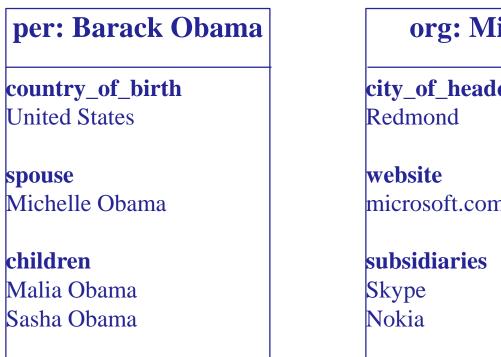


Stacked Ensembles of Information Extractors for Knowledge-Base Population


Raymond J. Mooney Nazneen Rajani, Vidhoon Vishwanathan, Yinon Bentor University of Texas at Austin

Faculty Summit 2015

Knowledge-Base Population (KBP)

- Annual evaluation of relation extraction from natural language documents organized by NIST.
- English Slot Filling (ESF) task:

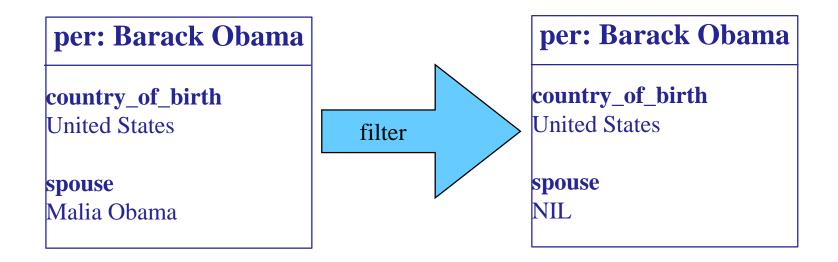
org: Microsoft

city_of_headquarters

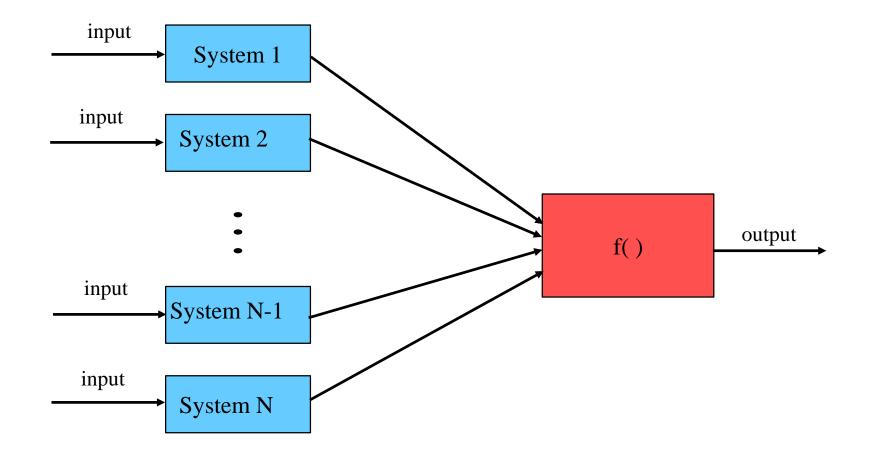
microsoft.com

KBP Provenance

- System's must provide information on where the evidence for each slot fill is in the document corpus.
- Given by:
 - Doc ID
 - Start Offset
 - End Offset

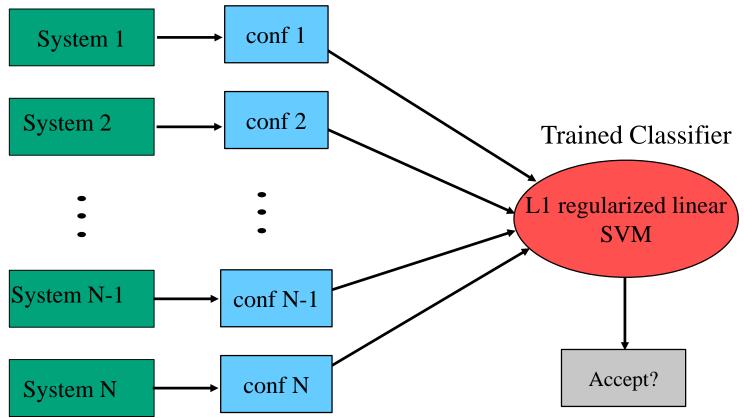

org: Microsoft

<eng-NG-31-1007>: Microsoft is a technology company headquartered in Redmond, Washington, that develops ...

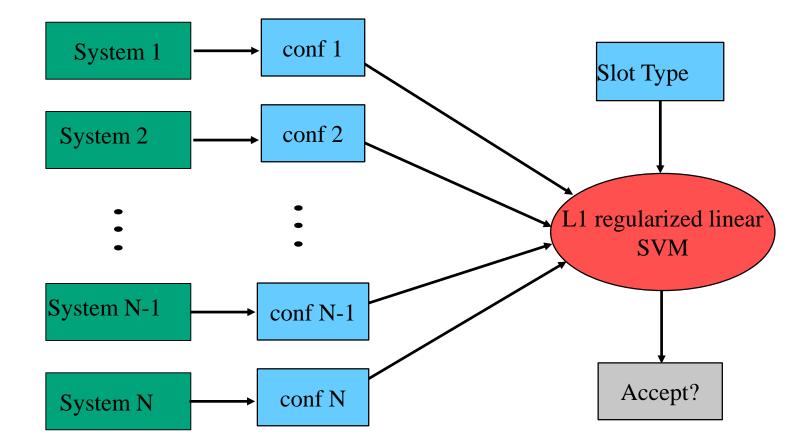

city_of_headquarters Redmond **Doc ID** eng-NG-31-1007 **Start Offset** 48 **End Offset** 54

KBP Slot Filler Validation

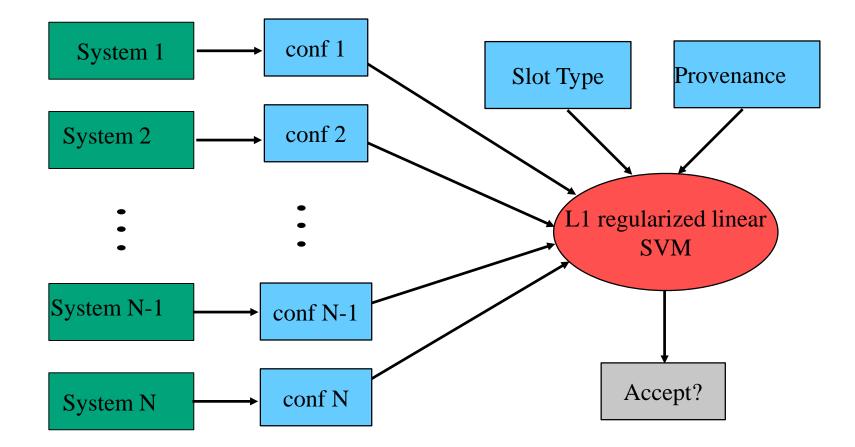
- Aim: Improve precision of individual systems.
- Input is system outputs from the ESF task.
- Output is filtered slot fills.
- Ensembling used to improve recall as well.



Ensembling



Stacking (Wolpert, 1992)


For a given proposed slot-fill, e.g. spouse(Barak, Michelle), combine confidences from multiple systems:

Stacking with Features

Stacking with Features

- For a given query and slot, for each system, *i*, there is a feature DP_i :
 - *N* systems provide a fill for the slot.
 Of these, *n* give same provenance *docid*. *DP_i* = *n*/*N* is the document provenance score.
- Measures extent to which systems agree on document provenance of the slot fill.

- Degree of overlap between systems' provenance strings (prov).
- Uses Jaccard similarity coefficient.
- For a given query and slot, for each system, *i*, there is a feature OP_i :
 - -N systems provide a fill with same *docid*
 - Offset provenance for a system *i* is calculated as:

$$OP_i = \frac{1}{|N|} \times \sum_{j \in N, j \neq i} \frac{|\mathsf{prov}(i) \cap \mathsf{prov}(j)|}{|\mathsf{prov}(i) \cup \mathsf{prov}(j)|}$$

- Systems with different *docid* have zero OP

Datasets

- Ten Common Systems that participated both in 2013 and 2014:
 - LSV
 - IIRG
 - UMASS_IESL
 - Stanford
 - BUPT_PRIS
 - RPI_BLENDER
 - CMUML
 - NYU
 - Compreno
 - UWashington
- 2014 Slot Filler Validation data
 - 17 teams
 - 65 systems

Baselines

• Union

- Combine systems for maximizing recall
- List valued slot fills => always included
- Single valued slot fills => highest confidence
- Voting
 - Combine systems for maximizing precision
 - Vary threshold on #systems that must agree
 - Learn threshold on 2013 data
 - SFV and common systems datasets

Baseline	Precision	Recall	F1
Union	0.067	0.762	0.122
Voting	0.641	0.288	0.397

2014 Slot Filler Validation (SFV) Data

Common systems for 2013 and 2014 ESF task

Approach	Precision	Recall	F1
Union	0.176	0.647	0.277
Voting	0.694	0.256	0.374
Best ESF system in 2014 (Stanford)	0.585	0.298	0.395
Stacking	0.606	0.402	0.483
Stacking + Relation	0.607	0.406	0.486
Stacking + Provenance + Relation	0.541	0.466	0.501

Baseline	Precision	Recall	F1
Union	0.054	0.877	0.101
Voting	0.637	0.406	0.496

2014 Slot Filler Validation (SFV) Data

Common systems for 2013 and 2014 ESF task

Approach	Precision	Recall	F1
Union	0.177	0.922	0.296
Voting	0.694	0.256	0.374
Best SFV system in 2014 (UIUC)	0.457	0.507	0.481
Stacking	0.613	0.562	0.586
Stacking + Relation	0.613	0.567	0.589
Stacking + Provenance + Relation	0.659	0.56	0.606

- Stacked meta-classifier beats the best performing 2014 KBP ESF system by an F1 gain of **11** points.
- Features that utilize provenance information improve stacking performance.
- Ensembling has clear advantages but naive approaches such as voting do not perform as well.