
Information Flows in Encrypted Databases

Kapil Vaswani
kapilv@microsoft.com

Ravi Ramamurthy
ravirama@microsoft.com

Ramarathnam Venkatesan
venkie@microsoft.com

Abstract
In encrypted databases, sensitive data is protected from an

untrusted server by encrypting columns using partially homo-
morphic encryption schemes, and storing encryption keys in
a trusted client. However, encrypting columns and protect-
ing encryption keys does not ensure confidentiality - sensitive
data can leak during query processing due to information
flows through the trusted client. In this paper, we propose
SecureSQL, an encrypted database that partitions query pro-
cessing between an untrusted server and a trusted client while
ensuring the absence of information flows. Our evaluation
based on OLTP benchmarks suggests that SecureSQL can
protect against explicit flows with low overheads (< 30%).
However, protecting against implicit flows can be expensive
because it precludes the use of key databases optimizations and
introduces additional round trips between client and server.

1. Introduction

The old adage that a chain is only as strong as its weakest
link describes the state of data security in public cloud
platforms. While encryption can protect data in cloud storage
and during transit to/from the cloud, data appears in cleartext
in main memory of untrusted servers during processing.
In the absence of defenses like the firewall, this window
of vulnerability is an alluring target for malicious cloud
administrators and malware. It is therefore not surprising that
applications which handle sensitive information are usually
not deployed on public cloud platforms.

Trusted clients. In the absence of practical schemes for fully
homomorphic encryption [20], we consider a recently pro-
posed computational model for ensuring data confidentiality
based on encrypted databases and trusted clients [17, 22, 25].
In encrypted databases, sensitive data is protected from an
untrusted server by encrypting columns using partially homo-
morphic encryption (PHE) schemes, and storing encryption
keys in a trusted client. For example, deterministic encryp-
tion schemes (e.g. AES in ECB or CBC mode with fixed
initialization vector [1]) permit equality checks on encrypted
data. Therefore, operations such as equi-joins, groupings, and
set union/intersection can be performed without requiring en-
cryption keys. Similarly, the Paillier cryptosystem supports
addition of encrypted values. All other operations for which
efficient homomorphic schemes are not known are delegated
to a trusted client, a special node hosted in a trusted environ-
ment, potentially outside the public cloud. The trusted client

has access to encryption keys and performs computations that
cannot be performed on encrypted data.
Information flows. Prior work (including CryptDB [22])
raises the vision of building an encrypted database using
trusted clients and PHE. However, a key problem with this
model is the lack of a simple, strong security property that
can be enforced without a significant loss in performance. In
prior work, security is based on the premise that the server
does not have access to encryption keys. However, protecting
encryption keys does not guarantee confidentiality. Prior re-
search [15] shows that confidentiality can be achieved using
a combination of semantically secure, randomized encryp-
tion [16] and information flow security. Unfortunately, in an
encrypted database, randomized encryption negates critical op-
timizations such as indexes, and forces the database to offload
almost all computation to the trusted client. Therefore, selec-
tive use of weaker encryption schemes (such as deterministic
or order-preserving encryption) is unavoidable.

However, using weaker encryption schemes not only weak-
ens security of columns encrypted using those schemes, but
it can also reveal information about other columns due to in-
formation flows. Consider a simple query INSERT INTO
T (B) SELECT A FROM T, where A and B are encrypted
using randomized and deterministic encryption schemes re-
spectively. In the trusted client model, this query can be
executed by retrieving values from column A from the server,
decrypting them on the client, encrypting the values using a
deterministic encryption algorithm, and writing the values to
column B. Notice that this query leaks the relative frequency
of values in column A even though the keys are always pro-
tected! (See section 2 for more subtle examples). The threat
models defined in prior work [22, 25] do not consider such
information flows.

In this paper, we explore this security-performance trade-
off. We define a security property that prevents such leaks
while permitting the use of weaker encryption schemes. Infor-
mally, our security property prohibits information flows from
an encrypted column to other columns encrypted using weaker
encryption schemes. This property forms a strong contract
between the database and the developer. For example, if this
property is enforced, the query described above will be not be
permitted unless both columns are encrypted using sufficiently
strong encryption schemes.

Next, we describe the design of SecureSQL, an encrypted
database which enforces this property. Figure 1 shows the
architecture of SecureSQL. In SecureSQL the trusted client is
a "empty" database (referred to as the shell database) which

ar
X

iv
:1

60
5.

01
09

2v
1

 [
cs

.D
B

]
 3

 M
ay

 2
01

6

Figure 1: Architecture for databases that use partially homo-
morphic encryptions and trusted client for data confidentiality

Figure 2: The tool chain for partitioning database applications.
The input to the tool chain are a database application and an
encryption policy.
stores encryption keys and performs residual query process-
ing. Applications connect and run queries against the shell
database, which orchestrates query processing with the server
(using a commonly available database abstraction for dis-
tributed query processing known as linked server [6]) and
returns cleartext results to the application.

The core component of SecureSQL is a query compiler for
T-SQL (Figure 2). The inputs to the compiler are a database
application consisting of a set of queries and stored proce-
dures, and an encryption policy, which specifies the set of
columns to be encrypted, and the encryption type, encryption
algorithm and encryption key for each column. The compiler
partitions queries and stored procedures into client and server
components while preserving semantics of the application
and ensuring the absence of insecure information flows. The
compiler is based on a type system with knowledge of the com-
putational capabilities of partially homomorphic encryption
schemes and tracks information flows. The compiler also sup-
ports several optimizations for efficiently partitioning queries
that are beyond the scope of conventional database optimizers.

We have evaluated SecureSQL (Section 5) using TPC-C, a
standard OLTP benchmark, and a real world employee per-
formance management application. Our evaluation suggests
that SecureSQL can guarantee absence of explicit informa-
tion flows with reasonable performance overheads (< 30%).
However, if absence of implicit flows is desired, or if compu-
tation on the critical path cannot be performed on encrypted
data, performance can degrade (by as much as two orders of
magnitude). Factors that contribute to the loss in performance
include the inability to use indexes on columns encrypted us-
ing semantically secure encryption and additional round trips
and data transfers between the client and the server. Users
must therefore choose their encryption policy wisely.

The rest of this paper is organized as follows. We define the
threat model for systems based on a trusted client in Section 2.

We reduce the problem of securely partitioning an application
into two sub-problems. The first problem is to rewrite the
application so that its semantics are preserved when columns
in the database are encrypted while ensuring the absence of
information flows. We describe a type system that achieves
this in Section 3. The second problem is to partition the rewrit-
ten application between the client and server while preserving
information flow safety (Section 4). We present an evaluation
in Section 5 and conclude in Section 6.

2. Threat model
We wish to protect sensitive data from an honest-but-curious
adversary who has access to contents of the database and all
queries. The adversary can observe the state of the server
on disk, in memory and all communication over the network.
The adversary, however, does not have access to encryption
keys, which are stored on the trusted client. SecureSQL does
not protect against active adversaries who can tamper with
code and data. While certain kinds of integrity attacks can be
detected using authenticated encryption [2], ensuring end-to-
end integrity of query processing is an open problem beyond
the scope of this paper. We also preclude adversaries who
exploit side channels such as size of inputs and results, address
traces, timing, and power consumption.

In SecureSQL, the adversary can gain information about
sensitive columns due to (a) use of weaker encryption schemes
which are not semantically secure, and (b) information flows.
As discussed earlier, weaker encryption schemes are a core
component of encryption databases - they allow computation
to be offloaded to the server, and make use of database op-
timizations such as indexes. To permit these schemes, we
must weaken the threat model, and consider any information
revealed due to weak encryption as prior knowledge known to
the adversary. Specifically, for deterministic encryption, we
assume that the adversary already knows whether two cipher
text values correspond to the same cleartext. In cryptographic
proofs of security, this is achieved by restricting the adversary
from encrypting the same value more than once; see [13, 9]
for formal definitions of security of deterministic encryption.
Similarly, we assume that the adversary is already knows
the relative ordering of values in a column encrypted using
order-preserving encryption. Our goal is to ensure that query
processing does not reveal any additional information.

The second source of information leakage is insecure in-
formation flows through the trusted client. We illustrate such
leakage using an example. Consider the TPC-C benchmark [7],
an application that maintains customer, inventory, and order
processing information. Figure 3 shows a stored procedure de-
rived from TPCC. This procedure records payments received
from a customer. For this stored procedure, we can define an
encryption policy as follows. Since customer information is
sensitive, we should ideally encrypt all personally identifiable
information (PII) in the customer table (such as names, address
details, account balance and credit rating) using randomized

2

1 CREATE PROCEDURE [dbo].[PAYMENT]
2 @c_w_id INT, @h_amount NUMERIC(6,2), @c_last CHAR(16)
3 AS BEGIN
4 BEGIN TRANSACTION;
5 UPDATE dbo.CUSTOMER
6 SET @c_id = C_ID,
7 @c_first = C_FIRST, @c_credit = C_CREDIT,
8 @c_balance = C_BALANCE = C_BALANCE + @h_amount,
9 WHERE CUSTOMER.C_W_ID = @c_w_id

10 AND CUSTOMER.C_LAST = @c_last;
11
12 INSERT dbo.HISTORY (H_C_ID, H_C_BALANCE)
13 VALUES (@c_id, @c_balance)
14
15 IF @c_credit = ’BC’
16 UPDATE dbo.CUSTOMER
17 SET C_DATA = @TIMESTAMP + C_DATA
18 WHERE CUSTOMER.C_W_ID = @c_w_id
19 AND CUSTOMER.C_LAST = @c_last;
20
21 SELECT @c_id AS N’@c_id’, @c_first AS N’@c_first’,
22 @c_last AS N’@c_last’, @c_credit AS N’@c_credit’,
23 @c_balance AS N’@c_balance’,
24 COMMIT TRANSACTION;
25 END

Figure 3: A T-SQL procedure derived from TPC-C

encryption. However, the column CUSTOMER.C_BALANCE
is involved in an addition, and columns CUSTOMER.C_LAST
and CUSTOMER.C_CREDIT are used in equality checks.
Since randomized encryption prohibits these operations, we
can use Paillier encryption (which is semantically secure) for
C_BALANCE and deterministic encryption for C_LAST and
C_CREDIT. Deterministic encryption also allows the query
engine to maintain and use an index on these columns. We can
leave all other non-PII columns (such as inventory and order
information) unencrypted.

While this policy appears to protect all sensitive information,
it does not guarantee confidentiality (even under the relaxed
threat model discussed above).
• There is an explicit flow from CUSTOMER.C_BALANCE

to HISTORY.C_BALANCE, which is not encrypted. The
flow reveals account balances even if the adversary does
not have access to encryption keys. Preventing this
flow requires a simple change to the policy - encrypt
HISTORY.C_BALANCE using Paillier encryption.

• There is an implicit flow from CUSTOMER.C_CREDIT to
CUSTOMER.C_DATA in the update query at line 17 be-
cause C_DATA (which is not encrypted) is conditionally
updated based on C_CREDIT. Due to this flow, an adver-
sary can potentially infer whether a customer has a bad
credit history. This flow can be prevented by encrypting
C_DATA using deterministic or randomized encryption.
Clearly, these flows are not desirable. We now define a

security property that disallows insecure information flows.

Definition 2.1 A application preserves confidentiality if there
are no information flows from a column/variable encrypted
using a stronger encryption scheme to a column/variable en-
crypted using a weaker encryption scheme.

Note that this definition assumes the presence of a partial
order over encryption schemes based on their relative strength.

1 --Server
2 CREATE PROCEDURE [dbo].[__Closure]
3 @c_w_id INT, @h_amount VARBINARY(2048), @c_last VARBINARY(256)
4 AS BEGIN
5 SELECT @pubkey = ...
6 BEGIN TRANSACTION;
7 UPDATE dbo.CUSTOMER
8 SET @c_id = C_ID,
9 @c_first = C_FIRST, @c_credit = C_CREDIT,

10 @c_balance = C_BALANCE =
11 dbo.PaillierAdd(C_BALANCE, @h_amount, @pubkey)
12 WHERE CUSTOMER.C_W_ID = @c_w_id
13 AND CUSTOMER.C_LAST = @c_last;
14
15 INSERT dbo.HISTORY (H_C_ID, H_C_BALANCE)
16 VALUES (@c_id, @c_balance)
17
18 IF @c_credit = 0x002057E9A8865AAA7D59DA69AD...
19 UPDATE dbo.CUSTOMER
20 SET C_DATA = @TIMESTAMP + C_DATA
21 WHERE CUSTOMER.C_W_ID = @c_w_id
22 AND CUSTOMER.C_LAST = @c_last;
23
24 SELECT @c_id AS N’@c_id’, @c_first AS N’@c_first’,
25 @c_last AS N’@c_last’, @c_credit AS N’@c_credit’,
26 @c_balance AS N’@c_balance’
27 COMMIT TRANSACTION;
28 END
29
30 -- Trusted Client
31 CREATE PROCEDURE [dbo].[PAYMENT]
32 @c_w_id INT, @h_amount NUMERIC(6,2), @c_last CHAR(16)
33 AS BEGIN
34 SELECT @key = ... // private key
35 SELECT @pubkey = ... // public key for paillier
36 SELECT
37 @enc_h_amount = dbo.AEncrypt(@h_amount, @key, @pubkey),
38 @enc_c_last = dbo.DEncrypt(@c_last, @key),
39
40 EXEC [SERVER].[tpcc].dbo.__Closure
41 @enc_c_w_id, @c_d_id,@enc_c_amount, @enc_c_last,
42 out @c_id, out @c_first, out @c_last,
43 out @c_balance, out @c_credit
44
45 SELECT @c_id AS @c_id,
46 dbo.RDecrypt(@c_first, @key) AS @c_first,
47 dbo.DDecrypt(@c_last, @key) AS @c_last,
48 dbo.DDecrypt(@c_credit, @key) AS @c_credit,
49 dbo.ADecrypt(@c_balance, @key, @pubkey) AS @c_balance,
50 END

Figure 4: A partitioned stored procedure which preserves se-
mantics and absence of explicit flows.

Also note that this definition includes all columns and variables
such as parameters passed to any procedures executed on
the server, and results of intermediate query processing. We
can extend this definition to an application partitioned into a
trusted client and an untrusted server.

Definition 2.2 A partitioned application preserves confiden-
tiality if there are no information flows from a column/variable
encrypted using a stronger encryption scheme to a column/-
variable stored on the server encrypted using a weaker en-
cryption scheme.

Unlike Definition 2.1, this property permits information
flows from encrypted columns to cleartext variables on the
trusted client. This allows the trusted client to decrypt values
retrieved from encrypted column, perform computations on
those values, encrypt the results, and store them on the server
as long as resulting values are encrypted using a sufficiently

3

n ∈ Names x ∈ Values v ∈ Variables
f ∈ Functions T ∈ Tables c ∈ Columns
k ∈ Keys pk ∈ PublicKeys S ∈ Server

e ::= x | v | t.c | [n1 : e1, ...,nm : em] | e1 = e2 | e1 < e2
| e1 + e2 | f e | σe1(e2) | πn1,...,nm(e) | e1∪ e2 | e1\e2 | e1× e2

s ::= e1 := e2 | s1;s2 | if e1 s1 s2 | selectn1,...,nm(e)
| insertn1,...,nm(t) e | updaten1,...,nm(t) e | delete(t) e

p ::= f (v).s | p p

et ::= r_encrypt(k,v) | r_decrypt(k,v) | d_encrypt(k,v)
| d_decrypt(k,v) | op_encrypt(k,v) | op_decrypt(k,v)
| a_encrypt(k, pk,v) | a_decrypt(k, pk,v) | [S].s

Figure 5: Syntax of λSQL

strong encryption scheme.
The example described above also illustrates the security-

performance trade-offs that arise in the trusted client model.
Ensuring the absence of explicit and implicit flows often re-
quires more columns to be encrypted, and additional round
trips to the client. SecureSQL’s type system identifies such
flows, and gives users the choice of enforcing absence of ex-
plicit and/or implicit flows. Figure 4 shows a partitioning
generated by SecureSQL for this example when implicit flows
are permitted. The partitioning is efficient since all compu-
tation is offloaded to the server. The trusted client simply
encrypts parameters, uses linked server at line 39 to invoke the
server component, and decrypts results. Refer to [5] for the
partitioning that contains no explicit or implicit flows. This
partitioning requires the column C_DATA to be encrypted and
delegates the string concatenation operation in line 18 to the
client (at the cost of an additional round trip).

3. Information flow types for partially homo-
morphic encryptions

The type system in SecureSQL serves dual purposes. First,
it automatically rewrites a database application by inserting
calls to encryption/decryption routines so that its semantics
are preserved in the database with encrypted columns.
Furthermore, the type system ensures the absence of explicit
and/or implicit flows, assuming all local variables are stored
in trusted memory. The partitioning algorithm (Section 4)
further partitions stored procedures, moving local variables
and statements from the trusted client to the server while
preserving information flow safety. While type systems for
information flow have been studied extensively [26, 24],
the combination of partially homomorphic encryption and
information flow, and its use for automatic partitioning are
unique to our system.

τ ::= CT | RE | AE | DE | OPE | Void
| [τ1, ...,τn] | [n1 : τ1, ...,nn : τn] | τ1→ τ2

Figure 6: Types in the type system for partially homomorphic
encryptions.

Language. Instead of presenting the type system for the entire
T-SQL language, we define a simpler, core language called
λSQL (Figure 5) which models key features of declarative query
languages. An λSQL program p is a collection of named stored
procedures. The state of a λSQL program consists of a database
with a set of tables t and a set of local variables v. The body
of a procedure is a statement (s). An expression is either a
constant (x), a variable (v), reference to a column in a table
(t.c) or a named record [n1 : e1, ...,nm : em]. A named record
is a tuple with a unique name associated with each element.
Named records permit relational operations such as projection
and cartesian product. λSQL supports basic arithmetic, boolean
operations and function application, assignment, imperative
control flow in the form of branching statement, standard
relational operators for querying data including projection
(πn1,...,nm(e)), selection (σe1(e2)), union (e1 ∪ e2), difference
(e1\e2), and cartesian product (e1× e2). πn1,...,nm(e) selects a
subset of columns from a collection of named records. σe1(e2)
selects all tuples from the result of the expression e2 that
satisfy the predicate e1. Tables (t) can be modified using
insert, update, and delete statements. The select statement
can be used to query tables and return results.

λSQL also supports a set of expressions used in gener-
ated code but not available to the programmer (et). This
includes the implementations of encryption and decryption
algorithms. The algorithms for randomized, deterministic
and order-preserving encryption use symmetric private keys,
whereas additive encryption use asymmetric, public-private
key pairs. We assume that the algorithm for randomized and
additive encryption are secure under standard cryptographic
assumptions. The language does not support explicit creation
or manipulation of encryption keys - we assume that the
application (i.e. the trusted client) has access to a finite
number of predefined keys/key pairs. Finally, [S].s offloads
execution of statement s from a client database to a server S.

Types. Given an λSQL program, our goal is to assign each
expression in the program a type which represents whether the
value returned by the expression is encrypted or not, and the
type of encryption used i.e. randomized (RE), additive (AE),
deterministic (DE) or order-preserving (OPE). SecureSQL’s
type system (Figure 6) consists of a set of primitive types, one
for each type of encryption. The type CT represents cleartext
values, and the type Void represents expressions that do not
return values (e.g. assignment). The type system also supports
function types and named record types. A named record type
is a type representing a tuple of values, where each element

4

Figure 7: Types and encryption and decryption routines for
coercing values between types.

in a record type is associated with a name. Record types are
a natural way of representing types of tables and relational
operators (such as projection and product).

Note that types described above do not refer to encryption
keys. For the purpose of this paper, we make a simplifying
assumption that all values encrypted using the same kind
of encryption use the same encryption key. In our imple-
mentation, a type consists of the pair <encryption type,
keyid>, where keyid is a unique identifier representing each
encryption key.

Encryption/decryption as Coercions. In a conventional type
system for information flows [26, 24], types correspond to
secrecy levels in a lattice. For example, the types> and⊥ rep-
resent secret and public values respectively. In an encrypted
database, secrecy levels correspond to partially homomorphic
encryption schemes. The encryption schemes can be ordered
by the relative strength of encryption; this ordering forms a
lattice shown in Figure 7. A type system based on this lattice
can be used to check if a partitioned application contains any
explicit or implicit information flows, and if the application
uses partially homomorphic encryptions correctly. However,
just type checking does not suffice if our starting point is a
monolithic application written for a database without encryp-
tion – we wish to instrument encryption/decryption routines
to preserve semantics of the application, and partition the
application while preventing information flows.

Towards this end, we define a type system where encryp-
tion/decryption routines are viewed as coercions between
types, similar to how compilers coerce of values from one
(usually less precise) type to another (more precise) type.
Specifically, we propose a type system with coercive sub-
typing [18]. In coercive subtyping, τ1 is said to be a subtype
of τ2 if a value of type τ1 can be coerced into a value of type
τ2 using a coercion function στ1→τ2 . In such a system, the
subtyping relation <: defines the set of coercions permitted
by the type system. In our type system, encryption and de-
cryption routines are coercion functions. Figure 7 shows all

Figure 8: A coercive subtyping relation which tracks informa-
tion flow from encrypted types. Unlabeled edges have identity
functions as coercions.

coercion functions along with the source and target types. Es-
sentially, we can coerce a value of a given encryption type
to a value of any other encryption type using one or more
encryption/decryption routines.

At first glance, the relation in Figure 7 appears to be an
obvious choice for a subtyping relation. However, permitting
coercions between all encryption types is not desirable. If we
permit arbitrary coercions, values from encrypted columns
can be coerced into values encrypted using weaker encryption
schemes, resulting in insecure information flows. Another
reason for not permitting all coercions is efficiency – type in-
ference is tractable only when the subtyping relation is a partial
order, and efficient when the partial order is a lattice [23].

Figure 8 shows the subtyping relation used in SecureSQL.
This relation (which is a lattice) is derived from Figure 7 by
unrolling cycles once and adding a few additional types. The
types CTOPE, CTDE, and CTREare variants of the type CT –
they distinguish cleartext values obtained via decryption from
cleartext values that were never encrypted. Both randomized
and additive encryption share the same clear text type because
they are both equally secure (in the cryptographic sense).
OPElval,DElval,AElval, and RElval are variants of encrypted
types which represent re-encrypted values. Unlabeled edges
have identity functions as coercions. Observe that this
subtyping relation permits encrypted values to be decrypted
into cleartext values, and encrypted back using the same
or stronger encryption scheme. As described in Section 4,
these additional types allow the partitioning algorithm to
identify computations that can be safely offloaded to the server.

Type inference. We now describe SecureSQL’s algorithm
(based on [21]) for automatically inferring encryption types
and coercions. Informally, the algorithm work as follows. The
algorithm associates two type variables with every expression,
an assumed type α , which represents the type of the expression
without coercions, and an expected type β , which represents
the type after a coercion permitted by the subtyping relation
<: has been applied. The algorithm collects set constraints on
these type variables during a traversal of the AST. A solution

5

to these constraints, if one exists, assigns values to assumed
and expected type variables of every expression. Expressions
which require requires coercions are expressions with different
assumed and expected types.

For tracking implicit flows, the algorithm associates a type
variable γ with every statement s. s has an encryption type γ

if all columns/variables updated by s have encryption type at
least as strong as γ . γ also represents the context in which a
statement can execute without introducing implicit flows. A
statement s with type γ can safely execute in a context of type
γ or weaker.

The algorithm can be stated as a set of type rules. Figure 9
shows a subset of the type rules (refer to [5] for the complete
set of type rules). Type judgments for expressions take the
form Σ,Γ ` e : β . Σ is a set of type constraints of the form
τ <: β or τ ∈ S, where τ is a type expression, β is a type
variable, and S is a set of types. Γ is a map from expressions to
their assumed types. A type judgment is interpreted as follows:
under constraints Σ and assumptions Γ, the expected type of e
is β . Type judgments for statements take the form Σ,Γ,γ ` s,
where γ represents the context in which the statement s can
safely execute.

Consider the rule VAR for variables. The rule allocates two
fresh type variables α and β , sets the assumed type of v to
α , and adds a constraint that α <: β , where β is the expected
type of v. The rule for column references is similar, with the
only difference that the assumed type of a column reference is
obtained from the encryption policy E.

Now consider the rule EQUALS. Let β1 and β2 be the
expected types of e1 and e2 respectively. Equality check-
ing requires types of both sub-expressions to be the same.
This is enforced by unifying both types (using the func-
tion UNIFY). Equality also requires that both types should
be at least at weak as deterministic encryption. We enforce
this using a subset constraint β1 ∈ [OPE,OPElval,DE,DElval,
CT,CTOPE,CTDE,CTRE]. The algorithm also unifies the as-
sumed types of variables common to e1 and e2. The constraint
on the type of equality check reflects the fact that unlike other
partially homomorphic encryptions, deterministic encryption
and OPE reveal the result of the check in cleartext. The rule
COMP for comparison follow the same template and only
differ in the set of permitted encryption types.

Inserting into a table (INSERT) requires that the type of
values being inserted must be a subtype of the column being
written to (as defined in the policy). Here, we use the function
LVALTYPE to obtain the re-encrypted type corresponding to
an encryption type. Observe that this rule allows re-encryted
values to be written to a column to a column of a given en-
cryption type. For example, a value of type RElval obtained by
decrypting a value of type DElval and re-encrypting it using
randomized encryption can be written to a column of type
RE. The type γ captures the strongest encryption type that is
written by the statement.

Consider the rule IF. The constraint on the contexts of

[CONST]

β = FRESH()

{CT<: β},{x : CT} ` x : β

[VAR]

α,β = FRESH()

{α <: β},{v : α} ` v : β

[COLUMN]

α = E(t,c) β = FRESH()

{α <: β},{v : α} ` t.c : β

[EQUALS]

Σ1,Γ1 ` e1 : β1 Σ2,Γ2 ` e2 : β2 β = FRESH()
S = UNIFY({α,β | v : α ∈ Γ1∧ v : β ∈ Γ2}∪{β1,β2})

S(Σ1)∪S(Σ2)∪{β ∈ [CT,CTOPE,CTDE,CTRE]}∪
{β1 ∈ [OPE,OPElval,DE,DElval,CT,CTOPE,CTDE,CTRE],

S(β1)<: β},S(Γ1)∪S(Γ2) ` e1 = e2 : β

[COMP]

Σ1,Γ1 ` e1 : β1 Σ2,Γ2 ` e2 : β2 β = FRESH()
S = UNIFY({α,β | v : α ∈ Γ1∧ v : β ∈ Γ2}∪{β1,β2})

S(Σ1)∪S(Σ2)∪{β ∈ [CT,CTOPE,CTDE,CTRE]}∪
{β1 ∈ [OPE,OPElval,CT,CTOPE,CTDE,CTRE],

S(β1)<: β},S(Γ1)∪S(Γ2) ` e1 < e2 : β

[ADD]

Σ1,Γ1 ` e1 : β1 Σ2,Γ2 ` e2 : β2 β = FRESH()
S = UNIFY({α,β | v : α ∈ Γ1∧ v : β ∈ Γ2}∪{β1,β2})

S(Σ1)∪S(Σ2)∪{β1 ∈ [AE,AElval,CT,CTOPE,CTDE,CTRE],
S(β1)<: β},S(Γ1)∪S(Γ2) ` e1 + e2 : β

[ASSIGN]

Σ1,Γ1∪{e1 : α1} ` e1 : β1 Σ2,Γ2 ` e2 : β2
S = UNIFY({α,β | v : α ∈ Γ1∧ v : β ∈ Γ2}∪{α1,β1})

S(Σ1)∪S(Σ2)∪{S(β2)<: S(β1)},S(Γ1)∪S(Γ2),S(β1) ` e1 := e2

[INSERT]

∀i, βi = LVALTYPE(E(t,ci)) Σ,Γ ` e : β γ = FRESH()

Σ∪{β <: [β1, ...,βn]∪{∀i ∈ [1, ...,n],S(βi)<: γ},Γ,γ `: insertn1,...,nm(t) e

[SELECT]

Σ,Γ ` e : β ∀i ∈ [1, ...,m], βi = PROJECT(β ,ni) γ = FRESH()

{Σ∪{∀i ∈ [1, ...,n],S(βi)<: γ},Γ,γ `: selectn1,...,nm(e)

[IF]

Σ1,Γ1 ` e1 : β1 Σ1,Γ1,γ1 ` s1 Σ2,Γ2,γ2 ` s2
S = UNIFY({α,β | v : α ∈ Γi∧ v : β ∈ Γ j}∪{γ1,γ2})

S(Σ1)∪S(Σ2)∪S(Σ3)∪{S(β1)<: S(γ1)},
S(Γ1)∪S(Γ2)∪S(Γ3),S(γ1) ` if e1 s1 s2

Figure 9: A subset of rules from the type inference algorithm.

’then’ and ’else’ statements these statements can only update
columns encrypted with a stronger scheme than the variables
involved in the branching condition. For example, consider the
IF statement at line 16 in Figure 3. If the column C_CREDIT
is encrypted using deterministic encryption, the equality check
can be performed on the server by encrypting the constant
’BC’. In this case, the type of the branching condition is
CTDE (rule EQUALS). The rule IF ensures that all columns
updated in the ’then’ branch should have a type at least as
strong at CTDE. If the column C_DATA is not encrypted, this
condition cannot be satisfied due to an implicit flow, and the

6

algorithm reports an error.
Parameters and return values. The algorithm introduces
additional constraints on parameters and return values of
procedures that can be externally invoked. Specifically, we
require that the type of all parameters and the return variable
of such procedures must be one of the cleartext types. This
constraint ensures that the interface of these stored procedures
does not change from the perspective of external callers.

Procedure and function calls. The SecureSQL compiler
handles procedure calls as follows. Given a set of stored
procedures, the compiler constructs a call-graph, performs
a bottom up traversal of the call-graph and runs the type
inference algorithm described above for each procedure. After
processing each node, computes a summary for each proce-
dure, which consists of the encryption types of the formal
parameters and return values. The summary also records
whether the stored procedure requires any coercions. At a
procedure call, the compiler uses the summary to introduce
constraints on parameters and return values. Specifically, we
require that the expected type of an actual parameter should
be a subtype of the corresponding formal parameter, and the
type of the return value should be a subtype of the expected
type of the actual return value. In case of recursive calls,
the compiler repeats the inference until a fixed point is reached.

Cost-aware constraint solving. The constraints generated by
the type system are inequalities over the subtyping relation,
which is a partial order. In general, the problem of poset solv-
ing is NP-complete [23]. However, our subtyping relation is a
lattice with the join defined by the lowest common ancestor
relation. Solving inequalities over a lattice is linear in the num-
ber of expressions and the height of the lattice [23]. The result
of constraint solving is either a type assignment which assigns
a type to each type variable, or a set of unsatisfiable constraints.
A set of constraints may be unsatisfiable if the program con-
tains insecure information flows. We report all unsatisfiable
constraints to the user, and also recommend the changes to the
encryption policy that will satisfy the constraints.

One shortcoming of the inference algorithm described
above is that it unaware of the runtime cost of coercions.
For example, consider the equality check at line 10 in Fig-
ure 3. If the column CUSTOMER.C_LAST is deterministi-
cally encrypted, there are two possible assignments of types
to expressions CUSTOMER.C_LAST and @c_last that will
preserve semantics of the filter, one in which both expressions
are assigned the type CTDE, and the other where they are as-
signed the type DElval. Both type assignments result in the
same number of coercions (i.e. one). In the first case, the
column C_LAST is decrypted, and in the second case, the
variable @c_last is deterministically encrypted. The result-
ing queries have very different query plans. In the first case,
the column C_LAST must transferred to the client and the
check is performed on the client. The second case lends to a

more efficient plan where the filter is performed on the server
using an index.

In order to find efficient type assignments, we extend the
inference algorithm in [23] with a simple cost model and a
procedure that systematically explores the space of all valid
type assignments to find type assignments with minimal cost.
Our cost model computes the cost of a type assignment by
assigning a cost to all expressions that must be coerced under
the assignment. The cost of a coercion on a column reference
is approximated by the cardinality of the column (estimated
using statistics from the server). The cost of coercing as
primitive value is 1. The cost of an expression is the sum of
the cost of its sub-expressions.

We explore the space of all valid type assignments using
the following iterative algorithm. We start with a valid
type assignment obtained using the inference algorithm
described above, and systematically derive other type
assignments by substituting the type assigned to a type
variable with its super-types. We use each derived type
assignment to assign the assumed type of each type variable
and rerun the inference algorithm. If the inference algorithm
succeeds, we have found another valid but different type
assignment and we can compute its cost. If the inference
fails, we ignore the type assignment and continue the
search. The complexity of the exploration is polynomial in the
number of expressions and the height of the subtyping relation.

Inserting Coercions. Given a type assignment, the ex-
pressions that require coercions are expressions which
generated constraints of the form α <: β where α 6= β . Such
expressions require a coercion from α to β because the
assumed and expected type are different. For every such
constraint, we derive the coercion function by traversing the
path from α to β in the subtyping relation and composing
coercions functions for each edge on the path, and instrument
the expression with the coercion function. We also identify all
addition expressions where both sub-expressions are assigned
a type AE or AElval, and replace each such addition with a call
to homomorphic addition routine.

4. Secure Partitioning
The next phase in the compilation process is to generate a
secure and efficient partitioning of a database application
that offloads as much computation as possible to the server
without leaking sensitive information. In this section, we
describe the analysis and optimizations that together generate
such partitionings.

Baseline partitioning. The first step in the algorithm is to
generate a baseline partitioning which preserves semantics.
For the baseline partitioning,SecureSQL relies on named ref-
erences, which is a commonly abstraction for distributed
query processing in most databases. For example, SQL

7

Server supports a primitive called linked server [6] and Or-
acle supports a similar primitive called database link [4]. A
linked server is a named reference that can be used by a
client database to issue queries on remote servers. For ex-
ample, a client database can issue a query SELECT * FROM
[LINK].[DB].CUSTOMER ORDER BY C_BALANCE to
select customers from a remote table1. The query optimizer
on the client partitions queries that use linked server between
remote servers and the client, utilizing any statistics that may
be available on the remote server.

SecureSQL uses linked server to partition a stored procedure
by rewriting all table references to remote table references, and
installing the resulting stored procedure on the client. Linked
server automatically promotes transactions initiated on the
client to distributed transactions involving the remote server.

Unfortunately, while the baseline partitioning is simple
and preserves semantics, it is neither secure not efficient.
In this partitioning, the number of round-trips between the
client and server is proportional to the number of queries
because the client drives execution, and control returns back
to the client after each query, even if the next query can
execute entirely on the server. Furthermore, transactions
are promoted to distributed transactions even if all queries
within the transaction are safe. The partitioning is also not
secure because information can leak through local variables
that hold sensitive data in cleartext, and via intermediate
results of query processing. For example, consider the
join query SELECT * FROM [LINK].R, [LINK].S
WHERE dbo.DECRYPT(R.a) = S.a. If |R |�|S |, a
possible query plan is to decrypt the column R.a on the
client, and transfer the semi-join to the server to compute the
join. This plan leaks contents of the column R.a in plaintext.
SecureSQL uses a series of analysis and optimizations for
generating a secure and efficient partitioning from the baseline.

Safety analysis. Safety analysis is a static analysis that infers
whether a type-annotated T-SQL expression can be safely of-
floaded to the server without introducing insecure information
flows. The analysis is based on the following definition for
safety. A T-SQL expression is safe if (a) does not invoke
encryption or decryption routines, (b) it does not use any lo-
cal variables that contain values obtained from prior calls to
decryption routines.

Checking whether an expression invokes encryption/de-
cryption routines is straightforward – we simply check if any
sub-expressions require coercions (using the type assignment).
We can also check the second condition recursively as follows.
A local variable is it not safe if its expected type is one of
the types [CTOPE,CTDE,CTRE]. An expression is safe if all
constants and variables in the expression are safe.

Secure partitioning. SecureSQL uses safety analysis

1Here LINK is the name of the linked server.

to transform the baseline partitioning into a secure (but
inefficient) partitioning as follows. The compiler identifies
and instruments all unsafe scalar expressions with special
"identity" routines installed on the client. The presence of
these routines forces the query optimizer to consider plans
where these functions are evaluated on the client. For example,
consider the query SELECT * FROM [LINK].R WHERE
dbo.IDENTITY(dbo.DECRYPT(R.a) = @filter).
Assume that the variable @filter is unsafe. The call to the
identity routine forces the filter to be evaluated on the client.

Security-aware optimizations. We now describe three
optimizations in SecureSQL, which increase the number
of safe expressions, and hence offload more computation
to the server. SecureSQL supports other optimizations
such as splitting sub-queries and splitting materialized
view definitions – we omit these due to space constraints.
A key feature of these optimizations is that they can be
expressed as source-to-source transformations, as opposed to
transformations on a physical query plan.

Invariant code motion. An expression is invariant with
respect to a query if its value does not change during
the query’s execution. Invariant code motion is an op-
timization that identifies invariant expressions (such as
calls to encryption/decryption routines), and moves them
before the query. For example, consider the SELECT
query at line 6 in Figure 3. In this example, the type
system infers that variables @c_last and @h_amount
should be encrypted, and introduces encryption routines.
However, the expressions d_encrypt(@c_last,...)
and a_encrypt(@h_amount,...) are invariant with
respect to the query. The transformation moves these
expressions before the query, introduces temporary variables
(@enc_c_last and @enc_h_amount) to capture the
values of these expression, and replaces the expressions with
temporary variables. The resulting query is free of calls to
encryption and decryption routines, and therefore safe.

Offloading Safe Blocks. This optimization offloads safe state-
ments to the server. The optimization consists of two phases.
The first phase identifies maximal safe blocks. A block is a set
of statements in the same static scope. A maximal safe block
is the largest block such that all statements within the block
are safe but at least one of the siblings is not safe.

The second phase of the transformation partitions the
stored procedure further by extracting maximal safe blocks
into separate stored procedures. This is akin to creating
closures [3]. Each maximal safe block is transformed into a
stored procedure whose input parameters are variables used
within the block, and output parameters are variables defined
within the block but used outside. This transformation then
deploys closures on the server, and replaces the maximal safe
block with a remote call to the closure. As a special case, if

8

all statements in a stored procedure are safe, the optimization
deploys the entire stored procedure on the server. Figure 4
shows an instance of this optimization, where the entire
procedure is replaced by a call to a closure.

Distributed transaction elimination. Recall that the client
database automatically promotes local transactions to dis-
tributed transactions while processing queries with remote
references. Distributed transactions are often implemented
using expensive, blocking protocols such as 2PC. This opti-
mization eliminates distributed transactions wherever possible.
In particular, the optimization checks if all remote accesses
within the scope of a transaction occur in one maximally safe
block. If this condition is satisfied, this optimization elimi-
nate the distribution transaction by reducing the scope of the
transaction to the maximal safe block. This effectively pushes
the transaction into the closure, which executes locally on the
server. Figure 4 shows an example of this transformation.

5. Evaluation
The goal of our evaluation to is determine the cost of
supporting information flow security in encrypted databases.

Implementation. SecureSQL is implemented as a C# library
(˜ 11000 LOC) based on a publicly available T-SQL parser
and code generator [8]. The type system, rewriting for
adding coercions, query partitioning and optimizations are
implemented as transformations over the AST generated
by the parser. We use 256-bit AES block cipher in CBC
mode for randomized encryption, AES in GCM mode
with an initialization vector derived from the hash of the
cleartext for deterministic encryption, 1024 bit Paillier encryp-
tion and an order-preserving encryption scheme based on [22].

Methodology and Benchmarks. The experiments were con-
ducted on an in-house cluster connected via a 1 Gbps network.
Each machine has a 2 Intel Xeon x64 processors with 8 cores
each, 16GB RAM, a 1TB SATA drive and runs Windows
Server 2008 Enterprise. Our evaluation is based on two appli-
cations TPC-C, and Perf, an in-house employee performance
evaluation application. The TPC-C database maintains cus-
tomer, order and inventory information. We instantiated this
database with 100 warehouses (approximately 10 GB). The
workload consists of five transactions implemented as stored
procedures. The workload generator simulates a specified
number of concurrent users issuing transactions with a recom-
mended mix (45% new order transactions, 43% order status,
and 4% each of other transactions). Each run lasts 5 minutes
preceded by a warm-up period of 2 minutes. We use the num-
ber of transactions per minute (TPM), and the average latency
of transactions (in milliseconds) as measures for throughput
and latency.

The Perf database maintains employee performance data
for one year (approximately 50 GB). The database application

Policy # Coercions # DT
DEL NEWORD OSTAT PAY SLEV

NoFlows 3 3 8 44 0 4
NoExp 3 3 4 24 0 2

NoExpAdd 0 0 2 18 0 0

Table 1: Number of coercions and the number of procedures
requiring distributed transactions in the TPC-C benchmark for
different encryption policies.

consists of 104 stored procedures of varying complexity (from
100 - 2500 LOC), and 69 views. The workload consists of a
mix of 7 complex workflows, where each workflow invokes
several stored procedures. We choose this application because
it has strong security requirements but much lower throughput
and latency requirements than TPC-C, and therefore serves as
an interesting design point.

5.1. TPC-C

For evaluating the security performance trade-off in TPC-C,
we defined three progressively weaker encryption policies.
The policy NoFlows uses randomized encryption for all
columns in the customer table containing personally iden-
tifying information. SecureSQL’s type system certifies
that this policy does not contain any implicit or explicit
insecure information flows. However, the policy does not
utilize indexes or permit server side computation on these
columns. The policy NoExp weakens NoFlows by using
deterministic encryption for customer last name and credit
status, and leaving the column C_DATA in cleartext. This
policy has an implicit flow from the column C_CREDIT to
C_DATA, but is able to use indexes on these columns. The
third policy NoExpAdd is similar to NoExp except it uses
Paillier encryption for customer’s account balance. Our
baseline is a configuration (ClearText) where all columns are
cleartext, and the application runs entirely on the server. The
compiled stored procedures for all policies are available at [5].

Static properties. We measured two properties of a
partitioned application that serve as good indicators of
performance i.e. the number of coercions, and the number of
distributed transactions (Table 1). With policy NoFlows 4 out
of 5 stored procedures require coercions, with the procedure
Payment requiring as many as 44 coercions, illustrating the
complexity of rewriting. Both the number of coercions and
the number of procedures that require distributed transactions
reduces as the policy is weakened. With policy NoExpAdd, all
computation (with the exception of encryption & decryption
routines, and simple scalar operations) is offloaded to the
server, and distributed transactions are eliminated altogether.
We also observe that encryption increases the space overheads
of the database by roughly 45% (with negligible variance
across policies).

Performance Overheads. Figure 10 shows the average

9

0

50

100

150

2 4 8 16 32 64 128T
h
ro

u
g

h
p

u
t

(
0
0
0
 T

P
M

)

Concurrent Users

Cleartext NoFlows

NoExp NoExpAdd

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

1

10

100

1000

10000

2 4 8 16 32 64 128

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

Concurrent Users

ClearText NoFlows

NoExp NoExpAdd

Figure 10: Throughput and latency of TPCC with varying load
and encryption policies.

0

50

100

150

2 4 8 16 32 64 128T
h
ro

u
g

h
p

u
t

('
0
0
0
 T

P
M

)

Concurrent Users

ClearText NoFlowsSrv

NoExpSrv NoExpAddSrv

1

10

100

1000

10000

2 4 8 16 32 64 128

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

Concurrent Users

ClearText NoFlowsSrv

NoExpSrv NoExpAddSrv

Figure 11: Throughput and latency of TPCC for configurations
where the server has access to keys.

throughput and latency of the partitioned TPC-C with varying
number of users. As one might expect, throughput scales al-
most linearly with load in the baseline configuration with all
columns in cleartext. The throughput with the policy NoEx-
pAdd closely matches the baseline, except at high load where
the throughout is lower by 28%. The discontinuity at 16 users
is explained by the number of cores available on the server.
Further analysis shows that the lower throughput is due to
encryption and decryption operations on the trusted client.
Partitioning has a larger effect on latency for policy NoEx-
pAdd – average latency increases from 1.8ms to 8.4ms with
16 concurrent users. This is due to at least one additional hop
between application and the database server, and the latency
of encryption and decryption operations.

Both throughput and latency drop significantly for policies
NoFlows and NoExp (with a maximum of 1000 and 19800
TPM respectively). The drop is performance with NoFlows
is not be entirely unexpected. In this configuration, most of
the query processing and control flow remains on the client.
An analysis of the most time consuming queries using SQL
profiler reveals that cursors are the worst affected, followed by
queries that filter on encrypted columns. Since these queries
now execute on the client, performance suffers due to the
inability to use indexes, and the additional data transfers to the
client. However, the drop in performance with NoExp is more
surprising.

We performed a set of experiments to isolate the cause of
loss in performance. We considered three additional configu-
rations NoFlowsSrv, NoExpSrv and NoExpAddSrv where the
database is encrypted with policies NoFlows NoExp and No-
ExpAdd respectively, and the database server has access to
encryption keys. Therefore, both the server and trusted client

0

200

400

600

800

1000

W1 W2 W3 W4 W5 W6 W7

T
im

e
 (

m
s)

Workflows

PlainText Encrypted

Figure 12: Average latency of workflows with and without en-
cryption.
components of the application can be deployed on the server.
These configurations are not secure – they simply eliminate
overheads of the network.

Figure 11 shows the throughput and latency for these con-
figurations. The throughout and latency of NoExpSrv are
significantly better than NoExp. Both through and latency im-
prove by a factor of 5, with latency within 10% of NoExpAdd
on average. Throughput is however lower than NoExpAdd
by a factor of 3. This suggests that most of the overheads
(if not all) can be attributed to the cost of distributed query
processing. Recall that in NoExp, the column C_BALANCE
in the customer table is encrypted using randomized encryp-
tion. Therefore, operations on this column are executed in the
trusted client component. This requires additional round trips
and use of distributed transactions in two stored procedures
(DEL and PAY), which hurts throughput.

Also observe the performance of NoExpAddSrv reduces
significantly at high loads. Further analysis of CPU usage
reveals that the loss in performance is due to encryption and
decryption routines, which contend for CPU cycles with the
rest of the application. Contrast this with NoExpAdd where
the load is shared between the client and the server.

Optimizations. We also measured the performance of TPC-C
for each of the encryption policies with the optimizations de-
scribed in Section 4 disabled. In this mode, the performance of
configurations NoExp and NoExpAdd drops significantly, with
throughput even lower than NoFlows. We also observed that
no single optimization when enabled in isolation improved
performance significantly. Performance improved only when
these optimizations are enabled together. Therefore, optimiza-
tions play a big role in realizing the full benefits of a weaker
encryption policy.

In summary, the experiments suggest that SecureSQL can
ensure the absence of explicit flows even in a performance
sensitive application like TPC-C with reasonably low
overheads. However, overheads can he high if the encryption
policy is not carefully chosen to maximize the use of existing
PHE schemes, or protection from implicit flows is desired.

5.2. Employee performance evaluation

For this application, we use a strong encryption policy where
all personally identifiable data and data related to an em-

10

ployee’s performance is encrypted using randomized encryp-
tion. SecureSQL’s type system is able to verify that with this
policy, the partitioned application has no implicit or explicit
flows. Even with this policy, we find that over 80% of the
stored procedures and views do not require any coercions.
However, there are procedures where the compiler introduces
up to 46 coercions. Figure 12 shows the average latency of 7
main workflows. We compare the latency with a configuration
where the database is in cleartext. The three most critical work-
flows in this application, W1, W2 and W3 are invoked when
employees lookup their appraisals. These workflows are are
dominated by lookups and complex joins on cleartext columns
and moderately impacted by partitioning. The latency of work-
flows W4-W7 increase significantly after encryption. This is
due to the presence of calls to string manipulation routines
on encrypted data within the scope of distributed transactions,
and joins over strongly encrypted columns which cannot be
offloaded to the server. We also tested this application through
its web based client – on the whole usability of the application
is not affected by partitioning.

6. Conclusions and Future work
Encrypted databases are a first step towards the goal of ap-
plications which can "compute" on encrypted data and offer
strong end-to-end confidentiality guarantee. This paper takes a
step towards defining strong security properties for encrypted
databases. We show that encrypted databases can support
real-world workloads with reasonable security and perfor-
mance. However, ensuring strong information flow security
with software-only trusted clients in performance sensitive
applications is challenging. Encrypted databases with trusted
hardware [10, 19] may be able to offer both information flow
security and robust performance. From a security perspective,
formally stating the threat model and proving that SecureSQL’s
type system ensures confidentiality is an open problem.

7. Related Work
Trusted clients. The trusted client model was first proposed
in [17]. Their system does not exploit partially homomorphic
encryption. Instead, the system maintains additional indexes
on encrypted columns, which permits some filters to be pushed
to the server. They present an algebraic framework for par-
titioning individual queries along with a set of heuristics for
maximizing the amount of computation pushed to the server -
which requires changes to the underlying query optimizer. In
contrast, we handle a richer set of abstractions (views/stored
procedures) and require no changes to the underlying database
infrastructure.

CryptDB [22], Monomi [25] continue the line of work
in [17] by using partial homomorphic encryption schemes.
They differ in the amount of computation that is allowed in
the trusted client - CryptDB uses a web proxy and is not a
general purpose system. Monomi permits arbitrary residual
computation on the client, but is geared towards analytical

workloads. The main focus in both these systems is individual
queries - in this paper we study abstractions such as stored
procedures, views, and transactions in addition to ad-hoc
queries. Interestingly, these abstractions fundamentally
change the security model - in particular, stored procedures
introduce information flow between columns. Any system
that ignores these information flows can potentially leak the
contents of encrypted columns to a passive adversary. Our
compiler uses a type system that statically checks for insecure
information flows and rewrites stored procedures. Finally, we
evaluate our system using complete benchmarks (as opposed
to traces used in [22]). Our evaluation offers a more realistic
picture of the performance of a fully general trusted client
based database architecture for transactional workloads.

Untrusted clients. Chong et al [14] propose a system for
automatically partitioning web applications. In their security
model, the client is considered untrusted. The objective of
partitioning the web application is to ensure that sensitive
data does not flow to the client. Our security property is a
variant of the information flow security tailored for partially
homomorphic encryption schemes, which their system does
not use.

Hardware based security. Another approach for securely
processing query on untrusted platform using dedicated
trusted hardware such as FPGAs and Intel SGX [19].
TrustedDB [11] combines a secure co-processor and a
commodity server. It runs a lightweight on the secure
co-processor and a full-fledged database on the server. Query
processing is distributed between two databases - encrypted
data is processed on the co-processor and cleartext data is
processed using a commodity database. Cipherbase [10] also
relies on secure hardware (in the form of an FPGA device)
to process encrypted data. However, unlike TrustedDB,
the database is more tightly coupled with the hardware.
The database performs as much computation as possible
while delegating computation that requires sensitive data
in cleartext to secure hardware. Haven [12] is a system for
running unmodified applications on an untrusted platform
using SGX. While Haven can isolate the entire database
from the platform, security is predicated on a large trusted
computing base, which includes the database server and the
guest operating system. Haven also does not offer strong
information flow properties. Compared to an on-premises
trusted client, a hardware based approach can potentially
yield better performance due to lower round trip latencies.
A key deficiency of hardware based approaches is that they
are intrusive and cannot be implemented on top of existing
infrastructure. Another shortcoming is that these systems
focus on data confidentiality but do not consider leaks due
to information flow. It should be possible to extend our type
system and partitioning algorithm to target trusted hardware
instead of a trusted client and provide stronger security

11

guarantees.

References
[1] Advanced Encryption Standard. http://en.wikipedia.org/

wiki/Advanced_Encryption_Standard.
[2] Authenticated encryption. http://en.wikipedia.org/wiki/

Authenticated_encryption.
[3] Closure (computer programming). https://en.wikipedia.

org/wiki/Closure_(computer_programming).
[4] Database link. https://docs.oracle.com/cd/B28359_

01/server.111/b28310/ds_concepts002.htm#
ADMIN12083.

[5] Information flows in encrypted databases. http://github.com/
securesql/securesql.

[6] Linked servers. http://msdn.microsoft.com/en-us/
library/ms188279(v=sql.110).aspx.

[7] TPCC Benchmark. http://tpcc.org.
[8] Tsql scriptdom. http://msdn.microsoft.com/en-us/

library/microsoft.data.schema.scriptdom.sql.
tsqlparser(v=VS.100).aspx.

[9] Georgios Amanatidis, Alexandra Boldyreva, and Adam O’Neil. New
security models and provably-secure schemes for basic query support in
outsourced databases. In Proceedings of the International Symposium
on Cryptography, 2007.

[10] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald
Kossmann, Ravishankar Ramamurthy, and Ramarathnam Venkatesan.
Orthogonal security with cipherbase. In CIDR, 2013.

[11] Sumeet Bajaj and Radu Sion. Trusteddb: a trusted hardware based
database with privacy and data confidentiality. In Proceedings of
the 2011 SIGMOD International Conference on Management of data,
pages 205–216, 2011.

[12] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding appli-
cations from an untrusted cloud with haven. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2014.

[13] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neil. Deterministic
encryption and efficiently searchable encryption. In Proceedings of the
International Symposium on Cryptography, 2007.

[14] Stephen Chong, Jed Liu, Andrew C Myers, Xin Qi, Krishnaprasad
Vikram, Lantian Zheng, and Xin Zheng. Secure web applications via
automatic partitioning. In ACM SIGOPS Operating Systems Review,
pages 31–44, 2007.

[15] Cédric Fournet, Jérémy Planul, and Tamara Rezk. Information-flow
types for homomorphic encryptions. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, pages 351–
360, 2011.

[16] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to
play mental poker keeping secret all partial information. In Proceedings
of the Symposium on Theory of Computing (STOC), 1982.

[17] Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. Execut-
ing sql over encrypted data in the database-service-provider model. In
Proceedings of the 2002 ACM SIGMOD international conference on
Management of data, pages 216–227, 2002.

[18] Zhaohui Luo. Coercive subtyping. Journal of Logic and Computation,
9(1):105–130, 1999.

[19] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday Savagaonkar. Innova-
tive instructions and software model for isolated execution. In Work-
shop on Hardware and Architectural Support for Security and Privacy,
2011.

[20] Daniele Micciancio. A first glimpse of cryptography’s Holy Grail.
Communications of ACM, 53(3):96, 2010.

[21] John C. Mitchell. Type inference with simple subtypes. Journal of
Functional Programming, 1(3):245–285, 1991.

[22] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari
Balakrishnan. Cryptdb: protecting confidentiality with encrypted query
processing. In SOSP, pages 85–100, 2011.

[23] Vaughan Pratt and Jerzy Tiuryn. Satisfiability of inequalities in a poset.
Fundamenta Informaticae, 28:1–2, 1982.

[24] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communications,
2003.

[25] Stephen Tu, M Frans Kaashoek, Samuel Madden, and Nickolai Zel-
dovich. Processing analytical queries over encrypted data. In PVLDB,
pages 289–300, 2013.

[26] Dennis Volpano and Geoffrey Smith. A type-based approach to pro-
gram security. pages 607–621. Springer-Verlag, 1997.

12

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Authenticated_encryption
http://en.wikipedia.org/wiki/Authenticated_encryption
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://docs.oracle.com/cd/B28359_01/server.111/b28310/ds_concepts002.htm#ADMIN12083
https://docs.oracle.com/cd/B28359_01/server.111/b28310/ds_concepts002.htm#ADMIN12083
https://docs.oracle.com/cd/B28359_01/server.111/b28310/ds_concepts002.htm#ADMIN12083
http://github.com/securesql/securesql
http://github.com/securesql/securesql
http://msdn.microsoft.com/en-us/library/ms188279(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms188279(v=sql.110).aspx
http://tpcc.org
http://msdn.microsoft.com/en-us/library/microsoft.data.schema.scriptdom.sql.tsqlparser(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/microsoft.data.schema.scriptdom.sql.tsqlparser(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/microsoft.data.schema.scriptdom.sql.tsqlparser(v=VS.100).aspx

	1 Introduction
	2 Threat model
	3 Information flow types for partially homomorphic encryptions
	4 Secure Partitioning
	5 Evaluation
	5.1 TPC-C
	5.2 Employee performance evaluation

	6 Conclusions and Future work
	7 Related Work

