Prediction Serving

what happens after learning?

Joseph E. Gonzalez

Asst. Professor, UC Berkeley

jegonzal@cs.berkeley.edu

Co-founder, GraphLab (now Turi Inc.) joseph@dato.com

Learning Systems

Cluster Management

Multi Task Learning for Job Scheduling Cross-Cloud Perf. Estimation

Outline

.°.,VELOX

Active Collaborators

Daniel Crankshaw

lon Stoica

Learning

Timescale: minutes to days Systems: offline and batch optimized Heavily studied ... major focus of the AMPLab

Timescale: ~10 milliseconds **Systems:** *online* and *latency* optimized *Less studied ...*

System [CIDR'15]

Daniel Crankshaw, Peter Bailis, Haoyuan Li, Zhao Zhang, Joseph Gonzalez, Michael J. Franklin, Ali Ghodsi, and Michael I. Jordan

Key Insight:

Decompose models into fast and slow changing components

Hybrid Offline + Online Learning

Update feature functions offline using batch solvers

- Leverage high-throughput systems (Tensor Flow)
- Exploit slow change in population statistics

 $f(x;\theta)^T w_u$

Update the user weights online:

- Simple to train + more robust model
- Address rapidly changing user statistics

Common modeling structure

 $f(x;\theta)^T w_u$

Matrix Ensemble Deep Learning **Factorization Methods** Items Users Input

Velox Online Learning for Recommendations (Simulated News Rec.)

Partial Updates: 0.4 ms Retraining: 7.1 seconds

>4 orders-of-magnitude faster adaptation

Solution VELOX: the Missing Piece of BDAS

Learning

-amplab// Berkeley Data A nalytics S tack

. VELOX: the Missing Piece of BDAS

. VELOX: the Missing Piece of BDAS

. VELOX Architecture

Fraud Detection

Content
Rec.

. VELOX Architecture

Solution VELOX as a Middle Layer Arch?

NETFLIX

Content Rec.

Fraud

Detection

Personal Asst.

Cher Come Carles

Robotic

Control

Machine Translation

Generalize Velox?

Clipper Generalizes Velox Across ML Frameworks

Fraud Detection

Content Rec. Personal Asst. Robotic Control

Machine Translation

Ich fliege nach the second sec

Clipper

theano

Pearn

Clipper

Key Insight: Conference of Con

As a result, Clipper is able to:

hide complexity

by providing a common prediction interface

bound latency and maximize throughput

- through approximate caching and adaptive batching
- enable robust online learning and personalization
 - through generalized split-model correction policies

without modifying machine learning frameworks or end-user applications

Clipper Design Goals

Low and **bounded** latency predictions

interactive applications need reliable latency objectives

Up-to-date and personalized predictions across models and frameworks

generalize the split model decomposition

Optimize **throughput** for performance under heavy load

single query can trigger many predictions

Simplify deployment

serve models using the original code and systems

Provides a unified generic prediction API across frameworks

- ➢ Reduce Latency → Approximate Caching
- ➤ Increase Throughput → Adaptive Batching
- ➤ Simplify Deployment → RPC + Model Wrapper

Common Interface \rightarrow Simplifies Deployment:

- Evaluate models using original code & systems
- > Models run in separate processes
 - Resource isolation

Common Interface → Simplifies Deployment:

- Evaluate models using original code & systems
- > Models run in separate processes
 - Resource isolation
 - Scale-out

Problem: frameworks optimized for batch processing not latency

Adaptive Batching to Improve Throughput

> Why batching helps:

A single page load may generate many queries

Hardware Acceleration

GRPG

Helps amortize system overhead

- Optimal batch depends on:
 - hardware configuration
 - model and framework
 - system load

Clipper Solution:

be as **slow** as **allowed**...

- Application specifies latency objective
- Clipper uses TCP-like tuning algorithm to increase latency up to the objective

Tensor Flow Conv. Net (GPU)

Comparison to TensorFlow Serving

Takeaway: Clipper is able to **match the average latency** of TensorFlow Serving while reducing **tail latency (2x)** and **improving throughput (2x)**

Approximate Caching to Reduce Latency

Opportunity for caching

Popular items may be evaluated frequently

Need for approximation

High Dimensional and continuous valued queries have low cache hit rate.

Clipper Solution: *Approximate Caching*

apply locality sensitive hash functions

Goal:

Maximize accuracy through ensembles, online learning, and personalization

Generalize the **split-model** insight from Velox to achieve:

- robust predictions by combining multiple models & frameworks
- online learning and personalization by correcting and personalizing predictions in response to feedback

Correction Policy

Improves prediction **accuaray** by:

- Incorporating real-time feedback
- Managing personalization
- Combine models & frameworks
 enables frameworks to compete

Improved Prediction Accuracy (ImageNet)

System	Model	Error Rate	#Errors	
Caffe	VGG	13.05%	6525	
Caffe	LeNet	11.52%	5760	
Caffe	ResNet	9.02%	4512	
TensorFlow	Inception v3	6.18%	3088	

sequence of pre-trained state-of-the-art models

Improved Prediction Accuracy

System					rrors
Caffe	5.2% relative improvement				6525
Caffe	in prediction accuracy!			5760	
Caffe		Resnei	9.027 0		4512
TensorF	low	Inception v3	6.18%		3088
Clipper		Ensemble	5.86%		2930

Cost of Ensembles

Increased Load

- Solutions:
 - Caching and Batching
 - Load-shedding correction policy can prioritize frameworks

Stragglers

- e.g., framework fails to meet SLO
- Solution: Anytime predictions
 - Correction policy must render predictions with missing inputs
 - e.g., built-in correction policies
 substitute expected value

Anytime Predictions

Application

Evaluation of Throughput Under Heavy Load

Takeaway: Clipper is able to gracefully degrade accuracy to maintain availability under heavy load.

Coarsening + Anytime Predictions

Conclusion

Clipper sits between applications and ML frameworks to

- > to simplifying deployment
- bound latency and increase throughput
- > and enable real-time learning and personalization across machine learning frameworks

Ongoing & Future Research Directions

- Serving and updating RL models
- Bandit techniques in correction policies
 - Collaboration with MSR
- Splitting inference across the cloud and the client to reduce latency and bandwidth requirements
- Secure model evaluation on the client (model DRM)