTML elements can reference external network re-
sources that the runtime downloads from the network.
At log time, REJS uses an interrogative interface to de-
fer these network events to a quiescent point between
JavaScript events and log their contents. During replay,
REJS uses the same interface to replay each network
event to the native DOM component at the proper event



boundary.
CSS animations also occur in parallel with JavaScript

execution, altering properties on animated DOM ele-
ments as they execute. REJS uses an interrogative inter-
face to pause animations just before each JavaScript event
and log their tick counts. When a JavaScript event fin-
ishes, REJS resumes the animation. During replay, REJS
uses the same interrogative interface to restore animations
to the appropriate tick counts prior to each event.

When a user interacts with an HTML form, such as
by checking a checkbox or typing text into a textfield,
the runtime updates the DOM. These interactions occur
only at quiescent points between JavaScript events. REJS
scans each form element prior to each JavaScript event,
and logs any changes to their values. REJS uses this in-
formation to restore these values at the appropriate time
during replay.

4.5 Program Migration
Since gray-box virtualization exposes the managed run-
time’s state at a high level of abstraction, REJS’s check-
points are small, fast, complete, and portable. These at-
tributes enable efficient program migration over a wide
area network; our benchmark applications can be mi-
grated in less than one second end-to-end (§5.2). To sup-
port transitioning a checkpointed application into a “live”
state, we handle certain bits of state from Table 1 slightly
differently than we do during program replay.

Network Connections: Active network connections in
the checkpoint, represented by XMLHttpRequest objects,
are recreated using an interrogative interface and transi-
tioned to a closed state to emulate a down network link.
Web applications are programmed to be robust to these
types of issues since users put their devices to sleep and
disconnect from networks frequently, and should restart
or relaunch failed requests.

Timer Status: Pending timers are recreated from the
checkpoint, and are set to execute at the recorded trigger
time. If the recorded trigger time has elapsed, the timer
events are added to the event queue for immediate execu-
tion.

Pending Events: Pending events are re-inserted into the
event queue via the interrogative interface, and are al-
lowed to execute normally.

5 Evaluation

We benchmark REJS in multiple dimensions on a suite of
unmodified programs and benchmarks. We ran the evalu-
ation on a desktop with a quad-core Intel Xeon E5-1620
clocked at 3.6 GHz, 16GB of RAM, and a mechanical
7200 RPM SATA hard drive.

Our evaluation workloads represent a wide variety of
browser applications, including computationally inten-
sive JavaScript workloads, framework-heavy GUI pro-
grams, and event-heavy games:
• We use Delta-Blue, Earley-Boyer, RayTrace, and

Splay from the Octane benchmark suite [37], which
are all compute/memory intensive workloads. We
modify the benchmarks to extend their runtime to
∼10 seconds to isolate REJS overhead from pars-
ing/JIT warmup overhead.
• RayTraceGUI is the Octane RayTrace program with

the original UI, which introduces nondeterministic
DOM input to the deterministic benchmark [42].
• ColorGame [11] is an implementation of a test that

demonstrates the Stroop effect [44]. It uses Angu-
larJS and jQuery, which are both complicated and
commonly used libraries, and result in ColorGame
having ∼3× as much code as the next largest bench-
mark. AngularJS exercises a wide variety of DOM
features, and encodes crucial application data into
the DOM directly.
• CRUD [12] is a standard content management inter-

face that uses jQuery for all of its DOM interactions.
• PacMan [39] is an implementation of the classic Pac-

Man game using the HTML5 canvas. It uses timers
to update the contents of the canvas every 80ms, and
stresses the checkpoint engine’s ability to quickly
serialize large DOM objects and REJS’s ability to
log large numbers of event callbacks.

Table 2 describes the code size of each of these bench-
marks, including HTML documents and JavaScript li-
braries. Although ColorGame and CRUD are signifi-
cantly larger than most of the other benchmarks due to
their sizeable dependencies, they are representative of the
complexity of existing applications on the web.

5.1 Checkpoint Engine Performance

To evaluate the performance of REJS’s checkpoint en-
gine, we run the benchmark programs in a configuration
that checkpoints their state every second. For each bench-
mark, we calculate the average of the following metrics
over all checkpoints:
• Time to produce the checkpoint (Create Time)
• Time to write checkpoint to disk (Write Time)
• Time to resume from checkpoint (Inflate Time)
• Size of checkpoint in memory (Snap Memory)
• Size of compressed checkpoint on disk (File Size)
• # of JavaScript objects in checkpoint (JS Objs)

In addition, we measure the maximum amount of virtual
memory in use by the web browser process at checkpoints
to illustrate the space required to represent each bench-
mark’s state at the process level (Process Size).



Program Code Process Sz. JS Objs Create Write Inflate Snap Mem. File Sz.

Color-Game 746 KB 44 MB 18 K 0.12 s 0.12 s 0.43 s 3.3 MB 0.9 MB
CRUD 250 KB 28 MB 14 K 0.11 s 0.10 s 0.37 s 2.4 MB 0.5 MB
Delta-Blue 36 KB 34 MB 13 K 0.09 s 0.17 s 0.36 s 2.1 MB 0.4 MB
Earley-Boyer 244 KB 123 MB 17 K 0.09 s 0.11 s 0.30 s 3.3 MB 0.6 MB
PacMan 50 KB 31 MB 13 K 0.13 s 0.14 s 0.45 s 2.2 MB 0.5 MB
RayTrace 38 KB 73 MB 12 K 0.06 s 0.09 s 0.28 s 2.1 MB 0.4 MB
Splay 17 KB 538 MB 12 K 0.08 s 0.10 s 0.33 s 2.3 MB 0.5 MB

Table 2: The results from the checkpoint evaluation on the benchmark programs. It takes a fraction of a second to create
or restore a checkpoint, and checkpoints are significantly smaller than the size of the browser process they capture.

Table 2 displays the results of these experiments. From
our results, we make the following observations:

REJS’s checkpoint operations are fast. REJS takes
only a fraction of a second to completely checkpoint
and serialize application state to disk, which is nearly im-
perceptible to users. The inverse operation, where REJS
reads a checkpoint from disk and inflates it into memory,
takes nearly the same amount of time.

In contrast, Hyper-V takes 3–5 seconds to snapshot an
OS running REJS on our evaluation machine. In practice,
nobody takes full, synchronous snapshots of heavyweight
VMs, because such operations are known to be slow. In-
stead, people use various techniques to reduce snapshot
costs, such as pre-migrating state ahead of the actual mi-
gration [10] and by using delta-encoding to create dif-
ferential snapshots [45]. Our unoptimized prototype cur-
rently uses none of these techniques, yet is already fast
enough for most applications.

Compressed REJS checkpoints are two orders of
magnitude smaller than process-level memory foot-
prints. REJS checkpoints contain only the JavaScript
application’s state in a high-density format that com-
presses to less than a megabyte. In contrast, the browser’s
in-memory layout is much more fragmented, contains
application-irrelevant browser state, and is, on average,
over 50 times larger than the in-memory representation
of the program checkpoint, and over 240 times larger than
the compressed checkpoint on disk. Hyper-V snapshots
are even larger; on our evaluation machine, Hyper-V pro-
duces snapshots that are hundreds of megabytes large as
they contain extraneous OS state.

5.2 End-to-End Program Migration

As discussed in Section 4.5, REJS’s checkpoint engine
can be repurposed for efficient program migration. For
this scenario, we measure (1) the time required to extract
and serialize the full program state (Extract), (2) the time
required to send the state over a network (Transmit), and
(3) the time to restore the program on a new machine (Re-

Program Extract Transmit Restore Total

Color-Game 0.24 s 0.18 s 0.43 s 0.85 s
CRUD 0.21 s 0.10 s 0.37 s 0.58 s
PacMan 0.27 s 0.11 s 0.45 s 0.83 s
RayTraceGUI 0.20 s 0.08 s 0.38 s 0.66 s

Table 3: REJS takes less than a second to migrate a live
browser application across a 10Mbps connection.

store). None of these operations occur in parallel; thus,
the total amount of time required to migrate the program
is the sum of these three numbers. We perform this exper-
iment over a 10 Mbps hardwired ethernet connection.

Table 3 shows the results from this experiment. It takes
less than a second to migrate an application across the
network. As expected, the extraction times and restora-
tion times are consistent with the results in Table 2. Due
to low checkpoint sizes, the transmission times are frac-
tions of a second, and suggest that REJS can be used to
efficiently migrate applications and buggy program con-
texts over bandwidth constrained networks.

5.3 Event Log Overhead
We evaluate the runtime and disk overhead of nondeter-
ministic event logging on applicable benchmark appli-
cations.3 We run each through a fixed series of events
using a script to drive application inputs. Each script lasts
approximately 10 seconds, and we run each benchmark
with and without logging. For each benchmark, we mea-
sure the uncompressed log growth, and we compare the
program runtime with and without logging to measure
user-perceptible logging overhead. The results in Table 4
demonstrate that:

The event log grows at a glacially slow rate. The bench-
mark with the most nondeterminism, PacMan, has the
largest low growth rate of 1.5KB/s. PacMan’s primary
source of nondeterminism is event scheduling related to

3The Octane benchmarks are deterministic, and are not applicable.



Program Log Growth Log Overhead

Color-Game 0.6 KB/s †
CRUD 0.2 KB/s †
PacMan 1.5 KB/s †
RayTraceGUI 0.9 KB/s †

Table 4: The results from the nondeterministic event log
evaluation. The uncompressed log grows slowly and im-
poses no user perceptible slowdown (indicated by †).

Program Overhead TTS Startup Step Time

Color-Game 4% 4.5 s †
CRUD † 3.2 s †
PacMan 6% 4.7 s †
RayTraceGUI 5% 2.9 s †

Table 5: REJS imposes low overhead on our benchmark
applications, performs reverse step as quickly as a tradi-
tional debugger performs forward step (indicated by †),
and has an acceptable few-second startup time.

its 80 ms game loop. At that rate, REJS could record Pac-
Man’s execution for over 11 years on a 500GB hard drive.
Note that reported log growth rates are uncompressed;
with compression, that number would easily double.

Logging has no user-perceptible impact on program
performance. Each benchmark took the same amount
of time to execute with and without logging, which is
unsurprising given that event logs grow at a slow rate.

5.4 Reverse Step Performance
Recall that REJS time-travels particular program states
by replaying execution from the nearest checkpoint to the
desired execution point. When a checkpoint is not located
temporally close to the desired execution point, the devel-
oper observes a one-time time-travel step startup delay
while the debugger replays execution and deposits a new
checkpoint closer to the desired execution point. For this
system, we evaluate (1) the slowdown encountered when
executing programs in REJS (Overhead), (2) the time re-
quired to setup time-travel stepping (TTS Startup), and
(3) the time required to take a single reverse step once
time-travel stepping has started (Step Time). We drive the
benchmark applications using the same scripts as the non-
deterministic event log test, and in a configuration that
checkpoints execution state every 2 seconds. To measure
Step Time and TTS Startup, we chose 10 random break-
points to reverse step from and took the average of the
recorded metrics.

Table 5 shows the results from this evaluation. We
make the following observations from these results:

Time-travel overhead is nearly imperceptible to the
user. REJS imposes about 5% overhead on the bench-
mark applications during execution. In some cases, such
as CRUD, REJS imposes no overhead because check-
points occurs between events, when the application is
waiting for user input. REJS can impose even lower run-
time overheads in exchange for longer time-travel startup
costs by lowering the checkpoint rate during execution.
REJS is as performant as a traditional debugger. Af-
ter paying a one-time startup fee, the time to execute a
reverse step in REJS is indistinguishable from executing
a forward step in the browser’s existing debugger.
Time-travel stepping startup costs are acceptable as
a one-time cost. For randomly selected breakpoints, this
startup cost is, on average, 3.8 seconds on our benchmark
applications or roughly twice the checkpoint rate.

6 Discussion

We have only implemented gray-box virtualization for
a web browser runtime. However, we believe that inter-
rogative techniques can be applied to other managed run-
times like the JVM and CLR. Those runtimes operate at
a lower level of abstraction than the browser runtime, and
thus require a larger set of interrogative extensions. In
this section, we explore some of the required extentions.
Thread scheduling and asynchronous events: A
JavaScript execution context is single-threaded, but the
JVM and CLR support multi-threaded execution contexts.
To reproduce logging-time thread schedules at replay-
time, the debugger can adopt a uniprocessor execution
model, even if multiple cores are available [5, 23, 46, 43].
Alternatively, the debugger can use deterministic multi-
threading to force predictable schedules [6, 13, 27, 38].
With either approach, we would add interrogative in-
terfaces that allow the debugger to observe scheduling
events and control when threads actually begin execution.
Checkpointing memory state: JavaScript’s single-
threaded, event-driven nature simplifies checkpointing,
which can occur during the naturally quiescient peri-
ods between event dispatches. In the JVM and CLR,
threads can execute indefinitely, without well-defined
pause points. To force quiscience, we can leverage per-
formance counters (§3.1) to track the execution progress
of each thread. Once a thread has invoked a predefined
number of functions, or triggered garbage-collected a pre-
defined number of times, the runtime can pause the thread
and vector control to the debugger. The debugger can wait
for other threads to pause, and then checkpoint the entire
application. A similar approach is used by Tardis, an ex-
isting time-traveling debugger for the CLR [5].
Application-supplied native methods: The JVM and
CLR let programs embed functionality that is written in



unmanaged languages like C. If these native components
are deterministic and reference no external state, they re-
quire no interrogative interfaces. Otherwise, the native
components require interrogative extensions, similar to
other black box components like a browser’s rendering
engine.

File system state: A web browser exposes the local disk
using per-origin key/value stores. In contrast, JVM and
CLR programs can directly access the local file system.
To checkpoint file system state, a debugger can run appli-
cations atop a file system that already provides storage
checkpoints [1, 2, 35]. Those file systems can also be
network-mounted (e.g., via Amazon’s EBS [3]), enabling
“free” migration of file system state (since the destination
machine can simply mount the remote volume that was
used by the source machine).

Since the JVM and CLR expose the host file system,
they allow applications to be affected by external, asyn-
chronous modifications to the file system (similar to the
fcntl() example from Section 1). Such modifications
must be logged to ensure high-fidelity replays. Thus, we
would need to extend the JVM and CLR to detect external
file system events using mechanisms like inotify [21].

7 Related Work

Time-Travel Debugging and Deterministic Replay

As discussed in Sections 1 and 2.2, prior time-traveling
debuggers are either precise and heavyweight, or impre-
cise but efficient. For example, x86-level hypervisors cap-
ture the entirety of a program’s state, allowing for high-
fidelity replay, but snapshots and logs contain extraneous
information that is unnecessary for application-level de-
bugging [14, 23, 47]. Tardis [5] and RR [43] mediate
program interactions at a higher-level of abstraction (a
managed runtime or OS interface, respectively). This ap-
proach gains smaller logs and more efficient replay, but
loses the ability to faithfully track interactions with com-
ponents like the GUI and the file system. REJS uses
gray-box virtualization to faithfully and efficiently replay
black-box components.

Mugshot [32] and Timelapse [7] interpose on the
JavaScript event loop, and assume that replaying a logged
sequence of mouse, keyboard, and network events will
generate the same DOM states that were seen at log-
ging time. Unfortunately, this assumption is not always
true. As discussed in §3.2, the renderer and network stack
can modify DOM state in parallel with the execution of
JavaScript code. The resulting data races, if not properly
logged, can result in replay divergence. REJS uses in-
terrogative methods to properly capture interactions be-
tween the renderer, the network stack, and application
JavaScript code.

Virtualization and Program Migration

A full snapshot for an x86-level VM is often a gigabyte
or more, since large amounts of operating system state
are bundled with application-level data. To make VM mi-
gration feasible (and bound the storage required for longi-
tudinal snapshots), hypervisors use a variety of tricks to
delta-encode snapshots and proactively push them to des-
tination machines before a VM actually migrates [10, 45].

Container technologies like Docker [31] virtualize at a
higher level of abstraction, but raw snapshots of Docker
VMs are still hundreds of megabytes. By moving the the
virtual machine boundary to the level of a managed run-
time, we provide full, uncompressed checkpoints of a
few MB that require a few tenths of a second to gener-
ate; checkpoint size and generation speed would improve
even more if we used delta-encoding tricks.

Library operating systems migrate application-
required OS state into the application’s address space,
removing extraneous OS state from application snap-
shots. For example, Drawbridge [40] provides a library
implementation of a minimal win32 interface; Tardi-
grade [29] extends Drawbridge to provide fast VM
checkpointing for replicated network services. However,
full checkpoints are still tens to hundreds of megabytes
large. Furthermore, adding interrogative methods to
a managed runtime requires much less effort than
refactoring a traditional OS into a library version.

The unikernel [30] approach compiles all of the soft-
ware layers for an event-driven server into a single bi-
nary that runs atop raw hardware. Given modular kernel
code, the unikernel approach results in VMs that are often
less than a megabyte in size. However, OS services must
be reimplemented as unikernel modules, and unikernels
cannot support multithreading. In contrast, gray-box vir-
tualization supports all programs that run on the target
runtime, while providing VM checkpoints that are often
as small as unikernel snapshots.

Imagen [28] is a migration system for the client-side
state in a web application. Imagen uses source code
rewriting and JavaScript’s built-in reflection capabilities
to manipulate application state. Imagen requires multi-
ple seconds to checkpoint or resurrect a program. Imagen
also relies on fragile shimming code to interpose on run-
time interactions. Using robust gray-box virtualization,
REJS does not need to rewrite programs, and can gener-
ate checkpoints an order of magnitude faster.

8 Conclusion

We describe a gray-box approach for high-performance
and high-fidelity time-travel debugging. With gray-box
virtualization, we extend components in the program run-
time with interrogative interfaces to capture program in-



teractions missing from existing runtime APIs, making
it possible to maintain live runtime state, such as the
GUI, during time-travel. We implemented REJS, a time-
traveling debugger for web applications, and show that
REJS has less than 6% overhead during program record-
ing, negligible overhead during reverse step operations,
logs less than 1.5KB/s uncompressed on a wide variety of
programs, keeps the GUI and other runtime state live dur-
ing time-travel, and can migrate web applications in less
then one second over a 10Mbps connection. REJS has
been incorporated into Microsoft’s open-source Chakra-
Core JavaScript engine [36].
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