
ar
X

iv
:1

60
6.

07
31

5v
1

 [
cs

.L
G

]
 2

3
Ju

n
20

16

Nearly-optimal Robust Matrix Completion

Yeshwanth Cherapanamjeri Kartik Gupta Prateek Jain

Microsoft Research India

{t-yecher,t-kagu,prajain}@microsoft.com

June 24, 2016

Abstract

In this paper, we consider the problem of Robust Matrix Completion (RMC) where the goal is to
recover a low-rank matrix by observing a small number of its entries out of which a few can be arbitrarily
corrupted. We propose a simple projected gradient descent method to estimate the low-rank matrix
that alternately performs a projected gradient descent step and cleans up a few of the corrupted entries
using hard-thresholding. Our algorithm solves RMC using nearly optimal number of observations as
well as nearly optimal number of corruptions. Our result also implies significant improvement over the
existing time complexity bounds for the low-rank matrix completion problem. Finally, an application of
our result to the robust PCA problem (low-rank+sparse matrix separation) leads to nearly linear time
(in matrix dimensions) algorithm for the same; existing state-of-the-art methods require quadratic time.
Our empirical results corroborate our theoretical results and show that even for moderate sized problems,
our method for robust PCA is an an order of magnitude faster than the existing methods.

1 Introduction

In this paper, we study the Robust Matrix Completion (RMC) problem where the goal is to recover an
underlying low-rank matrix by observing a small number of sparsely corrupted entries from the matrix.
Formally,

RMC: Find rank-r matrix L∗ ∈ R
m×n using Ω and PΩ(L

∗) + S∗, (1)

where Ω ⊆ [m]× [n] is the set of observed entries (throughout the paper we assume that m ≤ n), S∗ denotes
the sparse corruptions of the observed entries, i.e., Supp(S∗) ∈ Ω. Sampling operator PΩ : Rm×n → R

m×n

is defined as:
(PΩ(A))ij = Aij , if (i, j) ∈ Ω, (PΩ(A))ij = 0, otherwise. (2)

RMC is an important problem with several applications such as recommendation systems with outliers.
Similarly, the problem is also heavily used to model PCA under gross outliers as well as erasures [JRVS11].
Finally, as we show later, an efficient solution to RMC enables faster solution for the robust PCA (RPCA)

problem as well. The goal in RPCA is to find a low-rank matrix L∗ and sparse matrix S̃∗ by observing their
sum, i.e., M = L∗ + S̃∗. State-of-the-art results for RPCA shows exact recovery of a rank-r, µ-incoherent
L∗ (see Assumption 1, Section 3) if at most ρ = 1

µ2r
fraction of the entries in each row/column of S̃∗ are

corrupted [HKZ11, NUNS+14].

However, the existing state-of-the-art results for RMC with optimal ρ = 1
µ2r

fraction of corrupted entries,

either require at least a constant fraction of the entries of L∗ to be observed [CJSC11, CLMW11] or require

restrictive assumptions like support of corruptions S̃∗ being uniformly random [Li13]. [KLT14] also considers
RMC problem but studies the noisy setting and do not provide exact recovery bounds. Moreover, most of the

1

http://arxiv.org/abs/1606.07315v1

existing methods for RMC use convex relaxation for both low-rank and sparse components, and in general
exhibit large time complexity (O(m2n)).

In this work, we attempt to answer the following open question (assuming m ≤ n):

Can RMC be solved exactly by using |Ω| = O(rn log n) observations out of which O(1
µ2r

) fraction of the

observed entries in each row/column are corrupted.

Note that both |Ω| (for uniformly random Ω) and ρ values mentioned in the question above denote the
information theoretic limits. Hence, the goal is to solve RMC for nearly-optimal number of samples and
nearly-optimal fraction of corruptions.

Under standard assumptions on L∗, S∗, Ω and for n = O(m), we answer the above question in affirmative
albeit with |Ω| which is O(r) (ignoring log factors) larger than the optimal sample complexity (see Theorem 1).
In particular, we propose a simple projected gradient (PGD) style method for RMC that alternately cleans
up corrupted entries by hard-thresholding; our method’s computational complexity is also nearly optimal
(O(|Ω|r+ (m+n)r2 + r3)). Note that our method applies non-convex opeators like low-rank projection and
hard-thresholding. Hence, standard convex analysis techniques cannot be used for our algorithm.

Several recent results [JN15, NUNS+14, JTK14, HW14, Blu11] show that under certain assumptions, pro-
jection onto non-convex sets indeed lead to provable algorithms with fast convergence to the global optima.
However, as explained in Section 3, RMC presents unique set of challenges as we have to perform error
analysis with the errors arising due to missing entries as well as sparse corruptions, both of which interact
among themselves as well. In fact, our careful error analysis also enables us to improve results for the matrix
completion as well as the RPCA problem.

Matrix Completion (MC): The goal of MC is to find rank-r L∗ using PΩ(L
∗). State-of-the-art result

for MC uses nuclear norm minimization and requires |Ω| ≥ µ2nr2 log2 n under standard µ-incoherence
assumption (see Section 3), but the method requires O(m2n) time in general. The best sample complexity
result for a non-convex iterative method (with at most logarithmic dependence on the condition number of
L∗) achieve exact recovery when |Ω| ≥ µ6nr5 log2 n and needs O(|Ω|r) computational steps. In contrast,
assuming n = O(m), our method achieves nearly the same sample complexity of trace-norm but with nearly
linear time algorithm (O(|Ω|r)). See Table 1 for a detailed comparison of our result with the existing
methods.

RPCA: Several recent results show that RPCA can be solved if ρ = O(1
µ2r

)-fraction of entries in each row

and column of L∗ are corrupted [NUNS+14, HKZ11] where L∗ is assumed to be µ-incoherent. Moreover,
St-NcRPCA algorithm [NUNS+14] can solve the problem in time O(mnr2). Corollary 2 shows that by
sampling Ω uniformly at random, we can solve the problem in time O(nr3) only. That is, we can recover L∗

without even observing the entire input matrix. Moreover, if the goal is to recover the sparse corruption as
well, then we can obtain a two-pass (over the input matrix) algorithm that solves the RPCA problem exactly.
St-NcRPCA algorithm requires r2 log(1/ǫ) passes over the data. Our method has significantly smaller space
complexity as well.

Our empirical results on synthetic data demonstrates effectiveness of our method. We also apply our method
to the foreground background separation problem; our method is an order of magnitude faster than the state-
of-the-art method (St-NcRPCA) while achieving similar accuracy.

In summary, this paper’s main contributions are:

(a) RMC: We propose a nearly linear time method that solves RMC with |Ω| = O(nr2 log2 n log2 ‖M‖2/ǫ)
random entries and with optimal fraction of corruptions (ρ = 1

µ2r
).

(b) Matrix Completion: Our result improves upon the existing linear time algorithm’s sample complexity
by an O(r3) factor, and time complexity by O(r4) factor, although with an extra O(log ‖L∗‖/ǫ) factor in
both time and sample complexity.

(c) RPCA: We present a nearly linear time (O(nr3)) algorithm for RPCA under optimal fraction of cor-

2

ruptions, improving upon O(mnr2) time complexity of the existing methods.

Notations: We assume that M = L∗ + S̃∗ and PΩ(M) = PΩ(L
∗) + S∗, i.e., S∗ = PΩ(S̃

∗). ‖v‖p denotes
ℓp norm of a vector v; ‖v‖ denotes ℓ2 norm of v. ‖A‖2, ‖A‖F , ‖A‖∗ denotes the operator, Frobenius, and
nuclear norm of A, respectively; by default ‖A‖ = ‖A‖2. Operator PΩ is given by (2), operators Pk(A) and
HT ζ(A) are defined in Section 2. σi(A) denotes i-th singular value of A and σ∗

i denotes the i-th singular
value of L∗.

Paper Organization: We present our main algorithm in Section 2 and our main results in Section 3. We
also present the proof of one of our main results in Section 3. Section 4 presents our empirical result. Due
to lack of space, we present most of the proofs and useful lemmas in Appendix.

2 Algorithm

In this section we present our algorithm for solving the RMC (Robust Matrix Completion) problem: given

Ω and PΩ(M) where M = L∗ + S̃∗ ∈ R
m×n, rank(L∗) ≤ r, ‖S̃∗‖0 ≤ s and S∗ = PΩ(S̃

∗), the goal is to
recover L∗. To this end, we focus on solving the following non-convex optimization problem:

(L∗, S∗) = argmin
L,S
‖PΩ(M)− PΩ(L)− S‖2F , s.t., rank(L) ≤ r,PΩ(S) = S, ‖S‖0 ≤ s. (3)

For the above problem, we propose a simple iterative algorithm that combines projected gradient descent
(for L) with alternating projections (for S). In particular, we maintain iterates L(t) (with rank k ≤ r) and
sparse S(t). L(t+1) is computed using gradient descent step for objective (3) and then projecting back onto
the set of rank k matrices. That is,

L(t+1) = Pk

(
L(t) +

1

p
PΩ(M − L(t) − S(t))

)
, (4)

where Pk(A) denotes projection of A onto the set of rank-k matrices and can be computed efficiently using

SVD of A, p = |Ω|
mn

. S(t+1) is computed by projecting the residual PΩ(M−L(t+1)) onto set of sparse matrices
using a hard-thresholding operator, i.e.,

S(t+1) = HT ζ(M − L(t+1)), (5)

where HT ζ : Rm×n → R
m×n is the hard thresholding operator defined as: (HT ζ(A))ij = Aij if |Aij | ≥ ζ

and 0 otherwise. Intuitively, a better estimate of the sparse corruptions for each iteration will reduce the
noise of the projected gradient descent step and a better estimate of the low rank matrix will enable better
estimation of the sparse corruptions. Hence, under correct set of assumptions, the algorithm should recover
L∗, S̃∗ exactly.

Unfortunately, just the above two simple iterations cannot handle problems where L∗ has poor condition
number, as the intermediate errors can be significantly larger than the smallest singular values of L∗, making
recovery of the corresponding singular vectors challenging. To alleviate this issue, we propose an algorithm
that proceeds in stages. In the q-th stage, we project L(t) onto set of rank-kq matrices. Rank kq is monotonic
w.r.t. q. Under standard assumptions, we show that we can increase kq in a manner such that after each
stage

∥∥L(t) − L∗∥∥
∞ decreased by at least a constant factor. Hence, the number of stages is only logarithmic

in the condition number of L∗.

See Algorithm 1 for a psuedo-code of the algorithm. Our algorithm has an “outer loop” (see Line 6) which
sets rank kq of iterates L(t) appropriately (see Line 7). We then update L(t) and S(t) in the “inner loop”
using (4), (5). We set threshold for the hard-thresholding operator using singular values of current gradient
descent update (see Line 12). Note that, we divide Ω uniformly into Q ·T sets, where Q is an upper bound on
the number of outer iterations and T is the number of inner iterations. This division ensures independence

3

Algorithm 1 L̂ = PG-RMC (Ω,PΩ(M), ǫ, r, µ, η)

1: Input: Observed entries Ω, Matrix PΩ(M) ∈ R
m×n, convergence criterion ǫ, target rank r, incoherence

parameter µ, thresholding parameter η

2: T ← 10 log
10µ2rn2‖PΩ(M)‖2

|Ω|ǫ , Q← T /* Number of inner and outer iterations */

3: Partition Ω into Q · T subsets {Ωq,t : q ∈ [Q], t ∈ [T]} uniformly at random
4: L(0) = 0,M (0) = mn

|Ω|PΩ(M), ζ ← ησ1(M
(0)) /* Initialization */

5: k0 ← 0, q ← 0
6: while σkq+1(M

(0)) > ǫ
2ηn do

7: q ← q + 1, kq ←
∣∣∣∣{i : σi(M

(0)) ≥ σkq−1+1(M
(0))

2 }
∣∣∣∣ /* Setting rank of the q-th stage */

8: for Iteration t = 0 to t = T do
9: S(t) = HT ζ(PΩq,t

(M − L(t))) /* Projection onto set of sparse matrices */

10: M (t) = L(t) − mn
|Ωq,t|PΩq,t

(L(t) + S(t) −M) /* Gradient descent update */

11: L(t+1) = Pkq
(M (t)) /* Projected gradient descent update */

12: Set threshold ζ ← η
(
σkq+1(M

(t)) +
(
1
2

)t−2
σkq

(M (t))
)

13: end for
14: S(0) = S(T), L(0) = L(T), M (0) = M (T) /* Initialization for the next outer iteration */
15: end while
16: Return: L(T)

across iterates that is critical to application of standard concentration bounds; such division is a standard
technique in the matrix completion related literature [JN15, HW14, Rec11]. Also, η is a tunable parameter
which should be less than one and is smaller for “easier” problems.

Note that updating S(t) requires O(|Ω| · r+(m+n) · r) computational steps. Computation of L(t+1) requires
computing SVD for projection Pr, which can be computed in time O(|Ω| ·r+(m+n) ·r2+ r3) time (ignoring
log factors); see [JMD10] for more details. Hence, the computational complexity of each step of the algorithm
is linear in |Ω|·r (assuming |Ω| ≥ r·(m+n)). As we show in the next section, the algorithm exhibits geometric
convergence rate under standard assumptions and hence the overall complexity is still nearly linear in |Ω|
(assuming r is just a constant).

Rank based Stagewise algorithm: We also provide a rank-based stagewise algorithm where the outer
loop increments kq by one at each stage, i.e., the rank is q in the q-th stage. Our analysis extends for this
algorithm as well, however, its time and sample complexity trades off a factor of O(log(σ1/ǫ)) from the
complexity of PG-RMC with a factor of r (rank of L∗). We provide the detailed algorithm in Appendix 5.2
due to lack of space (see Algorithm 2).

3 Analysis

We now present our analysis for both of our algorithms PG-RMC (Algorithm 1) and R-RMC (Algo-
rithm 2). In general the problem of Robust PCA with Missing Entries (3) is harder than the standard
Matrix Completion problem and hence is NP-hard [HMRW14]. Hence, we need to impose certain (by now

standard) assumptions on L∗, S̃∗, and Ω to ensure tractability of the problem:
Assumption 1. Rank and incoherence of L∗: L∗ ∈ R

m×n is a rank-r incoherent matrix, i.e.,∥∥e⊤i U∗∥∥
2
≤ µ

√
r
m
,
∥∥e⊤j V ∗∥∥

2
≤ µ

√
r
n
, ∀i ∈ [m], ∀j ∈ [n], where L∗ = U∗Σ∗(V ∗)⊤ is the SVD of L∗.

Assumption 2. Sampling (Ω): In each iteration, Ωq,t is obtained by sampling each entry with probability

p =
|Ωq,t|
mn

.

4

Assumption 3. Sparsity of S̃∗, S∗: We assume that at most ρ ≤ c
µ2r

fraction of the elements in each row

and column of S̃∗ are non-zero for a small enough constant c. Moreover, we assume that Ω is independent
of S̃∗. Hence, S∗ = PΩ(S̃

∗) also has at most p · ρ fraction of the entries in expectation.

Assumptions 1, 2 are standard assumptions in the provable matrix completion literature [CR09, Rec11, JN15],
while Assumptions 1, 3 are standard assumptions in the robust PCA (low-rank+sparse matrix recovery)
literature [CSPW11, CLMW11, HKZ11]. Hence, our setting is a generalization of both the standard and
popular problems and as we show later in the section, our result can be used to meaningfully improve the
state-of-the-art for both these problems.

We first present our main result for Algorithm 1 under the assumptions given above.
Theorem 1. Let Assumptions 1, 2 and 3 on L∗, S̃∗ and Ω hold respectively. Let m ≤ n, n = O(m), and
let the number of samples |Ω| satisfy:

E[|Ω|] ≥ Cαµ4r2n log2 (n) log2
(
µ2rσ1

ǫ

)
,

where C is a global constant. Then, with probability at least 1−n− log α
2 , Algorithm 1 with η = 4µ2r

m
, at most

O(log(‖M‖2/ǫ))) outer iterations and O(log(µ
2r‖M‖2

ǫ
)) inner iterations, outputs a matrix L̂ such that:

∥∥∥L̂− L∗
∥∥∥
F
≤ ǫ.

Note that our number of samples increase with the desired accuracy ǫ. However, using argument similar to
that of [JN15], we should be able to replace ǫ by σ∗

min which should modify the ǫ term to be log2 κ where
κ = σ1(L

∗)/σr(L
∗). We leave ironing out the details for future work.

Note that the numbe of samples matches information theoretic bound upto O(r logn log2 σ∗
1/ǫ) factor. Also,

the number of allowed corruptions in S̃∗ also matches the known lower bounds (up to a constant factor) and
cannot be improved upon information theoretically.

We now present our result for the rank based stagewise algorithm (Algorithm 2).

Theorem 2. Under Assumptions 1, 2 and 3 on L∗, S̃∗ and Ω respectively and Ω satisfying:

E[|Ω|] ≥ Cαµ4r3n log2 (n) log

(
µ2rσ1

ǫ

)
,

for a large enough constant C, then Algorithm 2 with η set to 4µ2r
m

outputs a matrix L̂ such that:
∥∥∥L̂− L∗

∥∥∥
F
≤

ǫ, w.p. ≥ 1− n− log α
2 .

Notice that the sample complexity of Algorithm 2 has an additional multiplicative factor of O(r) when
compared to that of Algorithm 1, but shaves off a factor of O(log(κ)). Similarly, computational complex-
ity of Algorithm 2 also trades off a O(log κ) factor for O(r) factor from the computational complexity of
Algorithm 1.

Result for Matrix Completion: Note that for S̃∗ = 0, the RMC problem with Assumptions 1,2 is exactly
the same as the standard matrix completion problem and hence, we get the following result as a corollary
of Theorem 1:
Corollary 1 (Matrix Completion). Suppose we observe Ω and PΩ(L

∗) where Assumptions 1,2 hold for L∗

and Ω. Also, let E[|Ω|] ≥ Cα2µ4r2 log2 n log2 σ1/ǫ and m ≤ n. Then, w.p. ≥ 1 − n− log α
2 , Algorithm 1

outputs L̂ s.t. ‖L̂− L∗‖2 ≤ ǫ.

Table 1 compares our sample and time complexity bounds for low-rank MC. Note that our sample complexity
is nearly the same as that of nuclear-norm methods while the running time of our algorithm is significantly

5

Sample Complexity Computational Complexity

Nuclear norm [Rec11] O
(
µ2rn log2 n

)
O
(
n3 log 1

ǫ

)

SVP [JN15] O
(
µ4r5n log3 n

)
O
(
µ4r7n log3 n log(1

ǫ
)
)

Alt. Min. [HW14] O
(
nµ4r9 log3 (κ) log2 n

)
O
(
nµ4r13 log3 (κ) log2 n

)

Alt. Grad. Desc. [SL15] O
(
nrκ2 max{µ2 logn, µ4r6κ4}

)
O
(
n2r6κ4 log

(
1
ǫ

))

R-RMC (This Paper) O
(
µ4r3n log2 (n) log

(
σ∗

1

ǫ

))
O
(
µ4r4n log2 (n) log

(
σ∗

1

ǫ

))

PG-RMC (This Paper) O
(
µ4r2n log2 (n) log2

(
σ∗

1

ǫ

))
O
(
µ4r3n log2 (n) log2

(
σ∗

1

ǫ

))

Table 1: Comparison of PG-RMC and R-RMC with Other Matrix Completion Methods

better than the existing results that have at most logarithmic dependence on the condition number of
L∗.

Result for Robust PCA: Consider the standard Robust PCA problem (RPCA), where the goal is to

recover L∗ from M = L∗ + S̃∗. For RPCA as well, we can randomly sample |Ω| entries from M , where Ω
satisfies the assumption required by Theorem 1. This leads us to the following corollary:
Corollary 2 (Robust PCA). Suppose we observe M = L∗ + S̃∗, where Assumptions 1, 3 hold for L∗

and S̃∗. Generate Ω ∈ [m] × [n] by sampling each entry uniformly at random with probability p, s.t.,
E[|Ω|] ≥ Cα2µ4r2 log2 n log2 σ1/ǫ. Let m ≤ n. Then, w.p. ≥ 1 − n− log α

2 , Algorithm 1 outputs L̂ s.t.
‖L̂− L∗‖2 ≤ ǫ.

Hence, using Theorem 1, we will still be able to recover L∗ but using only the sampled entries. Moreover, the
running time of the algorithm is only O(µ2nr3 log2 n log2(σ1/ǫ)), i.e., we are able to solve RPCA problem in
time linear in n. To the best of our knowledge, the existing state-of-the-art methods for RPCA require at
least O(n2r) time to perform the same task [NUNS+14, GWL16]. Similarly, we don’t need to load the entire
data matrix in memory, but we can just sample the matrix and work with the obtained sparse matrix with
at most linear number of entries. Hence, our method significantly reduces both time and space complexity,
and as demonstrated empirically in Section 4 can help scale our algorithm to very large data sets without
losing accuracy.

3.1 Proof of Theorem 1

We now present our proof for Theorem 1; the proof of Theorem 2 follows similarly. The proofs of all but
one of the lemmas used are deferred to the appendix to improve readability. Recall that we assume that
M = L∗+S̃∗ and define S∗ = PΩ(S̃

∗). Similarly, we define S̃(t) = HT ζ(M−L(t)). Critically, S(t) = PΩ(S̃
(t))

(see Line 9 of Algorithm 1), i.e., S̃(t) is the set of iterates that we “could” obtain if entire M was observed.

Note that we cannot compute S̃(t), it is introduced only to simplify our analysis.

We first re-write the projected gradient descent step for L(t+1) as described in (4):

L(t+1) = Pkq

(
L∗ + (S̃∗ − S̃(t))︸ ︷︷ ︸

E1

+

(
I − PΩq,t

p

)
(

E2︷ ︸︸ ︷
(L(t) − L∗)+(S̃(t) − S̃∗))

︸ ︷︷ ︸
E3

)
(6)

That is, L(t+1) is obtained by rank-kq SVD of a perturbed version of L∗: L∗ + E1 + E3. As we perform

entrywise thresholding to reduce ‖S̃∗ − S̃(t)‖∞, we need to bound ‖L(t+1) − L∗‖∞. To this end, we use
techniques from [JN15], [NUNS+14] that explicitly model singular vectors of L(t+1) and argue about the

6

infinity norm error using a Taylor series expansion. However, in our case, such an error analysis requires
analyzing the following key quantities (H = E1 + E3):

∀1 ≤ j, s.t., j even : Aj := max
q∈[n]

‖e⊤q
(
H⊤H

) j
2 V ∗‖2, Bj := max

q∈[m]
‖e⊤q

(
HH⊤) j

2 U∗‖2,

∀1 ≤ j, s.t., j odd : Cj := max
q∈[n]

‖e⊤q H⊤ (HH⊤)⌊ j
2 ⌋ U∗‖2, Dj := max

q∈[m]
‖e⊤q H

(
H⊤H

)⌊ j
2 ⌋ V ∗‖2. (7)

Note that E1 = 0 in the case of standard RPCA which was analyzed in [NUNS+14], while E3 = 0 in the
case of standard MC which was considered in [JN15]. In contrast, in our case both E1 and E3 are non-zero.
Moreover, E3 is dependent on random variable Ω. Hence, for j ≥ 2, we will get cross terms between E3

and E1 that will also have dependent random variables which precludes application of standard Bernstein-
style tail bounds. To this end, we use a technique similar to that of [EKYY13, JN15] to provide a careful
combinatorial-style argument to bound the above given quantity. That is, we can provide the following key
lemma:
Lemma 1. Let L∗, Ω, and S̃∗ satisfy Assumptions 1, 2 and 3 respectively. Let L∗ = U∗Σ∗(V ∗)⊤ be the

singular value decomposition of L∗. Furthermore, suppose that in the tth iteration of the qth stage, S̃(t)

defined as HTζ(M − L(t)) satisfies Supp(S̃(t)) ⊆ Supp(S̃∗), then we have:

max{Aa, Ba, Ca, Da} ≤ µ

√
r

m

(
ρn ‖E1‖∞ + c

√
n

p
(‖E1‖∞ + ‖E2‖∞) log n

)a

,

∀c > 0 w.p ≥ 1− n−2 log c
4+4, where E1, E2 and E3 are defined in (6), Aa, Ba, Ca, Da are defined in (7).

Remark: We would like to note that even for the standard MC setting, i.e., when E1 = 0, we obtain
better bound than that of [JN15] as we can bound maxi ‖eTi (E3)

qU‖2 directly rather than the weaker√
rmaxi ‖eTi (E3)

quj‖ bound that [JN15] uses.

In the following lemma, we characterize how the progress in the estimation of L∗ by L(t) depends on the
quantities in 7.
Lemma 2. Let L(t) = Pk(L

∗ +H), where H is any perturbation matrix that satisfies the following:

1. ‖H‖2 ≤
σ∗
k
4

2. ∀i ∈ [n], a ∈ ⌈ logn
2 ⌉ with υ ≤ σ∗

k
4

∥∥∥e⊤i
(
H⊤H

) a
2 V ∗

∥∥∥
2
,
∥∥∥e⊤i

(
HH⊤) a

2 U∗
∥∥∥
2
≤ (υ)aµ

√
r
m when a is even

∥∥∥e⊤i H⊤ (HH⊤)⌊ a
2 ⌋ U∗

∥∥∥
2
,
∥∥∥e⊤i H

(
H⊤H

)⌊ a
2 ⌋ V ∗

∥∥∥
2
≤ (υ)aµ

√
r
m when a is odd

where σ∗
k is the kth singular value of L∗. Also, let L∗ satisfy Assumption 1. Then, the following holds:

∥∥∥L(t+1) − L∗
∥∥∥
∞
≤ µ2r

m

(
σ∗
k+1 + 20 ‖H‖2 + 8υ

)

where µ and r are the rank and incoherence of the matrix L∗ respectively.

In the next lemma, we show that with the threshold chosen in the algorithm, we show an improvement in
the estimation of S̃∗ by S̃(t+1).
Lemma 3. In the tth iterate of the qth stage, assume the following holds:

1.
∥∥L∗ − L(t)

∥∥
∞ ≤

2µ2r
m

(
σ∗
k+1 +

(
1
2

)z
σ∗
k

)

2. 7
8

(
σ∗
k+1 +

(
1
2

)z
σ∗
k

)
≤
(
λk+1 +

(
1
2

)z
λk

)
≤ 9

8

(
σ∗
k+1 +

(
1
2

)z
σ∗
k

)

7

where σ∗
k and σ∗

k+1 are the k and (k+1)th singular values of L∗, λk and λk+1 are the k and (k+1)th singular

values of M (t) and, r and µ are the rank and incoherence of the m×n matrix L∗ respectively. Then we have

1. Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)

2.
∥∥∥S̃(t) − S̃∗

∥∥∥
∞
≤ 8µ2r

m

(
σ∗
k+1 +

(
1
2

)z
σ∗
k

)

In the following lemma, we show that we make progress simultaneously in the estimation of both S̃∗ and L∗

by S̃(t) and L(t). We make use of Lemmas 2 and 3 to show how progress in the estimation of one affects the
other alternatively. We use Lemma 1 along with Lemma 2 to show improved estimation of L∗ by L(t).
Lemma 4. Let L∗, Ω, S̃∗ and S̃(t) satisfy Assumptions 1,2,3 respectively. Then, in the tth iteration of the
qth stage of Algorithm 1, S̃(t) and L(t) satisfy:

∥∥∥S̃(t) − S̃∗
∥∥∥
∞
≤ 8µ2r

m

(∣∣∣σ∗
kq+1

∣∣∣+
(
1

2

)t−3 ∣∣∣σ∗
kq

∣∣∣
)
,

Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)
, and

∥∥∥L(t) − L∗
∥∥∥
∞
≤ 2µ2r

m

(∣∣∣σ∗
kq+1

∣∣∣+
(
1

2

)t−3 ∣∣∣σ∗
kq

∣∣∣
)
.

with probability ≥ 1− ((q − 1)T + t− 1)n−(10+logα) where T is the number of iterations in the inner loop.

Proof. We prove the lemma by induction on both q and t.

Base Case: q = 1 and t = 0
We begin by first proving an upper bound on ‖L∗‖∞. We do this as follows:

∣∣L∗
ij

∣∣ =
∣∣∣∣∣

r∑

k=1

σ∗
ku

∗
ikv

∗
jk

∣∣∣∣∣ ≤
r∑

k=1

σ∗
k

∣∣u∗
ikv

∗
jk

∣∣ ≤ σ∗
1

r∑

k=1

∣∣u∗
ikv

∗
jk

∣∣ ≤ µ2r√
mn

σ∗
1

where the last inequality follows from Cauchy-Schwartz and the incoherence of U∗. This directly proves
the third claim of the lemma for the base case. We also note that due to the thresholding step and the
incoherence assumption on L∗, we have:

1.
∥∥E(0)

∥∥
∞ ≤

8µ2r
m

(σ∗
2 + 2σ∗

1)
(ζ)

≤ 8µ2r
m

(
8σ∗

k1

)
, and

2. Supp
(
S̃(t)

)
= Supp

(
S̃∗
)
.

where (ζ) follows from Lemma 5. So the base case of induction is satisfied.

Induction over t
We first prove the inductive step over t (for a fixed q). By inductive hypothesis we assume that:

a)
∥∥E(t)

∥∥
∞ ≤

8µ2r
m

(
σ∗
kq+1 +

(
1
2

)t−3
σ∗
kq

)

b) Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)
.

c)
∥∥L∗ − L(t)

∥∥
∞ ≤

2µ2r
m

(
σ∗
kq+1 +

(
1
2

)t−3
σ∗
kq

)

with probability 1− ((q − 1)T + t− 1)n−(10+logα). Then by Lemma 2, we have:

∥∥∥L(t+1) − L∗
∥∥∥
∞
≤ µ2r

m

(
σ∗
kq+1 + 20 ‖H‖2 + 8υ

)
(8)

8

From Lemma 1, we have:

υ ≤ ρn
∥∥∥E(t)

∥∥∥
∞
+8βα logn

(ζ1)

≤ 1

100

(
σ∗
kq+1 +

(
1

2

)t−3

σ∗
kq

)
+8βα logn

(ζ2)

≤ 1

50

(
σ∗
kq+1 +

(
1

2

)t−3

σ∗
kq

)
(9)

where (ζ1) follows from our assumptions on ρ and our inductive hypothesis on
∥∥E(t)

∥∥
∞ and (ζ2) follows

from our assumption on p and by noticing that ‖D‖∞ ≤
∥∥E(t)

∥∥
∞ +

∥∥L∗ − L(t)
∥∥
∞. Recall that D =

L(t) − L∗ + S̃(t) − S̃∗.

From Lemma 11:

‖H‖2 ≤
1

100

(
σ∗
kq+1 +

(
1

2

)t−3

σ∗
kq

)
(10)

with probability ≥ 1− n−(10+logα). From Equations 10, 9 and 8, we have:

∥∥∥L∗ − L(t+1)
∥∥∥
∞
≤ 2µ2r

m

(
σ∗
kq+1 +

(
1

2

)t−2

σ∗
kq

)

which by union bound holds with probability ≥ 1 − ((q − 1)T + t)n−(10+logα). Hence, using Lemma 3 and
12 we have:

1.
∥∥E(t+1)

∥∥
∞ ≤

8µ2r
m

(
σ∗
kq+1 +

(
1
2

)t−2
σ∗
kq

)

2. Supp
(
S̃(t)t+ 1

)
⊆ Supp

(
S̃∗
)
.

which also holds with probability ≥ 1 − ((q − 1)T + t)n−(10+logα). This concludes the proof for induction
over t.

Induction Over Stages q
We now prove the induction over q. Suppose the hypothesis holds for stage q. At the end of stage q, we
have:

1.
∥∥E(T)

∥∥
∞ ≤

8µ2r
m

(
σ∗
kq+1 +

(
1
2

)T
σ∗
kq

)
≤ 8µ2rσ∗

kq+1

m
+ ǫ

10n , and

2. Supp
(
S̃(T)

)
⊆ Supp

(
S̃∗
)
.

with probability ≥ 1− (qT − 1)n−(10+logα). From Lemmas 6 and 11 we get:

∣∣∣σkq+1

(
M (T)

)
− σ∗

kq+1

∣∣∣ ≤ ‖H‖2 ≤
1

100

(
σ∗
kq+1 +

mǫ

10nµ2r

)
(11)

with probability 1 − n−(10+logα). We know that ησkq+1

(
M (t)

)
≥ ǫ

2n which with 11 implies that
∣∣∣σ∗

kq+1

∣∣∣ >
mǫ

10nµ2r
.

∥∥∥L(T+1) − L∗
∥∥∥
∞
≤ 2µ2r

m

(
σ∗
kq+1 +

(
1

2

)T+1

σ∗
kq

)
≤ 2µ2r

m

(
σ∗
kq+1 +

mǫ

20nµ2rn

)

≤ 2µ2r

m

(
σ∗
kq+1 +

σ∗
kq+1

2

)
≤ 2µ2r

m

(
2σ∗

kq+1

) (ζ4)

≤ 2µ2r

m

(
8σ∗

kq+1

)

9

where (ζ4) follows from Lemma 5. By union bound this holds with probability ≥ 1− qTn−(10+logα).

Now, from 12 and 3, we have through a similar series of arguments as above:
∥∥∥E(t)T + 1

∥∥∥
∞
≤ 8µ2r

m

(
8σ∗

kq+1

)
(12)

which holds with probability ≥ 1− qTn−(10+logα).

In the following lemma, we show that that σ∗
kq+1 is sufficiently small compared to σ∗

kq−1+1 and σ∗
kq

is suffi-
ciently large compared to σ∗

kq−1+1. The first condition enables us to show that σ∗
kq+1 decreases geometrically

which ensures that only a small number of “outer iterations” are required for the algorithm to converge while
the second condition ensures that the error measured by ‖E1‖∞ and ‖E3‖∞ is small in comparison to σ∗

kq

which is required for the application of Lemma 3.
Lemma 5. Assume that L∗, Ω and S̃∗ satisfy Assumptions 1,2 and 3 respectively. Furthermore, suppose at
the beginning of the qth stage of algorithm 1:

1.
∥∥L∗ − L(0)

∥∥
∞ ≤

2µ2r
m

(
2σ∗

kq−1+1

)

2.
∥∥E(0)

∥∥
∞ ≤

8µ2r
m

(
2σ∗

kq−1+1

)

Then, the following hold:

1. σ∗
kq
≥ 15

32σ
∗
kq−1+1

2. σ∗
kq+1 ≤ 17

32σ
∗
kq−1+1

with probability ≥ 1− n−(10+logα)

We can now proceed to prove Theorem 1:

Proof of Theorem 1: From Lemma 13 we know that T ≥ log(
3µ2rσ∗

1

ǫ
). Consider the stage q reached at

the termination of the algorithm. We know from Lemma 4 that:

1.
∥∥E(T)

∥∥
∞ ≤

8µ2r
m

(
σ∗
kq+1 +

(
1
2

)T
σ∗
kq

)
≤ 8µ2r

m
σ∗
kq+1 +

ǫ
10n

2.
∥∥L(T) − L∗∥∥

∞ ≤
2µ2r
m

(
σ∗
kq+1 +

(
1
2

)T ∣∣∣σ∗
kq

∣∣∣
)
≤ 2µ2r

m
σ∗
kq+1 +

ǫ
10n

Combining this with Lemmas 6 and 11, we get:

∣∣σkq+1(M
T)
∣∣ ≥ σ∗

kq+1 −
1

100

(
σ∗
kq+1 +

mǫ

10nµ2r

)
(13)

When the while loop terminates, ησkq+1

(
M (T)

)
< ǫ

2n , which from 13, implies that σ∗
kq+1 < mǫ

7nµ2r
. So we

have:

‖L− L∗‖∞ =
∥∥∥L(T) − L∗

∥∥∥
∞
≤ 2µ2r

m
σ∗
kq+1 +

ǫ

10n
≤ ǫ

2n
.

We will now bound the number of iterations required for the PG-RMC to converge.

From claim 2 of Lemma 5, we have σ∗
kq+1 ≤ 17

32σ
∗
kq−1+1 ∀q ≥ 1. By recursively applying this inequality, we

get σ∗
kq+1 ≤

(
17
32

)q
σ∗
1 . We know that when the algorithm terminates, σ∗

kq+1 < ǫ
7µ2r

. Since,
(
17
32

)q
σ∗
1 is an

upper bound for σ∗
kq+1, an upper bound for the number of iterations is 5 log

(
7µ2rσ∗

1

ǫ

)
. Also, note that an

upper bound to this quantity is used to partition the samples provided to the algorithm. This happens with
probability ≥ 1− T 2n−(10+logα) ≥ 1− n− logα. This concludes the proof. �

10

Time(s)
5 10 15

lo
g
||
L

∗
−

L̂
||
F

-6

-4

-2

0

2
n = 5000, µ = 1, r = 10, ρ = 0.01

p = 0.05
p = 0.1
St-NcRPCA

Sampling probability
0.1 0.15 0.2 0.25 0.3

T
im

e(
s)

4

6

8

10

12
n = 2000, µ = 1, r = 5, ρ = 0.01

err = 1e-5
err = 1e-3
err = 1e-1

Rank
5 10 15 20

T
im

e(
s)

0

10

20

30

40
n = 2000, r = 5, ρ = 0.01, p = 0.5

err = 1e-1
err = 1e-3
err = 1e-5

µ

0.5 1 1.5 2

T
im

e(
s)

2

4

6

8

10
n = 2000, r = 5, ρ = 0.01, p = 0.1

err = 1e-5
err = 1e-3
err = 1e-1

(a) (b) (c) (d)

Figure 1: Performance of PG-RMC on synthetic data. (a): time vs error for various sampling probabilities;
time taken by St-NcRMC (b): sampling probability vs time for constant error; time taken decreases with
decreasing sampling probability upto an extent and then increases (c): time vs rank for constant error (d):
incoherence vs time for constant error

4 Experiments

In this section we discuss the performance of Algorithm 1 on synthetic data and its use in foreground
background separation. The goal of the section is two-fold: a) to demonstrate practicality and effectiveness of
Algorithm 1 for the RMC problem, b) to show that Algorithm 1 indeed solves RPCA problem in significantly
smaller time than that required by the existing state-of-the-art algorithm (St-NcRPCA [NUNS+14]). To
this end, we use synthetic data as well as video datasets where the goal is to perform foreground-background
separation [CLMW11].

We implemented our algorithm in MATLAB and the results for the synthetic data set were obtained by
averaging over 20 runs. We obtained a matlab implementation of St-NcRPCA [NUNS+14] from the authors
of [NUNS+14]. Note that if the sampling probability is p = 1, then our method is similar to St-NcRPCA;
the key difference being how rank is selected in each stage.

Parameters. The algorithm has three main parameters: 1) threshold λ, 2) incoherence µ and 3) sampling
probability p (E[|Ω|] = p · mn). In the experiments on synthetic data we observed that keeping λ ∼
µ
∥∥M − S(t)

∥∥
2
/
√
n speeds up the recovery while for background extraction keeping λ ∼ µ

∥∥M − S(t)
∥∥
2
/n

gives a better quality output. The value of µ for real world data sets was figured out using cross validation
while for the synthetic data the same value was used as used in data generation. The sampling probability
for the synthetic data could be kept as low as 2r log2(n)/n while for the real world data set we got good
results for p = 0.05. Also, rather than splitting samples, we use entire set of observed entries to perform our
updates (see Algorithm 1).

Synthetic data. We generate M = L∗+ S̃∗ of two sizes, where L∗ = UV ⊤ ∈ R
2000×2000 (and R

5000×5000) is

a random rank-5 (and rank-10 respectively) matrix with incoherence ≈ 1. S̃∗ is generated by considering a

uniformly random subset of size
∥∥∥S̃∗

∥∥∥
0
from [m]× [n] where every entry is i.i.d. from the uniform distribution

in [r
2
√
mn

, r√
mn

]. This is the same setup as used in [CLMW11].

Figure 1 (a) plots recovery error (‖L − L∗‖F) vs computational time for our PG-RMC method (with
different sampling probabilities) as well as the St-NcRPCA algorithm. Note that even for very small values
of sampling p, we can achieve same recovery error using significantly small values. For example, our method
with p = 0.1 achieve 0.01 error (‖L− L∗‖F) in ≈ 2.5s while St-NcRPCA method requires ≈ 10s to achieve
the same accuracy. Note that we do not compare against the convex relaxation based methods like IALM
from [CLMW11], as [NUNS+14] shows that St-NcRPCA is significantly faster than IALM and several other
convex relaxation solvers.

Figure 1 (b) plots time required to achieve different recovery errors (‖L−L∗‖F) as the sampling probability
p increases. As expected, we observe a linear increase in the run-time with p. Interestingly, for very small

values of p, we observe an increase in running time. In this regime, ‖PΩ(M)‖2

p
becomes very large (as p

11

Time(s)
0 100 200 300

lo
g
||M

−
L̂

−
Ŝ
|| F

-20

-10

0

10

20
µ = 1, r = 5

p = 0.05
p = 0.1
St-NcRPCA

(a) (b) (c)

Time(s)
0 10 20 30

lo
g
||M

−
L̂

−
Ŝ
|| F

-10

-5

0

5

10

15
µ = 1, r = 5

p = 0.01
p = 0.05
p = 0.1
St-NcRPCA

(d) (e) (f)

Figure 2: PG-RMC on Shopping video. (a): a video frame (b): an extracted background frame (c): time vs
error for different sampling probabilities; PG-RMC takes 38.7s while St-NcRMC takes 204.4s. PG-RMC
on Restaurant video. (d): a video frame (e): an extracted background frame (f): time vs error for different
sampling probabilities; PG-RMC takes 7.9s while St-NcRMC takes 27.8s

doesn’t satisfy the sampling requirements). Hence, increase in the number of iterations (T ≈ log ‖PΩ(M)‖2

pǫ
)

dominates the decrease in per iteration time complexity.

Figure 1 (c), (d) plots computation time required by our method (PG-RMC , Algorithm 1) versus rank
and incoherence, respectively. As expected, as these two problem parameters increase, our method requires
more time. Note that our run-time dependence on rank seems to be linear, while our existing results require
O(r3) time. This hints at the possibility of further improving the computational complexity analysis of our
algorithm.

We also study phase transition for different values of sampling probability p. Figure 3 (a) in Appendix 5.4
show a phase transition phenomenon where beyond p > .06 the probability of recovery is almost 1 while
below it, it is almost 0.

Foreground-background separation. We also applied our technique to the problem of foreground-
background separation. We use the usual method of stacking up the vectorized video frames to construct
a matrix. The background, being static, will form the low rank component while the foreground can be
considered to be the noise.

We applied our PG-RMC method (with varying p) to several videos. Figure 2 (a), (d) shows one frame
each from two videos (a shopping center video, a restaurant video). Figure 2 (b), (d) shows the extracted
background from the two videos by using our method (PG-RMC , Algorithm 1) with probability of sampling
p = 0.05. Figure 2 (c), (f) compares objective function value for different p values. Clearly, PG-RMC can
recover the true background with p as small as 0.05. We also observe an order of magnitude speedup (≈ 5x)
over St-NcRPCA [NUNS+14]. We present results on the video Escalator in Appendix 5.4.

Conclusion. In this work, we studied the Robust Matrix Completion problem. For this problem, we
provide exact recovery of the low-rank matrix L∗ using nearly optimal number of observations as well as
nearly optimal fraction of corruptions in the observed entries. Our RMC result is based on a simple and
efficient PGD algorithm that has nearly linear time complexity as well. Our result improves state-of-the-art
for the related Matrix Completion as well as Robust PCA problem. For Robust PCA, we provide first nearly
linear time algorithm under standard assumptions.

12

Our sample complexity depends on ǫ, the desired accuracy in L∗. We believe that the arguments used by
[JN15], we should be able to remove the ǫ dependence as well and leave it for future work. Moreover, improv-
ing dependence of sample complexity on r (from r2 to r) also represents an important direction. Finally, sim-
ilar to foreground background separation, we would like to explore more applications of RMC/RPCA.

13

References

[Bha97] Rajendra Bhatia. Matrix Analysis. Springer, 1997.

[Blu11] Thomas Blumensath. Sampling and reconstructing signals from a union of linear subspaces. IEEE Trans.

Information Theory, 57(7):4660–4671, 2011.

[CJSC11] Yudong Chen, Ali Jalali, Sujay Sanghavi, and Constantine Caramanis. Low-rank matrix recovery from
errors and erasures. In 2011 IEEE International Symposium on Information Theory Proceedings, ISIT

2011, St. Petersburg, Russia, July 31 - August 5, 2011, pages 2313–2317, 2011.

[CLMW11] Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis? J.

ACM, 58(3):11, 2011.

[CR09] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimization. Founda-
tions of Computational Mathematics, 9(6):717–772, December 2009.

[CSPW11] Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo, and Alan S. Willsky. Rank-sparsity incoher-
ence for matrix decomposition. SIAM Journal on Optimization, 21(2):572–596, 2011.

[EKYY13] László Erdos, Antti Knowles, Horng-Tzer Yau, and Jun Yin. Spectral statistics of Erdos–Rényi graphs
I: Local semicircle law. The Annals of Probability, 41(3B):2279–2375, 2013.

[GWL16] Quanquan Gu, Zhaoran Wang Wang, and Han Liu. Low-rank and sparse structure pursuit via alternating
minimization. In Proceedings of the Nineteenth International Conference on Artificial Intelligence and

Statistics, AISTATS 2016, Cádiz, Spain, May 9-11, 2016, 2016.

[HKZ11] Daniel Hsu, Sham M Kakade, and Tong Zhang. Robust matrix decomposition with sparse corruptions.
Information Theory, IEEE Transactions on, 57(11):7221–7234, 2011.

[HMRW14] Moritz Hardt, Raghu Meka, Prasad Raghavendra, and Benjamin Weitz. Computational limits for matrix
completion. In Proceedings of The 27th Conference on Learning Theory, COLT 2014, Barcelona, Spain,

June 13-15, 2014, pages 703–725, 2014.

[HW14] Moritz Hardt and Mary Wootters. Fast matrix completion without the condition number. In Proceedings

of The 27th Conference on Learning Theory, COLT 2014, Barcelona, Spain, June 13-15, 2014, pages
638–678, 2014.

[JMD10] Prateek Jain, Raghu Meka, and Inderjit S. Dhillon. Guaranteed rank minimization via singular value
projection. In NIPS, pages 937–945, 2010.

[JN15] Prateek Jain and Praneeth Netrapalli. Fast exact matrix completion with finite samples. In Proceedings of

The 28th Conference on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015, pages 1007–1034,
2015.

[JRVS11] Ali Jalali, Pradeep Ravikumar, Vishvas Vasuki, and Sujay Sanghavi. On learning discrete graphical
models using group-sparse regularization. In Proceedings of the Fourteenth International Conference on

Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, pages
378–387, 2011.

[JTK14] Prateek Jain, Ambuj Tewari, and Purushottam Kar. On iterative hard thresholding methods for high-
dimensional m-estimation. In Advances in Neural Information Processing Systems 27: Annual Confer-

ence on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 685–693, 2014.

[KLT14] Olga Klopp, Karim Lounici, and Alexandre B Tsybakov. Robust matrix completion. arXiv preprint

arXiv:1412.8132, 2014.

[Li13] Xiaodong Li. Compressed sensing and matrix completion with constant proportion of corruptions.
Constructive Approximation, 37(1):73–99, 2013.

[NUNS+14] Praneeth Netrapalli, Niranjan U N, Sujay Sanghavi, Animashree Anandkumar, and Prateek Jain. Non-
convex robust pca. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 1107–1115. Curran Associates,
Inc., 2014.

[Rec11] Benjamin Recht. A simpler approach to matrix completion. Journal of Machine Learning Research,
12:3413–3430, 2011.

14

[SL15] Ruoyu Sun and Zhi-Quan Luo. Guaranteed matrix completion via nonconvex factorization. In IEEE

56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20

October, 2015, pages 270–289, 2015.

15

5 Appendix

We divide this section into five parts. In the first part we prove some common lemmas. In the second part
we give the convergence guarantee for PG-RMC . In the third part we give another algorithm which has a

sample complexity of O(µ4r3n log2 n log
µ2rσ∗

1

ǫ
) and prove its convergence guarantees. In the fourth part we

prove a generalized form of lemma 1. In the fifth part we present some additional experiments.

For the sake of convenience in the following proofs, we will define some notation here.

We define p =
|Ωk,t|
mn

and we consider the following equivalent update step for L(t+1) in the analysis:

L(t+1) := Pk(M
(t)) M (t) := L∗ +H

H := E(t) + βG E(t) := S̃∗ − S̃(t)

S̃(t) := HT ζ

(
M (t) − L(t)

)
G := 1

β

(
I − PΩq,t

p

)
D

D := L(t) − L∗ + S̃(t) − S̃∗ β :=
2
√
n ‖D‖∞√

p

The singular values of L∗ are denoted by σ∗
1 , . . . , σ

∗
r where |σ∗

1 | ≥ . . . ≥ |σ∗
r | and we will let λ1, . . . , λn denote

the singular values of M (t) where |λ1| ≥ . . . ≥ |λn|.

5.1 Common Lemmas

We will begin by restating some lemmas from previous work that we will use in our proofs.

First, we restate Weyl’s perturbation lemma from [Bha97], a key tool in our analysis:
Lemma 6. Suppose B = A+E ∈ R

m×n matrix. Let λ1, · · · , λk and σ1, · · · , σk be the singular values of B
and A respectively such that λ1 ≥ · · · ≥ λk and σ1 ≥ · · · ≥ σk. Then:

|λi − σi| ≤ ‖E‖2 ∀ i ∈ [k].

This lemma establishes a bound on the spectral norm of a sparse matrix.
Lemma 7. Let S ∈ R

m×n be a sparse matrix with row and column sparsity ρ. Then,

‖S‖2 ≤ ρmax{m,n} ‖S‖∞

Proof. For any pair of unit vectors u and v, we have:

v⊤Su =
∑

1≤i≤m,1≤j≤n

viujSij ≤
∑

1≤i≤m,1≤j≤n

|Sij |
(
v2i + u2

j

2

)

≤ 1

2

 ∑

1≤i≤m

v2i
∑

1≤j≤n

|Sij |+
∑

1≤j≤n

u2
j

∑

1≤i≤m

|Sij |

 ≤ ρmax{m,n} ‖S‖∞

Lemma now follows by using ‖S‖2 = maxu,v,‖u‖2=1,‖v‖2=1 u
TSv.

Now, we define a 0-mean random matrix with small higher moments values.
Definition 1 (Definition 7, [JN15]). H is a random matrix of size m × n with each of its entries drawn
independently satisfying the following moment conditions:

E[hij] = 0, |hij | < 1, E[|hij |k] ≤ 1
max{m,n} ,

for i, j ∈ [n] and 2 ≤ k ≤ 2 logn.

16

We now restate two useful lemmas from [JN15]:
Lemma 8 (Lemma 12, 13 of [JN15]). We have the following two claims:

• Suppose H satisfies Definition 1. Then, w.p. ≥ 1− 1/n10+logα, we have: ‖H‖2 ≤ 3
√
α.

• Let A be a m×n matrix with n ≥ m. Suppose Ω ⊆ [m]× [n] is obtained by sampling each element with
probability p ∈

[
1
4n , 0.5

]
. Then, the following matrix H satisfies Defintion 1:

H :=

√
p

2
√
n ‖A‖∞

(
A− 1

p
PΩ(A)

)
.

Lemma 9 (Lemma 13, [JN15]). Let A ∈ R
n×n be a symmetric matrix with eigenvalues σ1, · · · , σn where

|σ1| ≥ · · · ≥ |σn|. Let B = A + C be a perturbation of A satisfying ‖C‖2 ≤ σk

2 and let Pk(B) = UΛU⊤ by
the rank-k projection of B. Then, Λ−1 exists and we have:

1.
∥∥A−AUΛ−1U⊤A

∥∥
2
≤ |σk|+ 5 ‖C‖2,

2.
∥∥AUΛ−aU⊤A

∥∥
2
≤ 4

(
|σk|
2

)−a+2

∀a ≥ 2.

We now provide a lemma that bounds ‖ · ‖∞ norm of an incoherent matrix with its operator norm.
Lemma 10. Let A ∈ R

m×n be a rank r, µ-incoherent matrix. Then for any C ∈ R
n×m, we have:

‖ACA‖∞ ≤
µ2r√
mn
‖ACA‖2

Proof. Let A = UΣV T . Then, ACA = UUTACAV V T . The lemma now follows by using definition of
incoherence with the fact that ‖UTACAU‖2 ≤ ‖ACA‖2.

We now present a lemma that shows improvement in the error ‖L − L∗‖∞ by using gradient descent on
L(t).
Lemma 11. Let L∗, Ω, S̃∗ satisfy Assumptions 1,2,3 respectively. Also, let the following hold for the t-th
inner-iteration of any stage q:

1.
∥∥L∗ − L(t)

∥∥
∞ ≤

2µ2r
m

(
σ∗
k+1 +

(
1
2

)z
σ∗
k

)

2.
∥∥∥S̃∗ − S̃(t)

∥∥∥
∞
≤ 8µ2r

m

(
σ∗
k+1 +

(
1
2

)z
σ∗
k

)

3. Supp(S̃(t)) ⊆ Supp(S̃∗)

where z ≥ −3 and σ∗
k and σ∗

k+1 are the k and (k + 1)th singular values of L∗. Also, let E1 = S̃(t) − S̃∗ and

E3 =
(
I − PΩq,t

p

)(
L(t) − L∗ + S̃(t) − S̃∗

)
be the error terms defined also in (6). Then, the following holds

w.p ≥ 1− n−(10+logα):

‖E1 + E3‖2 ≤
1

100

(
σ∗
k+1 +

(
1

2

)z

σ∗
k

)
(14)

Proof. Note from Lemma 8,

1

β
E3 =

1

β

(
I − PΩq,t

p

)(
L(t) − L∗ + S̃(t) − S̃∗

)
,

with β = 2
√
n√
p
· ‖L(t) − L∗ + S̃(t) − S̃∗‖∞ satisfies definition 1.

17

We now bound the spectral norm of E1 + E3 as follows:

‖E1 + E3‖2 ≤ ‖E1‖2 + β ·
∥∥∥∥
1

β
E3

∥∥∥∥
2

(ζ1)

≤ ρn
∥∥∥S̃(t) − S̃∗

∥∥∥
∞

+ 3β
√
α,

(ζ2)

≤ 1

200

(
σ∗
kq+1 +

(
1

2

)z

σ∗
kq

)
+

60µ2r

m

√
n

p

√
α

(∣∣∣σ∗
kq+1

∣∣∣+
(
1

2

)z ∣∣∣σ∗
kq

∣∣∣
)
,

(ζ3)

≤ 1

100

(
σ∗
kq+1 +

(
1

2

)z

σ∗
kq

)
.

where (ζ1) follows from Lemma 7 and 8. (ζ2) follows by our assumptions on ρ,
∥∥L(t) − L∗∥∥

∞, and
∥∥∥S̃(t) − S̃∗

∥∥∥
∞
.

(ζ3) follows from our assumption on p.

In the following lemma, we prove that the value of the threshold computed using σk(M
(t)) = σk(L

∗+E1+E3),
where E1, E3 are defined in (6), closely tracks the threshold that we would have gotten had we had access
to the true eigenvalues of L∗, σ∗

k.

Lemma 12. Let L∗, Ω, S̃∗ satisfy Assumptions 1,2,3 respectively. Also, let the following hold for the t-th
inner-iteration of any stage q:

1.
∥∥L∗ − L(t)

∥∥
∞ ≤

2µ2r
m

(
σ∗
k+1 +

(
1
2

)z
σ∗
k

)

2.
∥∥∥S̃∗ − S̃(t)

∥∥∥
∞
≤ 8µ2r

m

(
σ∗
k+1 +

(
1
2

)z
σ∗
k

)

3. Supp(S̃(t)) ⊆ Supp(S̃∗)

where z ≥ −3 and σ∗
k and σ∗

k+1 are the k and (k + 1)th singular values of L∗. Also, let E1 = S̃(t) − S̃∗ and

E3 =
(
I − PΩq,t

p

)(
L(t) − L∗ + S̃(t) − S̃∗

)
be the error terms defined also in (6). Then, the following holds

∀z > −3 w.p ≥ 1− n−(10+logα):

7

8

(
σ∗
k+1 +

(
1

2

)z+1

σ∗
k

)
≤
(
λk+1 +

(
1

2

)z+1

λk

)
≤ 9

8

(
σ∗
k+1 +

(
1

2

)z+1

σ∗
k

)
, (15)

where λk := σk(M
(t)) = σk(L

∗ + E1 + E3) and E1, E3 are defined in (6).

Proof. Using Weyl’s inequality (Lemma 6), we have: : |λk − σ∗
k| ≤ ‖E1 + E3‖2 and

∣∣λk+1 − σ∗
k+1

∣∣ ≤ ‖E1 +
E3‖2 We now proceed to prove the lemma as follows:

∣∣∣∣∣λk+1 +

(
1

2

)z+1

λk − σ∗
k+1 −

(
1

2

)z+1

σ∗
k

∣∣∣∣∣ ≤
∣∣λk+1 − σ∗

k+1

∣∣+
(
1

2

)z+1

|λk − σ∗
k| ,

≤ ‖E1 + E3‖2

(
1 +

(
1

2

)z+1
)

(ζ)

≤ 1

100

(
σ∗
k+1 +

(
1

2

)z

σ∗
k

)(
1 +

(
1

2

)z+1
)
,

≤ 1

8

(
σ∗
k+1 +

(
1

2

)z+1

σ∗
k

)
,

where (ζ) follows from Lemma 11 and the last inequality follows from the assumption that z ≥ −3.

Next, we show that the projected gradient descent update (6) leads to a better estimate of L∗, i.e., we bound
‖L(t+1) − L∗‖∞. Under the assumptions of the below given Lemma, the proof follows arguments similar to
[NUNS+14] with additional challenge arises due to more involved error terms E1, E3.

Our proof proceeds by first symmetrizing our matrices by rectangular dilation. We first begin by noting
some properties of symmetrized matrices used in the proof of the following lemma.

18

Remark 1. Let A be a m× n dimensional matrix with singular value decomposition UΣV ⊤. We denote its

symmetrized version be As :=

[
0 A⊤

A 0

]
. Then:

1. The singular value decomposition of As is given by As = UsΣsU
⊤
s where

Us :=
1√
2

[
V V
U −U

]
Σs :=

[
Σ 0
0 −Σ

]

2. P2k (As) =

[
0 Pk(A

⊤)
Pk(A) 0

]

3. We have A2j
s =

[
(A⊤A)j 0

0 (AA⊤)j

]
A2j+1

s =

[
0 (A⊤A)jA⊤

(AA⊤)jA 0

]

4. We have

UsΣ
−j
s U⊤

s =

[
V Σ−jV ⊤ 0

0 UΣ−jU⊤

]
when j is even

UsΣ
−j
s U⊤

s =

[
0 VΣ−jU⊤

UΣ−jV ⊤ 0

]
when j is odd

Proof of Lemma 2:
L(t+1)
s = P2k (L

∗
s +Hs)

Let l = m + n. Let λ1, · · · , λl be the eigenvalues of M
(t)
s = L∗

s + Hs with |λ1| ≥ |λ2| · · · ≥ |λl|. Let

u1, u2, · · · , ul be the corresponding eigenvectors of M
(t)
s . Using Lemma 6 along with the assumption on

‖Hs‖2, we have: |λ2k| ≥ 3σ∗

k

4 .

Let UΛV be the eigen vector decomposition of L(t+1). Let UsΛsU
⊤
s to be the eigen vector decomposition of

L
(t+1)
s . Then, using Remark 1 we have ∀ i ∈ [2k]:

(L∗
s +Hs)ui = λiui, i.e.

(
I − Hs

λi

)
ui = L∗

sui.

As |λ2k| ≥ 3σ∗

k

4 and ‖Hs‖2 ≤ 1
4σ

∗
k, we can apply the Taylor’s series expansion to get the following expression

for ui:

ui =
1

λi

I +

∞∑

j=0

(
Hs

λi

)j

L∗

sui.

That is,

L(t+1)
s =

2k∑

i=1

λiuiu
⊤
i =

2k∑

i=1

λ−1
i

∑

0≤s,t<∞

(
Hs

λi

)s

L∗
suiu

⊤
i L

∗
s

(
Hs

λi

)t

,

=
∑

0≤s,t<∞

2k∑

i=1

λ
−(s+t+1)
i Hs

sL
∗
suiu

⊤
i L

∗
sH

t
s =

∑

0≤s,t<∞
Hs

sL
∗
sUsΛ

−(s+t+1)
s U⊤

s L∗
sH

t
s.

19

Subtracting L∗
s on both sides and taking operator norm, we get:

∥∥∥L(t+1)
s − L∗

s

∥∥∥
∞

=
∥∥UsΛsU

⊤
s − L∗

s

∥∥
∞ =

∥∥∥∥∥∥

∑

0≤s,t<∞
Hs

sL
∗
sUsΛ

−(s+t+1)
s U⊤

s L∗
sH

t
s − L∗

s

∥∥∥∥∥∥
∞

,

≤
∥∥L∗

sUsΛ
−1
s U⊤

s L∗
s − L∗

s

∥∥
∞ +

∑

1≤s+t<∞

∥∥∥Hs
sL

∗
sUsΛ

−(s+t+1)
s U⊤

s L∗
sH

t
s

∥∥∥
∞

. (16)

We separately bound the first and the second term of RHS. The first term can be bounded as follows:

∥∥L∗
sUsΛ

−1
s U⊤

s L∗
s − L∗

s

∥∥
∞

(ζ1)

≤
∥∥∥∥L

∗
s

[
0 V Σ−1U⊤

UΣ−1V ⊤ 0

]
L∗
s − L∗

s

∥∥∥∥
∞

(17)

≤
∥∥L∗V Σ−1U⊤L∗ − L∗∥∥

∞

(ζ2)

≤ µ2r√
mn

∥∥L∗UΛ−1U⊤L∗ − L∗∥∥
2

(ζ3)

≤ µ2r√
mn

(∣∣σ∗
k+1

∣∣+ 5 ‖H‖2
)
, (18)

where (ζ1) follows Remark 1, (ζ2) from Lemma 10 and (ζ3) follows from Claim 1 of Lemma 9.

We now bound second term of RHS of (16) which we again split in two parts. We first bound the terms
with s+ t > logn:

∥∥∥Hs
sL

∗
sUsΛ

−(s+t+1)
s U⊤

s L∗
sH

t
s

∥∥∥
∞
≤
∥∥∥Hs

sL
∗
sUsΛ

−(s+t+1)
s U⊤

s L∗
sH

t
s

∥∥∥
2

(ζ1)

≤ ‖Hs‖s+t

2 4

(
2

σ∗
k

)−(s+t−1)

≤ 4 ‖H‖2
(
‖H‖2

2

σ∗
k

)−(s+t−1) (ζ2)

≤ 4µ2r

m
‖H‖2

(
1

2

)−(s+t−1−logn)

, (19)

where (ζ1) follows from the second claim of Lemma 9 and noting that ‖Hs‖2 = ‖H‖2 and (ζ2) follows from
assumption on ‖H‖2 and using the fact that s+ t ≥ log n.

Summing up over all terms with s+ t > logn, we get from 19 and 18:

∥∥∥L(t+1)
s − L∗

s

∥∥∥
∞
≤ µ2r√

mn

(∣∣σ∗
k+1

∣∣+ 20 ‖H‖2
)
+

∑

0<s+t≤log n

∥∥∥Hs
sL

∗
sUsΛ

−(s+t+1)
s U⊤

s L∗
sH

t
s

∥∥∥
∞

(20)

Now, for terms corresponding to 1 ≤ s+ t ≤ logn, we have:
∥∥∥Hs

sL
∗
sUsΛ

−(s+t+1)
s U⊤

s L∗
sH

t
s

∥∥∥
∞

= max
q1∈[m+n],q2∈[m+n]

∣∣∣e⊤q1H
s
sL

∗
sUsΛ

−(s+t+1)
s U⊤

s L∗
sH

t
seq2

∣∣∣

≤
(

max
q1∈[m+n]

∥∥e⊤q1H
s
sU

∗
s

∥∥
2

)∥∥∥Σ∗
s(U

∗
s)

⊤UsΛ
−(s+t+1)
s U⊤

s U∗
sΣ

∗
s

∥∥∥
2

(
max

q2∈[m+n]

∥∥e⊤q2H
tU∗

s

∥∥
2

)

(ζ1)

≤ µ2r

m
υs+t

∥∥∥L∗
sUsΛ

−(s+t+1)
s U⊤

s L∗
s

∥∥∥
2

(ζ2)

≤ 4µ2r

m
υs+t

(
2

σ∗
k

)s+t−1

≤ 4µ2r

m
υ

(
1

2

)s+t−1

, (21)

where (ζ1) follows from assumption on H in the lemma statement, (ζ2) follows from Claim 2 of Lemma
9.

It now remains to bound the terms, max
q1∈[m+n]

∥∥e⊤q1Hs
sU

∗
s

∥∥
2
. Note from Remark 1.1 that U∗

s = 1√
2

[
V ∗ V ∗

U∗ −U∗

]
.

Now, we have the following cases for Hs
s :

Hj
s =

[(
H⊤H

) s
2 0

0
(
HH⊤) s

2

]
when s is even Hj

s =

[
0 H⊤ (HH⊤)⌊ s

2 ⌋

H
(
H⊤H

)⌊ s
2 ⌋ 0

]
when s is odd

In these two cases, we have:

20

Hs
sU

∗
s = 1√

2

[(
H⊤H

) s
2 V ∗ (

H⊤H
) s

2 V ∗
(
HH⊤) s

2 U∗ −
(
HH⊤) s

2 U∗

]
Hs

sU
∗
s = 1√

2

[
H⊤ (HH⊤)⌊ s

2 ⌋ U∗ −H⊤ (HH⊤)⌊ s
2 ⌋ U∗

H
(
H⊤H

)⌊ s
2 ⌋ V ∗ H

(
H⊤H

)⌊ s
2 ⌋ V ∗

]

This leads to the following 4 cases for max
q1∈[m+n]

∥∥e⊤q1Hs
sU

∗
s

∥∥
2
:

for s even max
q′∈[n]

∥∥∥e⊤q′
(
H⊤H

) s
2 V ∗

∥∥∥
2

max
q′∈[m]

∥∥∥e⊤q′
(
HH⊤) s

2 U∗
∥∥∥
2

for s odd max
q′∈[n]

∥∥∥e⊤q′H⊤ (HH⊤)⌊ s
2 ⌋ U∗

∥∥∥
2

max
q′∈[m]

∥∥∥e⊤q′H
(
H⊤H

)⌊ s
2 ⌋ V ∗

∥∥∥
2

we get the bound on these terms in Lemma 15. Also, note from the Remark 1.2 that
∥∥∥L∗

s − L
(t+1)
s

∥∥∥
∞

=
∥∥L∗ − L(t+1)

∥∥
∞.

Now, summing up 21 over all 1 ≤ s+ t ≤ logn and combining with 20 we get the required result. �

In the next lemma, we show that with the threshold chosen in the algorithm, we show an improvement in
the estimation of S̃∗ by S̃(t+1).

Proof of Lemma 3: We first prove the first claim of the lemma. Consider an index pair (i, j) /∈
Supp(S̃∗).

∣∣∣Mij − L
(t)
ij

∣∣∣ ≤ 2µ2r

m

(
σ∗
k+1 +

(
1

2

)z

σ∗
k

)
(ζ1)

≤ 16µ2r

7m

(
λk+1 +

(
1

2

)z

λk

)
≤ η

(
λk+1 +

(
1

2

)z

λk

)

where (ζ1) follows from the second assumption. Hence, we do not threshold any entry that is not corrupted

by S̃∗.

Now, we prove the second claim of the lemma. Consider an index entry (i, j) ∈ Supp(S̃∗). Here, we consider
two cases:

1. The entry (i, j) ∈ Supp(S̃(t)): Here the entry (i, j) is thresholded. We know that L
(t)
ij + S̃

(t)
ij = L∗

ij+ S̃∗
ij

from which we get ∣∣∣S̃(t)
ij − S̃∗

ij

∣∣∣ =
∣∣∣L∗

ij − L
(t)
ij

∣∣∣ ≤
∥∥∥L∗ − L(t)

∥∥∥
∞

2. The entry (i, j) /∈ Supp(S̃(t)): Here the entry (i, j) is not thresholded. We know that
∣∣∣L∗

ij + S̃∗
ij − L

(t)
ij

∣∣∣ ≤
ζ from which we get

∣∣∣S̃∗
ij

∣∣∣ ≤ ζ +
∣∣∣L∗

ij − L
(t)
ij

∣∣∣
(ζ2)

≤ 36µ2r

8m

(
σ∗
k+1 +

(
1

2

)z

σ∗
k

)
+

2µ2r

m

(
σ∗
k+1 +

(
1

2

)z

σ∗
k

)

≤ 8µ2r

m

(
σ∗
k+1 +

(
1

2

)z

σ∗
k

)

where (ζ2) follows from the second assumption along with the assumption about η = µ2r
m

.

The above two cases prove the second statement of the lemma. �

Lemma 13. The number of iteration T in the inner loop of Algorithm 1 and Algorithm 2 satisfy:

T ≥ 10 log
(
7n2µ2rσ∗

1/ǫ
)

w.p ≥ 1− n−(10+logα). Here σ∗
1 is the highest singular value of L∗, r is it’s rank and µ is it’s incoherence.

21

Proof. We have the bound since

∥∥∥∥
n1n2

|Ω| PΩ

(
M − S̃(0)

)∥∥∥∥
2

=

∥∥∥∥L
∗ +

(
I − PΩ

p

)((
S̃(0) − S∗

)
− L∗

)
+
(
S∗ − S̃(0)

)∥∥∥∥
2

≥ σ∗
1 − ‖H‖2

(ζ1)

≥ 3

4
σ∗
1

where (ζ1) follows from Lemma 11.

We will now prove Lemma 1

Proof of Lemma 1: Recall the definitions ofE1 =
(
S̃∗ − S̃(t)

)
, E2 =

(
L(t) − L∗) , E3 =

(
I − PΩq,t

p

)
(E2 − E1)

and β = 2
√

n
p
‖E2 − E1‖∞. Recall that H := E1 + E3 From Lemma 8, we have that 1

β
E3 satisfies Def-

inition 1. This implies that the matrix 1
β
(E1 + E3) satisfies the conditions of Lemma 15. Now, we have

∀1 ≤ a ≤ ⌈logn⌉ and ∀i ∈ [n]:

∥∥ei(HH⊤)aU∗∥∥
2
= β2a

∥∥∥∥∥ei
((

1

β
H

)(
1

β
H

)⊤)a

U∗

∥∥∥∥∥
2

(ζ)

≤ β2a

(
ρn

β
‖E1‖∞ + c logn

)2a

µ

√
r

m
≤ µ

√
r

m

(
ρn ‖E1‖∞ + 2c

√
n

p
(‖E1‖∞ + ‖E2‖∞) logn

)2a

where (ζ) follows from the application of Lemma 15 along with the incoherence assumption on U∗. The
other statements of the lemma can be proved in a similar manner by invocations of the different claims of
Lemma 15. �

Proof of Lemma 5: We know that:

λkq
≤ σ∗

kq
+ ‖H‖2 , λkq−1+1 ≥ σ∗

kq−1+1 − ‖H‖2 , λkq
≥ λkq−1+1

2

Combining the three inequalities, we get:

σ∗
kq
≥

σ∗
kq−1+1 − 3 ‖H‖2

2

Applying Lemma 11, we get the first claim of the lemma.

Similar to the first claim, we have:

λkq+1 ≥ σ∗
kq+1 − ‖H‖2 , λkq−1+1 ≤ σ∗

kq−1+1 + ‖H‖2 , λkq+1 ≤
λkq−1+1

2

Again, combining the three inequalities, we get:

σ∗
kq+1 ≤

σ∗
kq−1+1 + 3 ‖H‖2

2

Another application of Lemma 11 gives the second claim. �

22

Algorithm 2 L̂ = R-RMC(Ω,PΩ(M), ǫ, r, η): Non-convex Robust Matrix Completion

1: Input: Observed entries Ω, Matrix PΩ(M) ∈ R
m×n, convergence criterion ǫ, target rank r, thresholding

parameter η

2: T ← 10 log
10µ2rn2‖PΩ(M)‖2n

|Ω|ǫ /*Number of inner iterations*/

3: Partition Ω into rT subsets {Ωq,t : q ∈ [r], t ∈ [T]} uniformly at random
4: L(0) = 0, M (0) ← mn

|Ω|PΩ(M), ζ ← ηmn
|Ω| σ1(PΩ(M))

5: q ← 0
6: while σq+1(M

(0)) > ǫ
2ηm do

7: q ← q + 1
8: for Iteration t = 0 to t = T do
9: S(t) = Hζ(PΩq,t

(M − L(t))) /*Projection onto set of sparse matrices*/

10: M (t) = L(t) − mn
|Ωq,t|PΩq,t

(L(t) + S(t) −M) /*Gradient Descent Update*/

11: L(t+1) = Pq(M
(t)) /*Projected Gradient Descent step*/

12: Set threshold ζ ← η
(
σq+1(M

(t)) +
(
1
2

)t
σq(M

(t))
)

13: end for
14: S(0) = S(T), L(0) = L(T+1),M (0) = M (T)

15: end while
16: Return: L(T+1)

5.2 Algorithm R-RMC

Proof of Theorem 2: From Lemma 13 we know that T ≥ log(
3µ2nrσ∗

1

mǫ
).

Consider the stage q reached at the termination of the algorithm. We know from Lemma 14 that:

1.
∥∥E(T)

∥∥
∞ ≤

8µ2r
m

(
σ∗
q+1 +

(
1
2

)T
σ∗
q

)
≤ 8µ2r

m
σ∗
q+1 +

ǫ
10n

2.
∥∥L(T) − L∗∥∥

∞ ≤
2µ2r
m

(
σ∗
q+1 +

(
1
2

)T
σ∗
q

)
≤ 2µ2r

m
σ∗
q+1 +

ǫ
10n

Combining this with Lemmas 6 and 11, we get:

σq+1(M) ≥ σ∗
q+1 −

1

100

(
σ∗
q+1 +

mǫ

10nµ2r

)
(22)

When the while loop terminates, ησq+1

(
M (T)

)
< ǫ

2n , which from 22, implies that σ∗
q+1 < mǫ

7nµ2r
. So we

have:

‖L− L∗‖∞ =
∥∥∥L(T) − L∗

∥∥∥
∞
≤ 2µ2r

m
|σ∗

kq+1|+
ǫ

10n
≤ ǫ

2n
.

�

As in the case of the proof of Theorem 1, the following lemma shows that we simultaneously make progress
in both the estimation of L∗ and S̃∗ by L(t) and S̃(t) respectively. Similar to Lemma 4, we make use of
Lemmas 3 and 2 to show how improvement in estimation of one of the quantities affects the other and the

other five terms, ‖H‖2, max
q′∈[n]

∥∥∥e⊤q′
(
H⊤H

)j
V ∗
∥∥∥
2
, max
q′∈[m]

∥∥∥e⊤q′
(
HH⊤)j U∗

∥∥∥
2
, max
q′∈[n]

∥∥∥e⊤q′H⊤ (HH⊤)j U∗
∥∥∥
2
and

max
q′∈[m]

∥∥∥e⊤q′H
(
H⊤H

)j
V ∗
∥∥∥
2
are analyzed the same way:

23

Lemma 14. Let L∗, Ω, S̃∗ and S̃(t) satisfy Assumptions 1,2,3 respectively. Then, in the tth iteration of the
qth stage of Algorithm 2, S̃(t) and L(t) satisfy:

∥∥∥S̃(t) − S̃∗
∥∥∥
∞
≤ 8µ2r

m

(
σ∗
q+1 +

(
1

2

)t−1

σ∗
q

)
,

Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)
, and

∥∥∥L(t) − L∗
∥∥∥
∞
≤ 2µ2r

m

(
σ∗
q+1 +

(
1

2

)t−1

σ∗
q

)
.

with probability ≥ 1− ((q − 1)T + t− 1)n−(10+logα) where T is the number of iterations in the inner loop.

Proof. We prove the lemma by induction on both q and t.

Base Case: q = 1 and t = 0
We begin by first proving an upper bound on ‖L∗‖∞. We do this as follows:

∣∣L∗
ij

∣∣ =
∣∣∣∣∣

r∑

k=1

σ∗
ku

∗
ikv

∗
jk

∣∣∣∣∣ ≤
r∑

k=1

∣∣σ∗
ku

∗
ikv

∗
jk

∣∣ ≤ σ∗
1

r∑

k=1

∣∣u∗
ikv

∗
jk

∣∣ ≤ µ2r

m
σ∗
1

where the last inequality follows from Cauchy-Schwartz and the incoherence of U∗. This directly proves
the third claim of the lemma for the base case. We also note that due to the thresholding step and the
incoherence assumption on L∗, we have:

1.
∥∥E(0)

∥∥
∞ ≤

8µ2r
m

(σ∗
2 + 2σ∗

1)

2. Supp
(
S̃(t)

)
= Supp

(
S̃∗
)
.

So the base case of induction is satisfied.

Induction over t
We first prove the inductive step over t (for a fixed q). By inductive hypothesis we assume that:

a)
∥∥E(t)

∥∥
∞ ≤

8µ2r
m

(
|σ∗

q+1|+
(
1
2

)t−1 |σ∗
q |
)

b) Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)
.

c)
∥∥L∗ − L(t)

∥∥
∞ ≤

2µ2r
m

(
|σ∗

q+1|+
(
1
2

)t−1 |σ∗
q |
)

with probability 1− ((q − 1)T + t− 1)n−(10+logα).

Then by Lemma 2, we have:

∥∥∥L(t+1) − L∗
∥∥∥
∞
≤ µ2r

m

(
|σ∗

kq+1|+ 20 ‖H‖2 + 8υ
)

(23)

From Lemma 1, we have:

υ ≤ ρn
∥∥∥E(t)

∥∥∥
∞

+ 8βα logn
(ζ1)

≤ 1

100

(
σ∗
q+1 +

(
1

2

)t−1

σ∗
q

)
+ 8βα logn

(ζ2)

≤ 1

50

(
σ∗
q+1 +

(
1

2

)t−1

σ∗
q

)
(24)

where (ζ1) follows from our assumptions on ρ and our inductive hypothesis on
∥∥E(t)

∥∥
∞ and (ζ2) follows

from our assumption on p and by noticing that ‖D‖∞ ≤
∥∥E(t)

∥∥
∞ +

∥∥L∗ − L(t)
∥∥
∞. Recall that D =

L(t) − L∗ + S̃(t) − S̃∗.

24

From Lemma 11:

‖H‖2 ≤
1

100

(
σ∗
q+1 +

(
1

2

)t−1

σ∗
q

)
(25)

with probability ≥ 1− n−(10+logα). From Equations 25, 24 and 23, we have:

∥∥∥L∗ − L(t+1)
∥∥∥
∞
≤ 2µ2r

m

(
σ∗
q+1 +

(
1

2

)t

σ∗
q

)

which by union bound holds with probability ≥ 1 − ((q − 1)T + t)n−(10+logα). Hence, using Lemma 3 and
12 we have:

1.
∥∥E(t+1)

∥∥
∞ ≤

8µ2r
m

(
σ∗
q+1 +

(
1
2

)t
σ∗
q

)

2. Supp
(
S̃(t+1)

)
⊆ Supp

(
S̃∗
)
.

which also holds with probability ≥ 1 − ((q − 1)T + t)n−(10+logα). This concludes the proof for induction
over t.

Induction Over Stages q
We now prove the induction over q. Suppose the hypothesis holds for stage q. At the end of stage q, we
have:

1.
∥∥E(T)

∥∥
∞ ≤

8µ2r
m

(
σ∗
q+1 +

(
1
2

)T
σ∗
q

)
≤ 8µ2rσ∗

q+1

m
+ ǫ

10n

2. Supp
(
S̃(T)

)
⊆ Supp

(
S̃∗
)
.

with probability ≥ 1− (qT − 1)n−(10+logα).

From Lemmas 6 and 11 we get:

∣∣∣σq+1

(
M (T)

)
− σ∗

q+1

∣∣∣ ≤ ‖H‖2 ≤
1

100

(
σ∗
q+1 +

mǫ

10nµ2r

)
(26)

with probability 1−n−(10+logα). We know that ησq+1

(
M (t)

)
≥ ǫ

2n which with 26 implies that σ∗
q+1 > mǫ

10nµ2r
.

∥∥∥L(T+1) − L∗
∥∥∥
∞
≤ 2µ2r

m

(
σ∗
q+1 +

(
1

2

)T+1

σ∗
q

)
≤ 2µ2r

m

(
σ∗
q+1 +

mǫ

20µ2rn

)

≤ 2µ2r

m

(
σ∗
q+1 +

σ∗
q+1

2

)
≤ 2µ2r

m

(
2σ∗

q+1

)

By union bound this holds with probability ≥ 1− qTn−(10+logα).

Now, from 12 and 3, we have through a similar series of arguments as above:

∥∥∥E(T+1)
∥∥∥
∞
≤ 8µ2r

m

(
2σ∗

kq+1

)
(27)

which holds with probability ≥ 1− qTn−(10+logα).

25

5.3 Proof of a generalized form of Lemma 1

Lemma 15. Suppose H = H1 + H2 and H ∈ R
m×n where H1 satisfies Definition 1 (Definition 7 from

[JN15]) and H2 is a matrix with column and row sparsity ρ. Let U be a matrix with rows denoted as
u1, . . . , um and let V be a matrix with rows denoted as v1, . . . , vn. Let eq be the qth vector from standard
basis. Let τ = max{max

i∈[m]
‖ui‖ ,max

i∈[n]
‖vi‖}. Then, for 0 ≤ a ≤ logn:

max
q∈[n]

∥∥∥e⊤q
(
H⊤H

)a
V
∥∥∥
2
, max
q∈[m]

∥∥∥e⊤q
(
HH⊤)a U

∥∥∥
2
≤ (ρn ‖H2‖∞ + c logn)2aτ

max
q∈[n]

∥∥∥e⊤q H⊤ (HH⊤)a U
∥∥∥
2
, max
q∈[m]

∥∥∥e⊤q H
(
H⊤H

)a
V
∥∥∥
2
≤ (ρn ‖H2‖∞ + c logn)2a+1τ

with probability n−2 log c
4+4.

Proof. Similar to [JN15], we will prove the statement for q = 1 and it can be proved for q ∈ [n] by taking a
union bound over all q. For the sake of brevity, we will prove only the inequality:

max
q∈[n]

∥∥∥e⊤q
(
H⊤H

)a
V
∥∥∥
2
≤ (ρn ‖H2‖∞ + c logn)2aτ

The rest of the lemma follows by applying similar arguments to the appropriate quantities.

Let ω : [2a]→ {1, 2} be a function used to index a single term in the expansion of (H⊤H)a. We express the
term as follows:

(H⊤H)a =
∑

ω

a∏

i=1

H⊤
ω(2i−1)Hω(2i)

We will now fix one such term ω and then bound the length of the following random vector:

vω = e⊤1

a∏

i=1

(H⊤
ω(2i−1)Hω(2i))V

Let α be used to denote a tuple (i, j) of integers used to index entries in a matrix. Let T (i) be used to
denote the parity function computed on i, i.e, 0 if i is divisible by 2 and 1 otherwise. This function indicates
if the matrix in the expansion is transposed or not. We now introduce Bp,q

(i,j),(k,l), p ∈ {1, 2}, q ∈ {0, 1} and
Ap

(i,j), p ∈ {1, 2} which are defined as follows:

Ap

(i,j)
:= δi,1(δp,1 + δp,21{(i,j)∈Supp(H2)})

Bp,q

(i,j),(k,l)
:= (δq,1δj,l + δq,0δi,k)(δp,1 + δp,21{(k,l)∈Supp(H2)})

where δi,j = 1 if i = j and 0 otherwise. We will subsequently write the random vector vω in terms of the
individual entries of the matrices. The role of Bp,q

(i,j),(k,l) and Ap

(i,j) is to ensure consistency in the terms used

to describe vω. We will use hi,α to refer to (Hi)α.

With this notation in hand, we are ready to describe vω.

26

vω =
∑

α1,...,α2a

α1(1)=1

Aω(1)
α1

Bω(2),T (2)
α1α2

. . . Bω(2a),T (2a)
α2a−1α2a

hω(1),α1
· · ·hω(2a),α2a

vα2a(2)

We now write the squared length of vω as follows:

Xω =
∑

α1,...,α2a,α
′

1,...,α
′

2a

α1(1)=1,α′

1(1)=1

Aω(1)
α1

Bω(2),T (2)
α1α2

. . . Bω(2a),T (2a)
α2a−1α2a

hω(1),α1
· · ·hω(2a),α2a

Aω(1)
α1

B
ω(2),T (2)
α′

1α
′

2
. . . B

ω(2a),T (2a)
α′

2a−1α
′

2a
hω(1),α′

1
· · ·hω(2a),α′

2a
〈vα2a(2), vα′

2a(2)
〉

We can see from the above equations that the entries used to represent vω are defined with respect to paths
in a bipartite graph. In the following, we introduce notations to represent entire paths rather than just
individual edges:

Let α := (α1, . . . , α2a) and

ζα := Aω(1)
α1

Bω(2),T (2)
α1α2

. . . Bω(2a),T (2a)
α2a−1α2a

hω(1),α1
. . . hω(2a),α2a

Now, we can write:

Xω =
∑

α,α′

α1(1)=α′

1(1)=1

ζαζα′〈vα2a(2), vα′

2a(2)
〉

Calculating the kth moment expansion of Xω for some number k, we obtain:

E[Xk
ω] =

∑

α1,...,α2k

E[ζα1 . . . ζα2k〈vα1
2a(2)

, vα2
2a(2)
〉 . . . 〈v

α
2k−1
2a (2), vα2k

2a(2)
〉] (28)

We now show how to bound the above moment effectively. Notice that the moment is defined with respect
to a collection of 2k paths. We denote this collection by ∆ := (α1, . . . ,α2k). For each such collection, we
define a partition Γ(∆) of the index set {(s, l) : s ∈ [2k], l ∈ [2a]} where (s, l) and (s′, l′) are in the same
equivalence class if ω(l) = ω(l′) = 1 and αs

l = αs′

l′ . Additionally, each (s, l) such that ω(l) = 2 is in a separate
equivalence class.

We bound the expression in (28) by partitioning all possible collections of 2k paths based on the partitions
defined by them in the above manner. We then proceed to bound the contribution of any one specific path
to (28) following a particular partition Γ, the number of paths satisfying that particular partition and finally,
the total number of partitions. Since, H1 is a matrix with 0 mean, any equivalence class containing an index
(s, l) such that ω(l) = 1 contains at least two elements.

We proceed to bound (28) by taking absolute values:

E[Xk
ω] ≤

∑

α1,...,α2k

E[|ζα1 | . . . |ζα2k ||〈vα1
2a(2)

, vα2
2a(2)
〉| . . . |〈v

α2k−1
2a (2), vα2k

2a(2)
〉|] (29)

We now fix one particular partition and bound the contribution to (29) of all collections of paths ∆ that
correspond to a valid partition Γ.

We construct from Γ a directed multigraph G. The equivalence classes of Γ form the vertex set of G, V (G).
There are 4 kinds of edges in G where each type is indexed by a tuple (p, q) where p ∈ {1, 2}, q ∈ {0, 1}.

27

We denote the edge sets corresponding to these 4 edge types by E(1,0), E(1,1), E(2,0) and E(2,1) respectively.
An edge of type (p, q) exists from equivalence class γ1 to equivalence class γ2 if there exists (s, l) ∈ γ1 and
(s′, l′) ∈ γ2 such that l′ = l + 1, s = s′, ω(s′) = p and T (l′) = q.

The summation in 29 can be written as follows:

E[|ζα1 | . . . |ζα2k |
∣∣∣〈vα1

2a(2)
, vα2

2a(2)
〉
∣∣∣ . . .

∣∣∣〈vα2k−1
2a (2), vα2k

2a(2)
〉
∣∣∣]

≤ τ2k

(
2k∏

s=1

A
ω(1)
αs

1

2a−1∏

l=1

B
ω(l+1),T (l+1)
αs

l
,αs

l+1

)
E

[(
2k∏

s=1

2a∏

l=1

∣∣∣hω(l),αs
l

∣∣∣
)]

(ζ1)

≤ τ2k

(
2k∏

s=1

A
ω(1)
αs

1

2a−1∏

l=1

B
ω(l+1),T (l+1)
αs

l
,αs

l+1

)
∏

γ∈V1(G)

1

n

∏

γ∈V2(G)

‖H2‖∞

=
τ2k ‖H2‖w2

∞
nw1

(
2k∏

s=1

A
ω(1)
αs

1

2a−1∏

l=1

B
ω(l+1),T (l+1)
αs

l
,αs

l+1

)

where (ζ1) follows from the moment conditions on H1. V1(G) and V2(G) are the vertices in the graph
corresponding to tuples (i, j) such that ω(j) = 1 and ω(j) = 2 respectively and w1 = |V1(G)|, w2 = |V2(G)|.
We first consider an equivalence class γ1 such that there exists an index (s, l) ∈ γ1 and l = 1. We form a
spanning tree T1 of all the nodes reachable from γ1 with γ1 as root. We then remove the nodes V (T1) from
the graph G and repeat this procedure until we obtain a set of l trees T1, . . . , Tl with roots γ1, . . . , γl such

that
l⋃

i=1

V (Gi) = V (G). This happens because every node is reachable from some equivalence class which

contains an index of the form (s, 1). Also, each of these trees Ti, ∀ i ∈ [l] is disjoint in their vertex sets.
Given this decomposition, we can factorize the above product as follows:

E[Xk
ω] ≤

τ2k ‖H2‖w2

∞
nw1

l∏

j=1

∑

α1,...,αvj

Aω(1)
α1

∏

{γ,γ′}∈E(1,0)(Tj)

B1,0
αγαγ′

∏

{γ,γ′}∈E(1,1)(Tj)

B1,1
αγαγ′

∏

{γ,γ′}∈E(2,0)(Tj)

B2,0
αγαγ′

∏

{γ,γ′}∈E(2,1)(Tj)

B2,1
αγαγ′

(30)

For a single connected component, we can compute the summation bottom up from the leaves. First, notice
that:

∑
αγ′

B2,1
αγαγ′

≤ ρn
∑
αγ′

B2,0
αγαγ′

≤ ρn

∑
αγ′

B1,1
αγαγ′

= n
∑
αγ′

B1,0
αγαγ′

= n

Where the first two follow from the sparsity of H2. Every node in the tree Tj with the exception of the root
has a single incoming edge. For the root, γj , we have:

∑
α1

A
ω(1)
α1 ≤ ρn for ω(1) = 2

∑
α1

A
ω(1)
α1 = n for ω(1) = 1

From the above two observations, we have:

28

∑

α1,...,αvj

Aω(1)
α1

∏

{γ,γ′}∈E(1,0)(Tj)

B1,0
αγαγ′

∏

{γ,γ′}∈E(1,1)(Tj)

B1,1
αγαγ′

∏

{γ,γ′}∈E(2,0)(Tj)

B2,0
αγαγ′

∏

{γ,γ′}∈E(2,1)(Tj)

B2,1
αγαγ′

≤ (ρn)w2,jnw1,j

where wk,j represents the number of vertices in the jth component which contain tuples (i, j) such that
ω(j) = k for k ∈ {1, 2}.
Plugging the above in (30) gives us

E[Xk
ω(Γ)] ≤

τ2k ‖H2‖w2

∞
nw1

(ρn)
∑

j
w2,jn

∑
j
w1,j = τ2k ‖H2‖w2

∞ (ρn)w2

Let a1 and a2 be defined as |{i : ω(i) = 1}| and |{i : ω(i) = 2}| respectively (Note that w2 = 2a2k). Sum-

ming up over all possible partitions (there are (2a1k)
2a1k of them), we get our final bound on E

[
X̂k

ω

]
as

τ2k(ρn ‖H2‖∞)2a2k(2a1k)
2a1k.

Now, we bound the probability that X̂ω is too large. Choosing k =
⌈
logn
a1

⌉
and applying the kth moment

Markov inequality, we obtain:

Pr
[∣∣∣X̂ω

∣∣∣ > (c logn)2a1τ2(ρn ‖H2‖∞)2a2

]
≤ E

[∣∣∣X̂ω

∣∣∣
k
](

1

(c logn)2a1τ2(ρn ‖H2‖∞)2a2

)k

≤
(

2ka1
c logn

)2ka1

≤ n−2 log c
4

Taking a union bound over all the 2a possible ω, over values of a from 1 to logn and over the n values of q,
we get the required result.

5.4 Additional Experimental Results

We detail some additional experiments performed with Algorithm 1 in this section. The experiments were
performed on synthetic data and real world data sets.

Synthetic data. We generate a random matrix M ∈ R
2000×2000 in the same way as described in Section

4. In these experiments our aim is to analyze the behavior of the algorithm in extremal cases. We consider
two of such cases : 1) sampling probability is very low (Figure 3 (a)), 2) number of corruptions is very large
(Figure 3 (b)). In the first case, we see that the we get a reasonably good probability of recovery (∼ 0.8)
even with very low sampling probability (0.07). In the second case, we observe that the time taken to recover
seems almost independent of the number of corruptions as long as they are below a certain threshold. In our
experiments we saw that on increasing the ρ to 0.2 the probability of recovery went to 0. To compute the
probability of recovery we ran the experiment 20 times and counted the number of successful runs.

Foreground-background separation. We present results for one more real world data set in this section.
We applied our PG-RMC method (with varying p) to the Escalator video. Figure 4 (a) shows one frame

29

Time(s)
0 5 10

P
ro

b
 o

f
re

co
ve

ry

0

0.5

1

n = 2000, µ = 1, r = 5, ρ = 0.01

log ||L∗ − L̂||F ≤ 0.1

p = 0.09
p = 0.08
p = 0.07
p = 0.06

Time(s)
0 5 10

P
ro

b
 o

f
re

co
ve

ry

0

0.5

1

n = 2000, µ = 1, r = 5, p = 0.1

log ||L∗ − L̂||F ≤ 0.1

ρ = 0.08

ρ = 0.1

ρ = 0.18

(a) (b)

Figure 3: We run the PG-RMC algorithm with extremal values of sampling probability and fraction of
corruptions, and record the probability with which we recover the original matrix, (a) : time vs probability of
recovery for very small values of sampling probability, (b) : time vs probability of recovery for large number
of corruptions (ρn2)

Time(s)
0 20 40 60

lo
g
||
M

−
L̂

−
Ŝ
||
F

-20

-10

0

10

20
µ = 1, r = 5

p = 0.01
p = 0.05
p = 0.1
St-NcRPCA

(a) (b) (c)

Figure 4: PG-RMC on Escalator video. (a): a video frame (b): an extracted background frame (c): time
vs error for different sampling probabilities; PG-RMC takes 7.3s while St-NcRMC takes 52.9s

from the video. Figure 4 (b) shows the extracted background from the video by using our method (PG-
RMC , Algorithm 1) with probability of sampling p = 0.05. Figure 4 (c) compares objective function value
for different p values.

30

0.05 0.1 0.15 0.2 0.25 0.3
3

4

5

6

7

8

9

10

11

12

1e-01
1e-02
1e-03
1e-04
1e-05

	1 Introduction
	2 Algorithm
	3 Analysis
	3.1 Proof of Theorem ??

	4 Experiments
	5 Appendix
	5.1 Common Lemmas
	5.2 Algorithm R-RMC
	5.3 Proof of a generalized form of Lemma ??
	5.4 Additional Experimental Results

