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Abstract
Distributed actor systems are widely used for developing
interactive scalable cloud services, such as social networks
and on-line games. By modeling an application as a dynamic
set of lightweight communicating “actors”, developers can
easily build complex distributed applications, while the un-
derlying runtime system deals with low-level complexities of
a distributed environment.

We present ActOp — a data-driven, application-independent
runtime mechanism for optimizing end-to-end service la-
tency of actor-based distributed applications. ActOp targets
the two dominant factors affecting latency: the overhead of
remote inter-actor communications across servers, and the
intra-server queuing delay. ActOp automatically identifies
frequently communicating actors and migrates them to the
same server transparently to the running application. The
migration decisions are driven by a novel scalable distributed
graph partitioning algorithm which does not rely on a single
server to store the whole communication graph, thereby en-
abling efficient actor placement even for applications with
rapidly changing graphs (e.g., chat services). Further, each
server autonomously reduces the queuing delay by learning
an internal queuing model and configuring threads according
to instantaneous request rate and application demands.

We prototype ActOp by integrating it with Orleans – a
popular open-source actor system [4, 13]. Experiments with
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realistic workloads show latency improvements of up to 75%
for the 99th percentile, up to 63% for the mean, with up to
2× increase in peak system throughput.

1. Introduction
Distributed actor systems [1, 3, 4] are a natural fit for building
online applications with numerous dynamically interacting
objects, like social networks, on-line games and Internet of
Things applications [8, 11]. The actor model was proposed
decades ago to represent concurrent systems as a set of in-
teracting actors, and recently has seen increasing interest
as a convenient framework for developing complex cloud
services. Modern actor systems simplify the design by map-
ping application objects onto lightweight actors which en-
capsulate object state and logic, and dynamically interact
via asynchronous messages. For example, in an online chat
service, every user and chat room can be modeled as an actor.
Importantly, actor systems boost developer productivity by
providing convenient concurrency control, as well as built-in
runtime support for a variety of functionality essential for
developing distributed systems, e.g., Remote Procedure Calls
(RPC) and fault tolerance.

Although actor systems proved convenient for building
complex online services, scaling them to sustain increasing
service demand while maintaining low-latency response
remains difficult. As the number of actors grows, more servers
are added to the system to accommodate the load. Assigning
new actors to servers in a way that simultaneously balances
the load across the servers and ensures low service latency
poses a challenge. Widely used placement policies, e.g.,
in key-value store systems, employ consistent hashing or
random assignment to determine a server for each object
(actor, in our case), which maintains the number of objects-
per-server roughly equal [16, 17, 32]. However, in contrast
to passive objects in key-value stores, actors interact. Thus,
a hash-based or random placement policy might assign such



interacting actors to different servers, which in turn results in
a client request traversing multiple servers. As we show in our
experiments using the Orleans distributed actor system [4],
such remote actor interaction is detrimental to end-to-end
service latency (see §3).

Unfortunately, traditional actor systems like Akka [1] and
Erlang [3] include no mechanisms for automatic system per-
formance optimization, e.g., via locality-aware actor assign-
ment to servers. They provide numerous hooks and configu-
ration options that enable such low-level optimizations, but
leave the implementation to the application developer. For
example, in an online chat service, placing heavily communi-
cating actors on the same server, like a chat room actor and
all its user actors, helps reduce service latency significantly
(as we show in §3). Yet, it is the developer’s responsibility to
identify which actors communicate, how to optimally assign
them to servers, and how to migrate actor instances to their
new physical locations. Moreover, with the inherently dy-
namic nature of object interaction in such applications, e.g.,
joining new users or new chat rooms, the graph of inter-actor
communications is constantly and unpredictably changing.
As a result, achieving low latency requires the developers
to implement continuous runtime monitoring and complex
application-specific mechanisms, complicating the design
significantly.

In this paper we design ActOp, a principled, application-
independent mechanism for dynamic performance optimiza-
tion in scale-out distributed actor systems. ActOp’s techniques
can be implemented by application developers in actor-based
services as a part of the application logic. Yet, they are pri-
marily designed to be integrated into an actor system runtime,
to monitor and automatically adapt to changing application
characteristics transparently to the application. Therefore, we
prototype ActOp by integrating it into the runtime of Orleans
– an open-source actor system used in production by many
cloud-based online services [5].

Our primary goal is to optimize locality of interacting
actors, co-locating them on the same server to reduce the
end-to-end service latency. We model the actor-to-server as-
signment problem as a balanced partitioning of the actor
interaction graph. The solution simultaneously minimizes
communications between the servers while equally distribut-
ing load among them. We design a novel, fully distributed
graph-partitioning algorithm which scales to millions of ac-
tors. The algorithm is specifically tailored to distributed ap-
plications with rapidly changing actor interaction graphs. It
avoids the communication bottleneck of centralized solutions,
in which all actors report to a single controller node that
stores the whole interaction graph. Instead, each server ac-
tively monitors local actors, and performs pairwise exchanges
of updates with other servers, thereby eliminating centralized
coordination and state accumulation entirely. The algorithm
is running continuously and migrates actors across servers
transparently and unobtrusively for the application.

While actor locality optimization improves the service la-
tency in a distributed system as a whole, our profiling shows
unexpected performance degradation of individual servers
when migration is enabled. We find that the root cause lies
in significant fluctuations in the server workload, caused by
shifting actors from one server to another, and as a result, sub-
optimal thread allocation in each server. Specifically, the de-
sign of many high-concurrency servers in general [7, 10, 16],
and Orleans in particular, follows a Staged Execution Design
Architecture (SEDA) [33]. In SEDA, the server internal logic
is represented as a set of stages, each with its own thread pool
and task queue. SEDA proved extremely useful for achieving
stable throughput scaling under load. However, the perfor-
mance is highly sensitive to the number of threads in each
SEDA stage. When actors are migrated to improve locality,
the internal server load shifts from send/receive stages to
application logic stages, calling for dynamic reallocation of
the threads among them to improve server performance.

We design a mechanism that dynamically optimizes the
allocation of threads to SEDA stages. Unlike the previous
heuristic solutions [33], we formulate and analytically solve
the service latency minimization problem using a queuing
model of a SEDA-based Orleans server. We obtain a closed-
form solution that allows to compute the number of threads
in each stage as a simple function of the queuing model
parameters, e.g., the arrival rate to each stage; this enables
low-overhead tuning of the thread allocation at runtime. Or-
leans is instrumented to monitor and record these parameters
in the actual running system, dynamically adjusting the thread
allocation to match the current system load.

We evaluate ActOp using two realistic services imple-
mented on top of Orleans with ActOp : a heartbeat service and
an online gaming service with up to a million actors running
on multiple servers and serving thousands of requests/second.
Our distributed graph-partitioning algorithm reduces the 99th
percentile latency by up to 69% (from 736ms in the original
system to 256ms with the optimization), and the mean latency
by up to 56% (from 41ms to 21ms). Such an improvement in
the end-to-end service latency is crucial for providing satis-
factory user experience in online gaming systems. In a single
server with optimally allocated threads, the 99th percentile
latency is reduced by up to 68% and the mean latency by
up to 58%. Both optimizations together achieve even larger
reductions, up to 75% for the 99th percentile, and up to 63%
for the mean.

Our optimizations improve both latency and throughput
by enabling a more efficient use of system resources. Specifi-
cally, reducing the amount of communication between remote
objects decreases the object serialization overhead, and allo-
cating an optimal number of threads in a server reduces the
OS thread management overhead. The end result is a signif-
icant reduction in the CPU utilization, which not only im-
proves response time, but also doubles peak system through-
put. In summary, our contributions are as follows:
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• We identify excessive remote inter-actor communication
and unoptimized intra-server thread allocation as key
factors affecting latency in actor-based interactive services
(§3).

• We address these issues by formulating a dynamic graph
partitioning problem, and a parameter optimization prob-
lem in a queuing network. We design a novel distributed
algorithm for the former (§4), and offer an analytical
closed-form solution to the latter (§5).

• We integrate ActOp into the Orleans actor system and
show significant improvements in latency and throughput
in realistic distributed applications with up to one million
actors under high load (§6).

2. Background
In this section we briefly describe the actor programming
model and Orleans middleware for distributed actors, high-
lighting the main aspects that we optimize in this work.

Orleans is an open-source .NET-based distributed run-
time based on the actor model [4, 13]. Orleans extends the
functionality of traditional actor systems like Akka and Er-
lang by introducing a novel concept of actor virtualization.
The system automatically instantiates actors on demand, and
fully manages their lifecycle, eliminating the actor manage-
ment burden from application developers. Further, the system
automatically handles hardware or software failures by re-
instantiating the failed actor upon the next call to it.

Actor’s physical location is hidden from the application,
so the runtime may seamlessly migrate actors across servers
while the application is running. Further, actor isolation im-
plies that actors cannot uncontrollably share data, allowing
the runtime to redistribute threads between actors in a trans-
parent way. By raising the level of abstraction, Orleans makes

it possible for the middleware to optimize the system perfor-
mance transparently to the application, a property which we
leverage in this work. Similar ideas are applied in other actor
systems, e.g., Orbit [9] and Azure Reliable Actors [6].
Applications based on actor systems. Developers write
applications in a familiar object-oriented programming style,
and Orleans turns each object into a stateful actor. Method
calls to an actor on the same machine are executed as
Local Procedure Calls (LPC), which involves deep copying
of the arguments to provide full isolation between actors.
Calls to an actor on a remote machine are automatically
translated into Remote Procedure Calls (RPC) via seamless
serialization/deserialization of arguments and return values.
Figure 1 illustrates a communication graph of actors in a
distributed application that spans multiple servers.
Actor partitioning and scale out. Actors are instantiated
and placed randomly on different servers to allow scaling
in terms of request load and number of actors. Orleans
allows to migrate active actors while rerouting RPCs among
servers. Similar mechanisms are employed in other large
scale systems (e.g., Dynamo [16], WAS [15]).
Server architecture. Each server in Orleans handles a large
number of concurrent messages received and sent by the ac-
tors it hosts. Orleans’s programming model utilizes user-level
threads: every actor executes on one user-level thread (Task
in C#). These logical threads are multiplexed on a small num-
ber of physical threads that execute all application logic [13].
Orleans’s internal design follows the well-known Staged
Event Driven Architecture (SEDA) [33] – a popular design
choice for high-concurrency servers, like Apache Camel [7],
SwiftMQ [10] and Dynamo [16]. SEDA represents request
processing as a pipeline of fine-grained stages, with a separate
task queue and a fixed thread pool for every stage. In Orleans
there are three main stages (see Fig. 2): receive message (in-
cluding de-serialization), execute application logic (physical
threads executing logical threads), and send message (includ-
ing serialization). Carefully allocating threads to each stage
is important for server performance, as we elaborate below.

3. Performance Overheads in Orleans
We analyze the performance of a typical actor-model based
distributed application running on Orleans in order to identify
the main factors causing latency degradation.

Halo Presence is an interactive application which imple-
ments presence services for a multi-player game running in
production on top of Orleans. The service allows players to
a) join an existing game, b) discover other players, c) watch
the game live while receiving periodic updates on the game
progress. The service resembles a chat service: games are
chat rooms, and the players periodically broadcast the events
that occur in their view of the game. There are two types of
actors: games and players.

Orleans makes it easy to scale the system to thousands
of games in which millions of players interact in a dynamic
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way. It instantiates actors on demand, distributing the load
across multiple servers transparently to the application. Pro-
grammers are oblivious to the physical location of the actors
and use standard function calls to invoke functions of both
remote and local actors.

Scaling the Halo Presence service, however, introduces
an additional challenge of achieving low latency, because the
service is interactive. Remote clients (real players) query the
server to find out the status of the other players in the game,
and slower response significantly affects user experience.
Building mechanisms to achieve high throughput and low
latency while scaling to millions of actors is the primary
motivation of this work.

Our measurements show that the original Orleans system
fails to satisfy low latency even at a moderate scale. Running
on ten 8-core CPU servers, using 100K concurrent live
players with eight players per game, and a total of 6K client
requests/second (80% of CPU utilization per server), the
median, 95th and 99th percentile end-to-end latency of a
single request is 41msec, 450msec and 736msec respectively
(we further elaborate on our experimental settings in §6).
Such high latency is unacceptable as it gives the perception
of a “sluggish” service. In the following we show that remote
messaging due to the lack of locality between interacting
actors significantly impacts the service latency.
Optimizing actor locality is essential for improving ser-
vice latency. Each server sustains on average 600 client re-
quests per second at 80% CPU load, which seems low given
the I/O bound nature of the service requests. However, the
total actual number of requests handled by each server is
substantially higher, and is dominated by the actor-to-actor
communications between the servers.

In Halo presence, each player actor sends one message
to its game actor that broadcasts it to the 8 players, who in
turn respond back. Thus, each client request results in 18
additional messages sent across the actors. Since Orleans
assigns actors to servers at random to avoid hotspots, the vast
majority of actor-to-actor interactions cross server boundaries.
This is consistent with our finding that≈ 90% of all messages
between actors are remote. Consequently, the number of
requests handled by each server is more than an order of
magnitude higher than the number of external client requests.

Accessing remote actors is an essential part of any dis-
tributed actor-based middleware, however it incurs significant

latency and server load overheads. To understand why, we
compare the (simplified) execution flow of a remote actor
call (dark shapes) and a local actor call (white shapes) in
Figure 3. A remote call involves several costly extra stages:
after the server processes the request (Compute 1), it serial-
izes the arguments and forwards the request to another server
(Send 1), which deserializes (Recv. 2), processes (Compute
2), and serializes and sends the results back (Send 2). A local
call does not require the serialization/deserialization steps
and invokes the compute stage directly (enqueues a request
for execution for Compute 2). Consequently, request latency
decreases and effective server throughput increases if the
requests are handled only by local actors.

To evaluate the potential benefits of actor locality for
system performance, we invoke the same workload with 100K
concurrent players, but now with most of the communicating
player actors co-located on the same server. We observe
that the median, 95th and 99th percentile latency reduce to
24msec, 100msec and 225msec respectively – a significant
improvement in system performance.
Static actor assignment is insufficient. The Halo presence
application is a classic example of a modern social appli-
cation with highly dynamic actor interaction graph. Clients
may leave and join games, and engage in interaction with
other clients located on other servers at arbitrary times. There-
fore, any static actor placement policy which optimizes the
placement for a particular actor interaction graph would even-
tually lead to a similar amount of remote interactions (such
as the random policy evaluated here), since the communica-
tion graph changes and the static initial placement becomes
invalid after some time.

None of the static built-in policies in Orleans is sufficient
to achieve both load balancing and communication locality.
Consider, for example, a local placement policy, in which an
actor is instantiated and placed on the server where it was
first called. Subsequent calls from other, potentially remote
actors, will be performed as RPC calls. This policy works
well when the callee actor is exclusively owned by the caller
actor, however it fails to capture many other scenarios. For
example, if the first caller happens to rarely interact with
the callee later, collocating them on the same server results
in excessive network communications because subsequent,
more frequent callers may reside on other servers.

Another notable disadvantage of the local placement
policy is that it might lead to a skewed and unbalanced actor
distribution across servers, which is an impediment to system
scale up. Thus, Orleans is by default configured with a simple
random placement policy, which chooses the server for a new
actor uniformly at random. While this policy forgoes the
actor locality, it achieves good load balance and throughput
scaling.
Server thread allocation must be optimized. The impor-
tance of thread allocation in SEDA-based high-concurrency
servers and its impact on system throughput was studied in
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the past [33, 34]. Here we present experimental results show-
ing the significance of thread allocation for service latency.
We analyze the lifespan of a client request on a single Or-
leans server. We run a simple counter application where in
response to a client request an actor increments a counter. We
invoke 15K requests/sec on 8K actors. Figure 4 shows the
average latency a request spends in SEDA stages and queues
described in §2. We use the default thread allocation policy
in Orleans : a thread per stage per CPU core. We profile a
request from the moment it arrives until it leaves the server.

Queuing delay dominates the end-to-end latency, and by
far exceeds the network latency, as well as processing time
in each stage. This is a symptom of an incorrect allocation
of threads across the stages. Indeed, Figure 5 shows a heat
map of the median service latency under different thread
allocations with the same workload. In the figure, workers
refer to the application threads, senders refer to the threads
performing serialization and sending of the results. Thread
allocation policy drastically affects the end-to-end latency:
the worst-performing allocation (8 workers, 6 senders) results
in 4× higher latency than the best-performing allocation (2
workers, 3 senders). Notably, the default configuration used
in Orleans (8 workers, 8 senders for an 8-core machine in
our case) is among the worst-performing configurations.
Combining thread allocation and locality optimization is
necessary to achieve high performance. Dynamically op-
timizing actor locality and thread allocation together has a
greater effect on the end-to-end latency than the effect of
each optimization separately. There are two complementary
performance benefits of placing communicating actors on a
single server. First, doing so will directly reduce the latency
of individual client requests that involve multiple remote ac-
tors. Unlike local actor-to-actor interaction, remote messages
traverse server queues where they suffer from per-message
delays. Beyond that, a second latency improvement is ex-
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pected for all the requests handled by each server, because of
fewer remote messages per server, hence lower CPU load.

Unfortunately, this second performance benefit will not
materialize if the thread allocation is not dynamically
adjusted to the changing server workload. Servers opti-
mized for remote messaging allocate more threads to the
send/receive stages; recall that these stages perform serial-
ization/deserialization and therefore are CPU-intensive. As
a result of better actor locality and fewer inter-server inter-
actions, these stages become underutilized, while the actor
logic execution stage may get overloaded and become the
bottleneck. Consequently, the service time of a request in a
single server will grow, instead of the expected improvement.

The above analysis leads us to the design of an online
optimization framework that constantly monitors server per-
formance and actor communications and quickly adapts to the
highly dynamic nature of actor-based applications at scale.
The scalable actor partitioning and live migration mecha-
nism we describe in §4 strives to optimize the placement
at runtime transparently to the application. At each server,
dynamic re-allocation of threads to server stages is achieved
via a model-driven thread allocation mechanism (§5); the
mechanism monitors internal server performance metrics,
and reallocates the threads to achieve lower service latency.

4. Locality-Aware Actor Partitioning
We present a mechanism for dynamic actor partitioning with
the objective of reducing inter-server communications. We
start by formulating the optimization problem. We then de-
scribe our distributed algorithm (§4.2), and highlight impor-
tant implementation details (§4.3).

4.1 Actor assignment as balanced graph partitioning
We consider a system where interacting actors are partitioned
across multiple servers. We model such a system as a graph,
where each actor is a vertex, and each edge is an interaction
between the respective actors. The edge weight reflects the
overall cost of interaction, e.g., frequency and amount of
transferred data in each interaction.

Our solution needs to simultaneously satisfy the following
goals: (1) balanced partitioning of actors across the servers
to avoid hot-spots and overloaded servers to provide high



system throughput; (2) co-locating frequently interacting ac-
tors on the same server to reduce inter-server communication.
We formulate these goals as a balanced graph partitioning
problem: Given n available servers, we seek to partition the
graph vertices into n disjoined balanced sets such that the
sum of edge weights crossing the partitions is minimized.

Formally, let V be the set of vertices, and define Vp as
the subset of vertices located at server p, i.e., Vp ⊆ V and
Vp ∩ Vq = ∅ (we disallow actor replication, so an actor
may reside on one server only). We denote by wv,u ≥ 0 the
weight between any pair of vertices v and u; the weight is
proportional to the average number of messages sent from v
to u (see §4.3 for details on how this average is determined).

The total communication cost C is given by

C =
∑

{v,u:v∈Vp,u∈Vq,p6=q}

wv,u.

The goal is to find a new partition V ′1 , V
′
2 , ..., V

′
n, ∪iVi =

∪iV ′i , such that the total cost C is minimized. As mentioned
above, the new partition should be balanced, namely

∣∣|Vp| −
|Vq|
∣∣ ≤ δ for any servers p and q, where δ is an imbalance

tolerance parameter.
Assumptions. For the sake of presentation we assume that
all actors consume a similar amount of memory and compute
resources on each server. This assumption is realistic for the
applications we consider, because the actors used are usually
lightweight and rarely compute-bound (since they require fast
response time). Further, because the actors are lightweight
and fine-grained, and their per-actor state is small (relative
to a state of a whole process, for example), we assume that
the overhead of migrating actors to another machine is low,
and do not explicitly model it in our optimization. We briefly
discuss in §4.2 possible algorithmic extensions that explicitly
consider actors of different sizes and migration overheads.
Although we do not explicitly incorporate migration costs in
our current formulation, we recognize that massive reshuf-
fling of actors across machines is undesirable in real systems.
Thus, our algorithm limits the number of migrated actors at
any exchange between the servers (see §4.2 for details).
Design alternatives. The main design goal is to allow the
partitioning mechanism to support rapidly changing graphs
with millions of vertices.

One notable design option is to store and process huge
graphs on a single server (e.g., using GraphChi [23] or similar
graph processing frameworks). However we rule out such a
centralized design primarily due to its poor scaling. Solving
the graph partitioning problem exactly for large graphs is
prohibitively slow, even when using linear-time heuristics.
Our attempts to solve the partitioning problem instances of
representative sizes of tens of servers and a few millions
of actors (graph nodes) with METIS [20], the well known
and de-facto standard library of graph algorithms, required
several hours to finish. Moreover, simply collecting all the
data in one location while accommodating the high rates
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Figure 6. Visualization of the steps for the pairwise coordi-
nation protocol detailed in Alg. 1.

of actor graph updates becomes a performance bottleneck
and does not scale. For rapidly time-varying actor graphs,
e.g., about 1% of all the edges changing every minute as in
the Halo presence example, the messaging and processing
overheads of a centralized solution result in an unacceptable
delay, making the outcome of the partitioning algorithm likely
to be obsolete by the time it finally becomes available.

On the other hand, we rule out a fully distributed approach
in which servers migrate actors unilaterally based on their
local views of the actor graph. While this approach would
scale for large graphs, it may result in highly unbalanced
partitions: a given server might overload neighboring servers
because it is oblivious to their actual load that depends also
on migrations from their other neighbors. Second, unilateral
migrations might by inefficient. For example, a “heavy”
communication edge between two actors u ∈ p and v ∈ q,
might trigger p sending u to q and q sending v to p around the
same time. We, therefore, seek a solution that is as scalable
as the uncoordinated approach, but provides better precision.
In this context, we point out that the algorithm we present
next is inspired by the distributed solution proposed in [30].
However, there are two fundamental differences. First, the
algorithm in [30] operates under static graph conditions.
Second, our algorithm employs batching at a server level,
while [30] operates on a vertex-by-vertex basis (actors in
our case), which limits its scalability for the graph sizes we
consider.

4.2 Distributed partitioning algorithm
Our algorithm relies on distributed coordination between
pairs of servers.
Pairwise coordination protocol. Every server p maintains
the list of edges from the vertices of p to other vertices in
the system. The pairwise protocol is invoked independently
and periodically by each server. In each round, a server p
initiates an exchange procedure described in Algorithm 1
and illustrated in Figure 6. p calculates the candidate set
S ⊂ Vp for every server (as described below) and picks the
server q with the best candidate set. q (and corresponding
S) is chosen according to the cost reduction anticipated by
p. q may completely reject the whole exchange operation
or accept it partially. It rejects the operation if it has been
recently involved in another exchange (in our experiments,



1: Server p sends an exchange request to server q along with a
candidate set of actors S
if q exchanged recently then

q rejects p’s request
else

2: q determines a candidate set T that may be sent to p
3: q determines the subset S0 ⊂ S of accepted actors from p,

and the subset T0 ⊂ T of actors to be transferred to p

4: q transfers subset T0 to p, and notifies p on accepted set S0

5: p accepts the subset T0

end if
Algorithm 1: Pairwise coordination protocol. Server p initi-
ates an exchange request to server q

the exchange is rejected if a previous exchange took place
less than a minute ago). If q rejects the exchange, p attempts
an exchange with a remote server which would lead to the
second best cost reduction, and proceeds until some server
accepts the exchange request or until all servers with positive
cost reduction reject it.

Assume that q accepts the exchange request. q then in-
spects the candidate set S, and decides which subset to accept
(denoted S0), and which of its own actors it should send back
to p (denoted T0). We note that q may decide to reject some
or even all of the vertices in S, if those do not reduce its own
cost. This could happen since the graph may have changed
since p collected the information based on which it formed
S, or because p operated on a partial sample of the commu-
nication graph which produced inaccurate edge estimates.
As we elaborate below, the exchange should also adhere to
the balancing constraint. We next explain how the candidate
sets are chosen, and how the remote server q determines the
exchange subsets S0 ⊂ S and T0 ⊂ T .
Determining the candidate set. For every local vertex v and
remote server q, p calculates a transfer score Rp,q(v), which
is the cost reduction expected in p from migrating v to q. The
transfer score is computed as the sum of weights of all v’s
edges that used to be remote (and will be local after migration)
minus all the edges that used to be local (and will be remote
after migration). Formally,Rp,q(v) =

∑
u∈Vq

wv,u−
∑
u∈Vp

wv,u.

pmaintains a candidate set of k vertices with the highestRp,q
found so far. The candidate set contains a small fraction of the
total number of vertices in p, which corresponds to limiting
the number of actor migrations as explained in Section 4.1.
After all transfer scores are computed, p picks the server that
has the highest total transfer score which is the sum of the
transfer scores of all the vertices in the candidate set.
Determining exchange subsets. Recall that q receives a set
of candidate actors S from p. From this point on, it is q who
will make the decisions: which subset S0 ⊂ S to accept, and
which subset of actors T0 it will transfer to p. First, q picks
a candidate set T of its own actors which can be potentially
transferred to p, in the same way as p picks S, so that at

this stage q still ignores the potential consequences of taking
actors from S. After T is determined, q has to determine
S0 ⊂ S and T0 ⊂ T . This is a balanced graph-partitioning
problem, which is known to be NP-hard. While logarithmic
approximations to the problem do exist, e.g., [12, 24, 29], the
underlying algorithms are difficult to use in practice, as they
require solving an LP/SDP or huge packing problems.

Instead, we design an iterative greedy procedure which
jointly determines S0 and T0 while adhering to the balancing
constraint. Initially q constructs two sorted max-heaps, such
that each heap stores the transfer scores of the vertices in
S and T respectively. In each iteration step, q chooses the
candidate vertex with the highest transfer score among all
vertices. If the vertex migration would violate the balance
constraint between q and p, the algorithm chooses the highest-
scored vertex from the other heap. The selected vertex v is
marked for migration and removed from the respective heap.
q then updates the scores of all the remaining vertices in both
heaps to reflect the migration of v. The algorithm proceeds
until both heaps are empty or no more vertices can be moved
due to the balancing constraint.
Computational complexity. Let V be an upper bound on
the number of vertices in any server; recall that k is the
size of the candidate set, and n is the total number of servers.
Straightforward analysis yields that the running complexity of
each pairwise interaction is O(nV log k+k2). The dominant
factor is V , implying that the complexity is practically linear
in the number of vertices in the server. We note that V
becomes effectively much smaller than the total number of
vertices once edge-sampling is incorporated (§4.3), making
the protocol tractable in practice.
Stability. We next provide a basic stability result for our
algorithm for a static communication graph.

Theorem 1. Let G = (V,E,W ) be any weighted graph.
Alg. 1 (applied onG) converges to a locally optimal partition1

after finitely many executions, with probability one. Moreover,
the resulting partition satisfies ||Vp| − |Vq|| ≤ δ for every
pair of servers p, q.

The theorem follows by showing that the overall commu-
nication cost decreases monotonically with every migration.
Indeed, if a vertex v is chosen to be migrated, it is only be-
cause its transfer score sv is positive. We omit a detailed
proof for brevity. Note that convergence cannot be theoret-
ically guaranteed when the graph is dynamic and practical
adjustments are incorporated to the algorithm (such as edge
sampling). Nevertheless, the above result indicates that the
algorithm targets a low-cost and balanced solution. In our ex-

1 A locally optimal partition of G = (V,E,W ) is a partition of the vertices
into servers, i.e., ∪pVp = V , Vp ∩ Vq = ∅ ∀ p 6= q, such that for each
pair of servers p, q: every vertex in Vp ∪ Vq either has a negative pairwise
transfer score, or has a positive pairwise transfer score but moving it to the
other server violates the balance constraint between p and q.



periments, we empirically show that the algorithm is indeed
stable (Fig. 10(a)).
Discussion. The algorithm is designed to operate using only
a partial and potentially outdated communication graph avail-
able at each server. We also considered a simpler version
of the algorithm which performs only one-sided updates,
namely, in every iteration a server migrates the vertices with
the highest transfer score without any coordination. In our
experience, however, this simple algorithm converges much
slower, and results in higher inter-server communication and
higher imbalance between servers. Therefore, we introduce
the pairwise interaction to speed up convergence, and make
both servers exchange their high-score vertices while main-
taining the load balancing constraint.

As mentioned earlier, our algorithm can be extended to
accommodate different actor sizes and migration overheads,
as follows. To explicitly consider migration costs we add
a term to the transfer score Rp,q(v), which is inversely
proportional to the actor size. Similarly, we limit the size
of the candidate set by the sum of sizes of all actors, and
accordingly set the imbalance tolerance δ to represent the
allowed imbalance in total size (rather than in number of
actors). The evaluation of these extensions is outside the
scope of this paper.

4.3 Implementation details

Edge sampling. We target very large graphs with millions
of vertices and tens of millions of edges. Although it may be
feasible to store the entire graph on a single server, e.g., using
an efficient sparse format [23], storing and calculating all
edge statistics in our context is unnecessary. The important
observation here is that “light” edges would not contribute
to the final partitioning, since our algorithm exchanges only
small candidate sets in order to minimize communication
and computation overheads. Therefore, we store only the
“heaviest” edges. Specifically, every server p maintains a list
of heavy edges from the vertices of p to other vertices in the
system. This is a partial list that includes edges with large
weights, which are determined by using the Space-Saving
sampling algorithm [26]. Space-Saving is a stream sampling
algorithm, and we apply it to the stream of edges observed by
a server. The server maintains a constant-size list of the top
heaviest edges, which is sufficient to execute our partitioning
algorithm.
Gathering edge statistics. We initially used a global con-
current data-structure to maintain communication statistics
for each edge. This approach led to a significant latency over-
head due to lock contention. Instead, we keep the relevant
counters locally at each actor, and periodically update the
global graph data-structure by traversing all the actors from a
single thread.
Transparent actor migration. Orleans has a number of
useful features which simplify the implementation of actor
migration. First, actors in Orleans have no notion of loca-

tion, therefore from the user perspective the migration is
transparent. Second, Orleans provides an efficient activa-
tion/deactivation mechanism which maintains actor’s state
across activations between different servers. We take advan-
tage of these features in our implementation as follows.

Suppose we migrate actor A from server p to server q. p
deactivates A by updating a distributed placement directory.
The new placement is now driven by the subsequent messages
to A, as follows. Both p and q track in their own location
cache that actor A should be placed on server q. If the
next message to A comes from p or q, those servers check
their location cache and place the actor on q. Otherwise,
it will be placed on the server which originated the call.
Since the decision to migrate A to q was based on the fact
that a high percentage of messages to A came from q, it
is likely that the next message to A will originate from q.
Intuitively, we probabilistically guarantee that A is placed
in the “right” server. This working assumption is verified in
our experiments (§6). This opportunistic migration allows us
to avoid global coordination which comes with significant
overhead. Old cached location values are evicted in order to
maintain low space overhead at each server.

5. Latency-Optimized Thread Allocation
We consider a server design that follows SEDA, as described
in §2. Our goal is to minimize the server response time by
determining the number of threads in each SEDA stage as a
function of load and processing characteristics. We seek a
low-overhead solution that allows to quickly recompute the
allocation in response to time-varying workload patterns.

5.1 Design alternative: queue-length based control
Previous work on SEDA-based servers introduced a queuing-
theoretic model of the system [33, 34]. However, we are not
aware of any work that directly uses a latency-related for-
mulation to optimize thread allocation. References [33, 34]
use the length of the queue for each SEDA stage to estimate
the stage load. They dynamically allocating more threads to
stages with long queues (defined with respect to a queue-
length threshold) and de-allocate threads from stages with
empty queues. This approach may work well in some scenar-
ios, but has some drawbacks. First, it does not define how to
set the queue thresholds, which turns out particularly chal-
lenging under the need to support diverse applications and
workload characteristics in our framework. More importantly,
it is prone to allocation fluctuations, because queue lengths
respond in an extremely non-linear fashion to addition of
capacity via threads, depending on how close the load is to
the capacity, as we elaborate below. The main problem is that
even with minor (±1) fluctuations in the thread allocation,
the service latency may increase dramatically, e.g., increasing
by over 35% when shifting from 2 worker threads to 3 (see
Figure 5).
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Figure 7. Six stage SEDA with threads allocated based on queue lengths.

To further investigate the queue-based approach, we build
a SEDA emulator with 6 stages and conduct a thread alloca-
tion experiment based on queue lengths. Our queue-based
controller samples the queue of each stage every 30 seconds.
Any stage with a queue-length greater than Th requests has
its threads increased by one, while every stage with a queue-
length less than Tl requests has its threads decreased by one
(never going below one thread). Th and Tl are configurable
parameters of the controller. We note that this queue-length
based controller is similar to the one proposed in [34].

Figure 7(a) shows the results with Th = 100 and Tl = 10.
Most stages have virtually empty queues, while the queues
of bottleneck stages grow until the queue-length threshold
is reached. At this point thread allocations change and as a
result the queues flip, as shown in Figure 7(b). Overall, we
observe significant fluctuations in queue lengths and thread
allocation. Experiments with different values for Th and Tl
yield similar behavior.

This behavior can be intuitively explained using queu-
ing theory. In the M/M/1 queue model, the average queue
length is ρ

1−ρ . ρ is defined as the arrival rate divided by the
service rate, and represents the proportion of available re-
sources that a stage has. When ρ is small (service rate is high,
many free threads), differences in ρ do not affect the average
queue length much: the queue is almost empty. Only when
ρ approaches 1.0 (arrival rate approaches service rate, not
enough threads) the queue length grows dramatically. The
function ρ

1−ρ is nonlinear in ρ (hence nonlinear in the number
of threads), and becomes steeper as ρ approaches one. Con-
sequently, it is hard to smoothly control queue lengths. We
can indeed observe from Figure 7 that small changes in the
number of threads cause large fluctuations in queue lengths.

Unlike this simple iterative heuristic approach, we choose
to leverage the queuing model directly to formally define
a latency minimization problem parametrized by the actual
system parameters we measure at runtime. We are interested
in a robust solution which will simultaneously determine the
thread allocation for all stages, hence will be less prone to
allocation fluctuations.

We find a closed-form solution (§5.3) and use it to peri-
odically re-compute the latency optimal thread allocation as

a function of instantaneous system load. Doing so poses the
challenge of inferring the values of model parameters which
are not directly measurable. We describe how we estimate
these values in §5.4.

5.2 Problem statement

The model. As described in §3, the SEDA design splits the
service request processing into a set of fine grain stages. Each
stage has a queue of events that are processed by threads from
a thread pool dedicated to the stage (Figure 2). To summarize
the terminology, a SEDA server receives a service request, the
request triggers the internal processing of events, and once all
the processing is done, the server may generate a response.

We now provide a formal description of the optimization
model; see Table 1 and Figure 8 for a summary of notations.
Consider a SEDA server with K stages, i = 1, 2, ...,K. A
request may enter/exit the server at any of these stages. A
stage may process and pass an event to the next stage, or du-
plicate, drop, or merge requests. The workload characteristics
are modeled using the following parameters. Each stage i has
arrival rate λi, determined by extraneous arrivals to stage i
as well as arrivals to stage i from other stages. Each stage i
also has its own service rate µi for processing events. The
service rate is µi = ti× si, where ti is the number of threads
allocated to stage i and si is the service rate per thread. Each
thread in stage i is assumed to consume βi proportion of a
processor when actively processing events. The remaining
proportion (1 − βi) captures the processing time that waits
on synchronous calls (usually synchronous I/O). The total
number of processors at the server is denoted by p.
Objective. Our framework adjusts the per-stage thread
allocation to optimize an underlying performance objective,
which in our case is to minimize latency - the total time that
a request spends at the server.
Handling synchronous blocking calls. In addition to work-
loads (types of events in the stage) that fully utilize the al-
located CPU we support workloads that issue synchronous
blocking calls (such as synchronous I/O)2.

2 Although Orleans itself promotes using only asynchronous I/O, we have
run into multiple situations where application code has to use some legacy



Figure 8. An illustration of a single stage in a SEDA server.
The gray boxes represent incoming events.

Table 1. SEDA Model Notation
Notation Description

K Number of stages
λi Arrival rate of events at each stage i
µi Service rate of events at stage i
ti Threads allocated at stage i
si Service rate per thread at stage i
βi fraction of processor used per thread at stage i
p Number of processors at server

As a result, processing a single event within a stage
may involve both time performing computation (denoted by
xi), and waiting for synchronous call (denoted by wi). For
those workloads allocating threads proportionally to CPU
requirements only would be suboptimal. More formally, the
stage’s service rate per thread is si = 1

xi+wi
. Consider two

stages i and j with λi = λj , xi = xj and wi > wj . Since i
waits longer for the synchronous call, we have si < sj , and
our solution will need to allocate more threads to stage i to
balance out the effective CPU usage of the stages.

5.3 Latency measure and optimization

Latency measure. We first define an appropriate latency
measure for each queue/stage. We choose the M/M/1 latency
function given by 1

µi−λi , where λi is the arrival rate to queue
i and µi is the service rate of the queue. We then use the
weighted average of this per-queue latency across all the
queues, i.e.,

1

λtot

K∑
i=1

λi
µi − λi

, where λtot =
K∑
i=1

λi, (1)

as a proxy for the end-to-end latency. This expression is
known as the expected end-to-end packet delay in a Jackson
queuing network [14], i.e., where extraneous arrivals to the
network arrive according to Poisson processes, face expo-
nentially distributed service times, and undergo independent,
probabilistic routing at the queue outputs. We emphasize that
we use the M/M/1 latency function as a plausible measure
for representing latency, although the underlying traffic is
not necessarily Poisson. Furthermore, though the end-to-end
latency of a request depends on the actual topology of the
network of queues, we consider a weighted sum of per-queue

library which uses synchronous I/O. Rewriting/upgrading such a library
is sometimes not an option. In addition, the runtime itself may sometimes
use synchronous calls. We therefore support synchronous I/O in our SEDA
controller.

latency metrics for simplicity and tractability. Such approx-
imations have been used for computer networks [14], and
also for SEDA modeling [34]. Our evaluation (§6) shows that
solving for the proxy problem results in solutions that are
effective in reducing both mean and high percentile latency.
Incorporating multithreading overheads. The function
(1) serves as a proxy for latency; however, it does not model
overheads incurred when a large number of threads are
employed. Each thread imposes additional latency due to the
increased overhead of context switching. One way to model
this overhead is to assume that the service rate per thread
decreases with the total number of threads. This can formally
be accomplished by replacing the assumption siti = µi

with a more general model, gi

(
ti,
∑
j

tj

)
= µi, where

gi(x, y) is a function which increases in x and decreases
in y. This approach is impractical in our context because of
the difficulty in modeling the functions gi, and also since the
resulting optimization problem might become complex due
to the nonlinear behavior of gi.

Instead, we incorporate multithreading overheads by

adding a penalty or regularization term η
K∑
i=1

ti to the original

latency cost function, where η is a suitably chosen positive
constant with units of [time/threads]. The effect of the reg-
ularization is to promote solutions that favor fewer threads
in total; a similar form of penalty has been used in [34]. In
practice, we set η as follows – we calibrate the initial value
by tuning the model on workloads with known optimal con-
figurations. We then perform a local search around that value,
and choose the one yielding the best latency results.
Optimization problem for latency minimization. Incorpo-
rating the penalty term into the end-to-end latency measure
results in the following optimization problem:

minimize
{ti}

1
λtot

K∑
i=1

λi
µi−λi + η

K∑
i=1

ti (∗)

subject to µi ≥ λi, ∀i = 1, ...,K,
siti = µi, ∀i = 1, ...,K,∑

i

tiβi ≤ p.

The first constraint ensures that each stage services events at
least as fast as they arrive. The second constraint captures the
relationship among the number of allocated threads and the
associated service rates. The final constraint ensures that the
available resources at the server are not exceeded.
Solution. Appealingly, (∗) yields a closed-form solution
under plausible assumptions on the input. Formally,
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Figure 9. Time breakdown for processing one event. The
width of each box represents the time elapsed while the entire
width represents the wall-clock time for processing the event.

Theorem 2. Suppose the system is feasible, i.e.,
K∑
i=1

λiβi
si

<

p; let ζ := 1
λtot

 K∑
i=1

βi

√
λi
si

p−
K∑
i=1

λiβi
si

2

. Then if η ≥ ζ, the solution

to (*) satisfies ti = λi
si

+
√

λi
λtotηsi

for every i.

The proof follows from the first-order optimality condi-
tions of the Lagrangian of (∗) and is omitted for brevity. The
condition η ≥ ζ is guaranteed to be met under plausible
choices of η3. For alternative cases where this closed form so-
lution does not apply, the problem (∗) is convex and can still
be solved efficiently via standard gradient methods. Observe
that the number of threads is proportional to the ratio be-
tween the stage arrival rate λi and the service rate per thread
si. Since si = 1

xi+wi
the allocation takes into account both

the CPU execution time and blocking time, as required.

5.4 Estimating model parameters from Orleans
runtime measurements

The parameters required by our optimization framework of
§5.3 are K, p, λi, si, and βi. The values of K and p are
directly obtained from the available information about the
stages and server hardware. The other parameters would
pertain to time averages, which are periodically updated using
the latest measurements. The arrival rates λi can be deduced
by averaging counts of the rates of requests and events. The
parameters si (service rate per thread) and βi (processor
usage consumed per thread) cannot be directly measured
– estimating their values requires careful measurements of
events and related quantities, as we elaborate below.

To illustrate the difficulties involved in measuring si and
βi, let us look at what happens as a single event is processed
at a given stage i. As depicted in Figure 9, processing a
single event involves the time performing the computation on
the processor (xi), waiting for synchronous calls (wi), and
remaining in a ready state in an operating system scheduler
until a processor is available (ri). The wallclock time zi is
the sum zi = xi + wi + ri. By definition, si = 1

xi+wi
and

βi =
xi

xi+wi
.

3 E.g., for high load,
[
p −

K∑
i=1

λiβi
si

]
�
[ K∑
i=1

βi

√
λi
si

]
; consequently

ζ � 1 and the condition holds for most values of η.

Measuring zi and xi. The wallclock time zi can be obtained
by reading fine-grained system time before and after process-
ing each event. We track the CPU time xi by reading the
cycle counter before and after each event and converting the
cycle count to time based on the processor frequency. Alter-
natively, zi and xi can be measured via a fine-grained event
tracing system like Event Tracing for Windows (ETW) [2], if
available.
Estimating si and βi. To obtain si and βi we require the
waiting time wi. For a system without any synchronous
calls, wi = 0 for each stage. When the source code is
available, wi can often be measured directly. However, for
the vast majority of production systems we cannot explicitly
measurewi because it requires knowing and measuring all the
synchronous calls it uses, which may be hidden in the library.
Alternatively, wi can be obtained on platforms that provide
a direct OS support for measuring I/O blocking time (such
as ETW [2]). Nevertheless, we wish to develop a scheme for
estimating blocking time that is more versatile and requires
no direct OS support.

Our scheme proceeds as follows. Instead of estimating
wi, we estimate a related parameter, ri, based on other
available measurements. With zi and xi at hand, estimating
ri leads to estimations of si and βi (see Fig. 9). We start by
assuming that there exists a stage without any synchronous
calls, as is common for a subset of stages in our workloads.
For such a stage i, we know that βi = 1 and thus ri =
zi − xi. To estimate ri for each synchronous stage we
make the assumption that ri

xi
=

rj
xj

, α for all i, j4. We
estimate α from all the stages without wait times. Formally
let S0 be a subset of stages without wait times. Then, α =( ∑
i∈S0

zi−xi
xi

)
/|S0|. We can now obtain rj for every stage j

via rj = αxj . With rj at hand si = 1
zi−ri and βi = xi

zi−ri .

6. Evaluation Results
Testbed. The experiments are performed on a cluster of 10
servers, each with AMD 2x4 2.1 GHz Opteron processors,
16GB of RAM. All servers run 64 bit Windows Server 2008
R2 and .NET 4.5 framework. We use 15 additional frontend
servers to generate client requests.

6.1 Optimized actor partitioning
We use the Halo Presence application (see §3) to evaluate the
efficiency of ActOp’s actor partitioning optimization. Halo
Presence is a representative of many applications like social
networks, with extensive interaction between clients.
Workload. Our goal is to create a challenging, realistic work-
load with a high rate of change of the communication graph,

4 We assume that the proportion between ready time and compute time is
approximately the same for all threads. This holds for all fair OS schedulers
that allocate CPU proportionally to how much a thread waits in a ready state.
The longer the thread waits, the higher its priority becomes and the more
CPU it gets.



and load the system to achieve a typical CPU utilization per
server that we observe in production.

We target an average of 100K concurrent players in the
system. Players looking for a game are placed into a game
pool of 1000 idle players. 8 players are chosen at random
to play a game together. The duration of a game is chosen
uniformly at random between 20 and 30 minutes, reflecting
typical game duration. A player may play three to five games
before leaving the system. After completing a game, the
player returns to the pool of idle players to find the next game.
Each player stays in the system 100 minutes on average. To
reach 100K concurrent players, new players arrive following
a Poisson process with rate of 100K

100 players per minute.
This workload results in a change rate of about 1% of the
communication graph (both edges and nodes) per minute.

Clients issue status requests about random players. We
run the system under three different loads: 2K, 4K and 6K
requests/second. The highest request rate results in 80% of
CPU utilization on the servers using the baseline random
partitioning. Increasing the CPU utilization beyond this
threshold is avoided in production systems to accommodate
unexpected load bursts. We collect a total of 7.5, 15 and
22.5 million latency measurements for each request rate
respectively. We record all end-to-end latencies as observed
by the clients. The experiment duration is one hour, and
includes thousands of games and millions of requests.
Baseline. We partition actors randomly across servers, which
is the default policy in Orleans (see §3). The baseline system
performs no migrations during execution, whereas ActOp mi-
grates actors according to the distributed graph partitioning.
Steady state measurements. We evaluate the end-to-end
client latency when the system is in a steady state. We
consider the system to reach a steady state when it learns
the underlying communication graph and finalizes the initial
round of migrations of all the actors accordingly. All the
changes in the communication graph from that moment
on are due to the games and players joining at random
times, and therefore reflect the target graph change rate of
the experiment described above. In contrast, the behavior
of the system when a benchmark is started is equivalent
to the case where all the players join the system all at
once, which is not realistic, and therefore must be excluded
from the performance measurements. As reflected in our
measurements of the number of migrations in Figure 10(a),
the system reaches the steady state in about 10 minutes, hence
the latency of client requests reported here is recorded in the
last 50 minutes of the experiment.
Algorithm convergence. Figure 10(a) shows the change
in the number of remote messages over time. Within 10
minutes from the start, the proportion of remote messaging
among all the inter-actor messages stabilizes at about 12%.
In contrast, random partitioning results in about 90% of all
actor-to-actor messages to be remote. Similarly, the actor
partitioning algorithm performs more actor movements at the

start and then stabilizes at about 1K actor movements per
minute. Given a total of about 100K actors in a system, 1%
of actors are moved each minute once the system converges,
which matches the graph change rate of the experiment.
Latency under load. Figure 10(b) shows the latency CDF
for the baseline and optimized actor partitioning for the 6K
requests/sec load. ActOp reduces the 99th percentile latency
by more than 3×, from 726ms to 225ms, which effectively
eliminates the perception of a “sluggish” server response.
To analyze this latency improvement, Figure 10(c) shows
the latency CDF of actor-to-actor calls between game actors
and player actors. ActOp results in lower latency because it
reduces excess serialization, as explained in §3.

We summarize the results for different system loads in
Figure 10(d). The graph shows the latency improvement
calculated as 100% × (1 − optimized

baseline ). ActOp significantly
reduces the latency for all loads, but the gains are higher
as load increases. The main reason is that under higher load
the queuing effect in RPC serialization stages grows, thereby
amplifying the effect of co-locating communicating actors on
the same server. Indeed, when we measure the average CPU
utilization across the servers (10(e)), ActOp reduces CPU
utilization per server by 25% for lower system load and by
45% for higher load, meaning that with better partitioning
less CPU intensive work (serialization) is done overall.
Throughput improvement. Reducing the CPU utilization
for a given load enables higher throughput with the same
cluster, or the same throughput on a smaller cluster. To
measure the peak throughput we saturate the servers by
generating requests until they start rejecting them. ActOp
achieves the throughput of 12K requests/second, 2× higher
than random partitioning which starts dropping requests at
6K requests/second while running at 80% CPU utilization.
Scaling with the number of actors. We performed exper-
iments for 10K, 100K, and 1M live players in the system
serving 4K requests/second. Additional players stress the
distributed partitioning algorithm, potentially increasing its
overhead and reducing its benefits. However, as Figure 10(f)
shows, ActOp yields significant latency reduction and scales
well for up to 1M actors.

6.2 Optimized thread allocation

Workload. We use the Heartbeat benchmark to evaluate the
latency under ActOp’s optimized thread allocation. Heartbeat
implements a simple monitoring service which maintains
the status periodically updated by the client. This workload
is similar in its call pattern to many popular services built
with Orleans, like running statistics, aggregates or standing
queries. While being a single actor application, it still requires
low latency and scaling. We run the benchmark on one server
and use 8 servers to generate requests. The experiment takes
25 minutes and generates 12 million latency measurements.
Experimental setup. ActOp learns the queuing model pa-
rameters, solves the optimization problem and suggests the
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(c) Server-to-server lat. at 6,000 req/sec
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Figure 10. Optimizing actor partitioning for Halo Presence benchmark
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(a) Different loads with the optimal thread allocation
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Figure 11. Latency improvement for different loads and different optimizations (higher is better).

optimal thread allocation for this application. We configure
the system accordingly and measure the request latency. We
first calibrate the model to determine the thread penalty pa-
rameter η. The calibration process involves running the Heart-
beat application at 6K load and measuring its latency while
varying the number of threads per stage to find the opti-
mal configuration. We then find η which tunes the model to
suggest the same configuration. After η is determined, it re-
mains unchanged throughout the experiments. On our servers,
η = 100µsec/thread.

The baseline thread allocation policy assigns to each
stage the same number of threads, which is the number of
CPU cores (eight). Intuitively, it ensures that the system is
fully utilized. Other strategies assign fewer threads per stage

and effectively reserve some CPU cores for specific stages,
potentially leading to poor load balance across the cores.
Latency under different loads. Figure 11(a) shows the end-
to-end latency with ActOp under different loads. We observe
significant latency reduction, in particular for heavy loads.
For example, the latency of the optimized configuration under
the highest load of 15K requests/second is reduced by 68%
in the 99th percentile, and by 58% in the median. ActOp
allocates 2 client sender threads at each load while allocating
3 worker threads at 10K and 12.5K requests/second, and
increases to 4 worker threads at 15K requests/second.

6.3 Thread allocation and actor partitioning combined

Workload and setup. We run Halo Presence workload with
100K players and 6K req/sec. The baseline configuration uses



default (random) actor partitioning and default (8 threads per
stage) thread allocation policy. ActOp optimizes the system
latency by both migrating actors and re-allocating threads.
Results. The optimized actor partitioning is the primary fac-
tor contributing to the latency improvement. Yet, combining
both optimizations yields additional latency savings as shown
in Figure 11(b): Optimizing the thread allocation provides
additional reduction of 21% in the median latency, and 9%
in the 99th percentile latency. In total, ActOp reduces the me-
dian latency by 55% and the 99th percentile by 75% over the
baseline configuration. We observe that the thread allocation
depends on how actors are partitioned. Applying thread al-
location to random actor partitioning results in an allocation
of 5 workers, 2 server senders, and 1 client sender. When
actor partitioning is applied, the load on server I/O threads is
reduced. Therefore, ActOp suggests 6 worker threads for ap-
plication logic, 1 server sender, and 1 client sender. Applying
both techniques together enables the best end-to-end latency.

7. Related Work
SEDA optimization. Gordon [18] explores various thread al-
location policies for SEDA, including over-allocating threads
per stage and using a central thread pool shared among all the
stages. Auto-tune [25] tunes the number of threads in a stage
to improve the throughput. The optimization is applied to
each stage individually, and it then gradually converges to an
optimized thread allocation across all the stages. ActOp opti-
mizes over all stages jointly, by finding the globally optimal
solution which reduces the system latency. As mentioned ear-
lier, our optimization formulation, and in particular, modeling
SEDA as Jackson queuing network, is inspired by Welsh [34].
However, [34] uses this model to analyze the performance of
SEDA and not directly for its optimization. The optimization
proposed in [33, 34] is a greedy “local” procedure based on
queue sizes. To the best of our knowledge, we are the first
to tackle latency minimization via direct optimization of the
underlying queuing formulation. This allows us to obtain a
global solution (i.e., for all stages simultaneously).
Balanced graph partitioning. The balanced graph parti-
tioning problem has been widely studied in the algorithms
community for over two decades (e.g., [12, 22, 24, 29]). As
mentioned earlier, the underlying techniques are centralized,
requiring full graph information and typically cubic running
time; this makes them prohibitively expensive for the scale
we consider. Heuristics with faster running times [20, 21, 31]
still require the entire graph to be in a central server, or deal
with static graphs. In contrast, ActOp proposes a fully dis-
tributed solution targeting dynamically changing communica-
tion graphs. The work closest to ours is Ja-Be-Ja [30], which
suggests a distributed balanced partitioning algorithm for
large static graphs. As discussed in §4, [30] relies on object-
to-object coordination, which does not limit the amount of
per-server exchanges in a given period. As a result, the al-

gorithm in [30] might lead to massive migration of objects
(actors) in rapidly time-varying settings.
Object placement in distributed systems. SPAR [28] is a
partitioning middleware for large and dynamic Online Social
Network (OSN) graphs. SPAR minimizes cross server com-
munication by dynamically creating new redundant object
copies. This works well in the OSN setting, where writes are
much less frequent than reads. ActOp uses object migrations
instead of object replication, hence can cover more settings,
such as object read and writes occurring at similar frequen-
cies. Distributed Hash Tables (DHTs) [16, 19, 27] and other
storage systems (e.g., [15]) also deal with object placement
across servers. These systems contain no application logic
and exhibit more uniform communication patterns. Accord-
ingly, the management of data placement focuses on persis-
tence (e.g., using additional resources for replicas), whereas
cross server communication is not a significant factor.

8. Conclusion
ActOp is a data-driven optimization framework for reduc-
ing the latency of interactive applications hosted by actor
systems. ActOp adapts to temporal changes in the actual com-
munication graph of the application by judiciously migrating
application actors across servers. Using a queuing model
of a server, ActOp further optimizes the thread allocation
in each server to match the current server load and applica-
tion demands. We prototype ActOp in Orleans, and obtain
substantial latency improvements for realistic workloads.

We believe that the principles and techniques we develop
in ActOp are general and can be applied to other distributed
actor systems. For example, our techniques can be applied to
similar challenges of cross-server communication and sub-
optimal threads allocation in Akka and Erlang. However, in
these systems the runtime cannot automatically and transpar-
ently move actors, making it the application’s responsibility
to adjust actors placement. In contrast, the virtual nature of
actors in Orleans enables dynamic actor migration, which
allows the optimizations in ActOp to be integrated in the
system runtime. Further, our thread allocation mechanism
may be applicable to other SEDA-like systems that maintain
multiple thread pools.
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[29] H. Räcke. Optimal hierarchical decompositions for congestion
minimization in networks. In Proc. of the 40th ACM Sympo-
sium on Theory of Computing, pages 255–264, 2008.

[30] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity,
and S. Haridi. Ja-Be-Ja: A distributed algorithm for balanced
graph partitioning. In Proc. of the 7th International Conference
on Self-Adaptive and Self-Organizing Systems (SASO), pages
51–60, 2013.

[31] I. Stanton and G. Kliot. Streaming graph partitioning for large
distributed graphs. In Proc. of the 18th ACM International Con-
ference on Knowledge Discovery and Data Mining (SIGKDD),
pages 1222–1230, 2012.

[32] V. Venkataramani, Z. Amsden, N. Bronson, G. Cabrera III,
P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Giardullo, J. Hoon,
et al. Tao: How Facebook serves the social graph. In
Proc. of the 2012 ACM SIGMOD International Conference
on Management of Data, pages 791–792, 2012.

[33] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for
Well-Conditioned, Scalable Internet Services. In ACM SIGOPS
Operating Systems Review, volume 35, pages 230–243, 2001.

[34] M. D. Welsh. An architecture for highly concurrent, well-
conditioned internet services. PhD thesis, University of Cali-
fornia at Berkeley, 2002.

http://akka.io/
https://msdn.microsoft.com/en-us/library/windows/desktop/bb968803(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb968803(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb968803(v=vs.85).aspx
http://www.erlang.org/
https://github.com/dotnet/orleans
http://dotnet.github.io/orleans/Who-Is-Using-Orleans
http://dotnet.github.io/orleans/Who-Is-Using-Orleans
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-reliable-actors-introduction/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-reliable-actors-introduction/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-reliable-actors-introduction/
https://projects.apache.org/projects/camel.html
https://projects.apache.org/projects/camel.html
https://gigaom.com/2014/12/15/microsoft-open-sources-cloud-framework-that-powers-halo/
https://gigaom.com/2014/12/15/microsoft-open-sources-cloud-framework-that-powers-halo/
https://gigaom.com/2014/12/15/microsoft-open-sources-cloud-framework-that-powers-halo/
https://github.com/electronicarts/orbit
http://www.swiftmq.com/
http://www.erlang-factory.com/upload/presentations/558/efsf2012-whatsapp-scaling.pdf
http://www.erlang-factory.com/upload/presentations/558/efsf2012-whatsapp-scaling.pdf
http://www.erlang-factory.com/upload/presentations/558/efsf2012-whatsapp-scaling.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=210931
http://research.microsoft.com/apps/pubs/default.aspx?id=210931

	Introduction
	Background
	Performance Overheads in Orleans 
	Locality-Aware Actor Partitioning
	Actor assignment as balanced graph partitioning
	Distributed partitioning algorithm
	Implementation details

	Latency-Optimized Thread Allocation
	Design alternative: queue-length based control
	Problem statement
	Latency measure and optimization
	Estimating model parameters from Orleans runtime measurements

	Evaluation Results
	Optimized actor partitioning
	Optimized thread allocation
	Thread allocation and actor partitioning combined

	Related Work
	Conclusion

