

Spatial Audio research at Microsoft

Hannes Gamper MSR Labs

Collaborators and contributors

Audio and Acoustics Research Group in MSR Labs

Sweden

Hannes GamperDavid JohnstonIvan TashevMark R. P. ThomasJens AhrensMicrosoft ResearchMicrosoft ResearchMicrosoft ResearchDolby LaboratoriesChalmers University,

Interns: Piotr Bilinski, Archontis Politis, Keith Godin

The exceptional engineering teams in HoloLens, Kinect, and Windows we had the honour to work with

Introduction

VR & AR devices

Oculus Rift

Samsung Gear VR

Microsoft Hololens

Definition: Spatial audio

- Within audible frequency and dynamic range
- Delivered to one or both ears
- Contains auditory localisation cues:
 - Interaural time and level differences]
 - Spectral cues

Head-related transfer function (HRTF)

- Reverberation
- Dynamic and multimodal cues
- (expectation and experience)

Oj

Oj

Real sound source

Virtual sound source

Oj

Real sound source

Spatial audio rendering via headrelated transfer functions (HRTFs)

HRTF measurement and personalisation

Rendering framework

Anthropometry

3-D scan, photo, questionnaire, measurements

HRTFs Measured, modelled

Spatial sound Hololens, Windows 10, Cities Unlocked

HRTF measurement

Measurement locations

HRTF measurement rig

MSR HRTF database

- ~200 subjects
- HRTFs measured at 400 locations
- High resolution 3D head scans
- Direct anthropometrics measurements
 - Head width, depth, height, etc.
- Questionnaire
 - Hat size, shirt size, jeans size, etc.

3-D head scan

Measurement tools

Direct estimation

Trace acoustic propagation from source positions to ear entrances.

Good results with highresolution scan

Gamper, H.; Thomas, M. & Tashev, I. (2015). "Estimation of multipath propagation delays and interaural time differences from 3-D head scans." *Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP)*.

Microsoft Research Faculty Summit 2016

Anthropometry-based personalisation

Given database of anthropometric features, represent a new candidate's features as a sparse combination α of people in the database.

Combine HRTF magnitude spectra with same weights α to synthesize personalized HRTF.

P. Bilinski, J. Ahrens, M. R. P. Thomas, I. J. Tashev, J. C. Platt, "HRTF magnitude synthesis via sparse representation of anthropometric features," *ICASSP*, 2014.

Model-based personalisation

Given single (Kinect) depth image, fit average face to scan.

Map geometric deformation to acoustic features.

Average face fitted to depth image.

HRTF personalisation demonstration

Rendering approaches

Object-based rendering

Render each source individually

Provides full 3-D control

Complexity increases ~linearly with #sources

Suitable for synthetic (AR/VR) scenes \rightarrow e.g., Hololens

Object-based rendering

Render each source individually

Channel-based rendering

())

Parametric approaches

Render (fixed) number of virtual speakers

Based on psychoacoustics

Constant complexity

→ Directional Audio Coding (DirAC)*

*V. Pulkki, "Spatial sound reproduction with directional audio coding," J. Audio Eng. Soc., vol. 55, no. 6, pp. 503-516, June 2007.

Modal rendering

Render fixed spherical order

De facto media standard

Variable complexity

Suitable for spatial recordings (e.g., Ambisonics) → e.g., Ambisonics

Modal rendering

Sound field capture

16-ch. 4.5" spherical mic. array

64-ch. 200mm spherical mic. array

16-ch. 4.5" cylindrical mic. array

Future outlook

Improve rendering engine

Continue HRTF personalization efforts

Collect user feedback

Study elevation perception (intern: Vani Rajendran)

Pinna scans.

HRTFs: Application-specific tuning AR vs. VR

Object-based rendering vs. modal rendering

Dealing with constraints, expectation

Reverb and room modelling

AR vs. VR

Object-based rendering vs. modal rendering

Dealing with constraints, expectation

Conclusion

Spatial audio is key component of AR/VR experience

Growing number of devices/applications/users

Many open research questions – we have only scratched the surface!

Thank you!

 $\ensuremath{\textcircled{C}}$ Copyright Microsoft Corporation. All rights reserved.

Backup slides

AR & VR scenes

Comparison: vision vs. hearing

	Vision*	Hearing
Frequency range	430 – 770 THz (1 octave)	20 – 20000 Hz (10 octaves)
Wavelength	700-390 m ⁻⁹	17 - 0.017 m
Dynamic range	~140 dB	~140 dB
Spatial resolution	~1 arc minute	~5-20 degrees
Temporal resolution	~1/25 s	~10-20 µs
Field of view	130° vertical, 200° horizontal	4π steradians
Energy	Up to 1000 W/m ² in a daylight	Pain threshold 10 ⁻⁵ W/m ²

*Source: Wikipedia

- \rightarrow Sound is a low energy phenomenon with wavelengths comparable to objects surrounding us.
- \rightarrow Human hearing has high temporal/low spatial resolution, unlimited field of view.
- \rightarrow Both senses are head-locked!

Interaural time delay modelling

Fit sphere to scan to parameterise ITD models.

Should work with noisier scans (e.g., Kinect)

Sphere fitted to 3-D head scan.

Gamper, H.; Thomas, M. & Tashev, I. (2015). "Anthropometric parameterisation of a spherical scatterer ITD model with arbitrary ear angles." *Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)*.

