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Abstract

Modern prediction problems arising in multilabel learning and learning to rank
pose unique challenges to the classical theory of supervised learning. These prob-
lems have large prediction and label spaces of a combinatorial nature and involve
sophisticated loss functions. We offer a general framework to derive mistake
driven online algorithms and associated loss bounds. The key ingredients in our
framework are a general loss function, a general vector space representation of
predictions, and a notion of margin with respect to a general norm. Our general
algorithm, Predtron, yields the perceptron algorithm and its variants when instan-
tiated on classic problems such as binary classification, multiclass classification,
ordinal regression, and multilabel classification. For multilabel ranking and sub-
set ranking, we derive novel algorithms, notions of margins, and loss bounds. A
simulation study confirms the behavior predicted by our bounds and demonstrates
the flexibility of the design choices in our framework.

1 Introduction

Classical supervised learning problems, such as binary and multiclass classification, share a number
of characteristics. The prediction space (the space in which the learner makes predictions) is often
the same as the label space (the space from which the learner receives supervision). Because di-
rectly learning discrete valued prediction functions is hard, one learns real-valued or vector-valued
functions. These functions generate continuous predictions that are converted into discrete ones
via simple mappings, e.g., via the ‘sign’ function (binary classification) or the ‘argmax’ function
(multiclass classification). Also, the most commonly used loss function is simple, viz. the 0-1 loss.

In contrast, modern prediction problems, such as multilabel learning, multilabel ranking, and subset
ranking do not share these characteristics. In order to handle these problems, we need a more general
framework that offers more flexibility. First, it should allow for the possibility of having different
label space and prediction space. Second, it should allow practitioners to use creative, new ways
to map continuous, vector-valued predictions to discrete ones. Third, it should permit the use of
general loss functions.

Extensions of the theory of classical supervised learning to modern predictions problems have be-
gun. For example, the work on calibration dimension [1] can be viewed as extending one aspect of
the theory, viz. that of calibrated surrogates and consistent algorithms based on convex optimiza-
tion. This paper deals with the extension of another interesting part of classical supervised learning:
mistake driven algorithms such as perceptron (resp. winnow) and their analyses in terms of `2 (resp.
`1) margins [2, Section 7.3].
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We make a number of contributions. First, we provide a general framework (Section 2) whose
ingredients include an arbitrary loss function and an arbitrary representation of discrete predic-
tions in a continuous space. The framework is abstract enough to be of general applicability but
it offers enough mathematical structure so that we can derive a general online algorithm, Predtron
(Algorithm 1), along with an associated loss bound (Theorem 1) under an abstract margin condi-
tion (Section 2.2). Second, we show that our framework unifies several perception-like algorithms
for classical problems such as binary classification, multiclass classification, ordinal regression, and
multilabel classification (Section 3). Even for these classical problems, we get some new results, for
example, when the loss function treats labels asymmetrically or when there exists a ‘reject’ option
in classification. Third, we apply our framework to two modern prediction problems: subset rank-
ing (Section 4) and multilabel ranking (Section 5). In both of these problems, the prediction space
(rankings) is different from the supervision space (set of labels or vector of relevance scores). For
these two problems, we propose interesting, novel notions of correct prediction with a margin and
derive mistake bounds under a loss derived from NDCG, a ranking measure that pays more attention
to the performance at the top of a ranked list. Fourth, our techniques based on online convex opti-
mization (OCO) can effortlessly incorporate notions of margins w.r.t. non-Euclidean norms, such as
`1 norm, group norm, and trace norm. Such flexibility is important in modern prediction problems
where the learned parameter can be a high dimensional vector or a large matrix with low group or
trace norm. Finally, we test our theory in a simulation study (Section 6) dealing with the subset
ranking problem showing how our framework can be adapted to a specific prediction problem. We
investigate different margin notions as we vary two key design choices in our abstract framework:
the map used to convert continuous predictions into discrete ones, and the choice of the norm used
in the definition of margin.

Related Work. Our general algorithm is related to the perceptron and online gradient descent al-
gorithms used in structured prediction [3, 4]. But, to the best of knowledge, our emphasis on keeping
label and prediction spaces possibly distinct, our use of a general representation of predictions, and
our investigation of generalized notions of margins are all novel. The use of simplex coding in mul-
ticlass problems [5] inspired the use of maximum similarity/minimum distance decoding to obtain
discrete predictions from continuous ones. Our proofs use results about Online Gradient Descent
and Online Mirror Descent from the Online Convex Optimization literature [6].

2 Framework and Main Result

The key ingredients in classic supervised learning are an input space, an output space and a loss
function. In this paper, the input space X ∈ Rp will always be some subset of a finite dimensional
Euclidean space. Our algorithms maintain prediction functions as a linear combination of the seen
inputs. As a result, they easily kernelize and the theory extends, in a straightforward way to the case
when the input space is a, possibly infinite dimensional, reproducing kernel Hilbert space (RKHS).

2.1 Labels, Prediction, and Scores

We will distinguish between the label space and the prediction space. The former is the space where
the training labels come from whereas the latter is the space where the learning algorithm has to
make predictions in. Both spaces will be assumed to be finite. Therefore, without any loss of
generality, we can identify the label space with [`] = {1, . . . , `} and the prediction space with [k]
where `, k are positive, but perhaps very large, integers. A given loss function L : [k] × [`] → R+

maps a prediction σ ∈ [k] and a label y ∈ [`] to a non-negative loss L(σ, y). The loss L can
equivalently be thought of as a k × ` matrix with loss values as entries. Define the set of correct
predictions for a label y as Σy = {σy ∈ [k] : L(σy, y) = 0}. We assume that, for every label
y, the set Σy is non-empty. That is, every column of the loss matrix has a zero entry. Also, let
cL = minL(σ,y)>0 L(σ, y) and CL = maxσ,y L(σ, y) be the minimum (non-zero) and maximum
entries in the loss matrix.

In an online setting, the learner will see a stream of examples (Xτ , Yτ ) ∈ X × [`]. Learner will
predict scores using a linear predictor W ∈ Rd×p. However, the predicted scores WXτ will be
in Rd, not in the prediction space [k]. So, we need a function pred : Rd → [k] to convert scores
into actual predictions. We will assume that there is a unique representation rep(σ) ∈ Rd of each
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prediction σ such that ‖ rep(σ)‖2 = 1 for all σ. Given this, a natural transformation of scores into
prediction is given by the following maximum similarity decoding:

pred(t) ∈ argmax
σ∈[k]

〈rep(σ), t〉 , (1)

where ties in the “argmax” can be broken arbitrarily. There are some nice consequences of the
definition of pred above. First, because ‖ rep(σ)‖2 = 1, maximum similarity decoding is equivalent
to nearest neighbor decoding: pred(t) ∈ argminσ ‖ rep(σ)− t‖2. Second, we have a homogeneity
property: pred(ct) = pred(t) if c > 0. Third, rep serves as an “inverse” of pred in the following
sense. We have, pred(rep(σ)) = σ for all σ. Moreover, rep(pred(t)) is more similar to t than the
representation of any other prediction σ:

∀t ∈ Rd, σ ∈ [k], 〈rep(pred(t)), t〉 ≥ 〈rep(σ), t〉 .

In view of these facts, we will use pred−1(σ) and rep(σ) interchangeably. Using pred, the loss
function L can be extended to a function defined on Rd × [k] as:

L(t, y) = L(pred(t), y).

With a little abuse of notation, we will continue to denote this new function also by L.

2.2 Margins

We say that a score t is compatible with a label y if the set of σ’s that achieve the maximum in the
definition (1) of pred is exactly Σy . That is, argmaxσ∈[k]

〈
pred−1(σ), t

〉
= Σy. Hence, for any

σy ∈ Σy, σ /∈ Σy , we have
〈
pred−1(σy), t

〉
>
〈
pred−1(σ), t

〉
. The notion of margin makes this

requirement stronger. We say that a score t has a margin γ > 0 on label y, iff t is compatible with
y and

∀σy ∈ Σy, σ /∈ Σy,
〈
pred−1(σy), t

〉
≥
〈
pred−1(σ), t

〉
+ γ

Note that margin scales with t: if t has margin γ on y then ct has margin cγ on y for any positive c.
If we are using linear predictions t = WX , we say that W has margin γ on (X, y) iff t = WX has
margin γ on y. We say thatW has margin γ on a dataset (X1, y1), . . . , (Xn, yn) iffW has margin γ
on (Xτ , yτ ) for all τ ∈ [n]. Finally, a dataset (X1, y1), . . . , (Xn, yn) is said to be linearly separable
with margin γ if there is a unit norm1 W ? such that W ? has margin γ on (X1, y1), . . . , (Xn, yn).

2.3 Algorithm

Just like the classic perceptron algorithm, our generalized perceptron algorithm (Algorithm 1) is
mistake driven. That is, it only updates on round when a mistake, i.e., a non-zero loss, is incurred.
On a mistake round, it makes a rank-one update of the form Wτ+1 = Wτ − gτ · X>τ where gτ ∈
Rd, Xτ ∈ Rp. Therefore, Wτ always has a representation of the form

∑
i giX

>
i . The prediction

on a fresh input X is given by
∑
i gi 〈Xi, X〉 which means the algorithm, just like the original

perceptron, can be kernelized.

We will give a loss bound for the algorithm using tools from Online Convex Optimization (OCO).
Define the function φ : Rd × [`]→ R as

φ(t, y) = max
σ∈[k]

(
L(σ, y)−

〈
pred−1(σy)− pred−1(σ), t

〉)
(2)

where σy ∈ Σy is an arbitrary member of Σy . For any y, φ(·, y) is a point-wise maximum of linear
functions and hence convex. Also, φ is non-negative: choose σ = σy to lower bound the maximum.
The inner product part vanishes and the loss L(σy, y) vanishes too because σy ∈ Σy . Given the
definition of φ, Algorithm 1 can be described succinctly as follows. At round τ , if L(WτXτ , Yτ ) >
0, then Wτ+1 = Wτ − η∇Wφ(WXτ , Yτ ), otherwise Wτ+1 = Wτ .

1Here, we mean that the Frobenius norm ‖W ?‖F equals 1. Of course, the notion of margin can be gener-
alized to any norm including the entry-based `1 norm ‖W‖1 and the spectrum-based `1 norm ‖W‖S(1) (also
called the nuclear or trace norm). See Appendix B.2.
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Algorithm 1 Predtron: Extension of the Perceptron Algorithm to General Prediction Problems
1: W1 ← 0
2: for τ = 1, 2, . . . do
3: Receive Xτ ∈ Rp
4: Predict στ = pred(WτXτ ) ∈ [k]
5: Receive label yτ ∈ [`]
6: if L(στ , yτ ) > 0 then
7: (t, y) = (WτXτ , yτ )
8: σ̃τ = argmaxσ∈[k]

(
L(σ, y)−

〈
pred−1(σy)− pred−1(σ), t

〉)
∈ [k]

9: ∇τ = (pred−1(σ̃τ )− pred−1(σy)) ·X>τ ∈ Rd×p
10: Wτ+1 = Wτ − η∇τ
11: else
12: Wτ+1 = Wτ

13: end if
14: end for

Theorem 1. Suppose the dataset (X1, y1), . . . , (Xn, yn) is linearly separable with margin γ. Then
the sequence Wτ generated by Algorithm 1 with η = cL/(4R

2) satisfies the loss bound,
n∑
τ=1

L(WτXτ , yτ ) ≤ 4R2C2
L

cLγ2

where ‖Xτ‖2 ≤ R for all τ .

Note that the bound above assumes perfect linear separability. However, just the classic perceptron,
the bound will degrade gracefully when the best linear predictor does not have enough margin on
the data set.

The Predtron algorithm has some interesting variants, two of which we consider in the appendix. A
loss driven version, Predtron.LD, enjoys a loss bound that gets rid of the CL/cL factor in the bound
above. A version, Predtron.Link, that uses link functions to deal with margins defined with respect
to non-Euclidean norms is also considered.

3 Relationship to Existing Results

It is useful to discuss a few concrete applications of the abstract framework introduced in the last
section. Several existing loss bounds can be readily derived by applying our bound for the general-
ized perceptron algorithm in Theorem 1. In some cases, our framework yields a different algorithm
than existing counterparts, yet admitting identical loss bounds, up to constants.

Binary Classification. We begin with the classical perceptron algorithm for binary classification
(i.e., ` = 2) [7]: L0-1(σ, y) = 1 if σ 6= y or 0 otherwise. Letting rep(σ) be +1 for the positive
class and −1 for the negative class, predictor vector Wτ ∈ R1×p, and thus pred(t) = sign(t),
Algorithm 1 reduces to the original perceptron algorithm; Theorem 1 yields identical mistake bound
on a linearly separable dataset with margin γ (if the classical margin is γ, ours works out to be
2γ), i.e.

∑n
τ=1 L0-1(WτXτ , yτ ) ≤ R2

γ2 . We can also easily incorporate asymmetric losses. Let
Lα(σ, y) = αy , if σ 6= y and 0 otherwise. We then have the following result.
Corollary 2. Consider the perceptron with weighted loss Lα. Assume α1 ≥ α2 without loss of
generality. Then the sequence Wτ generated by Algorithm 1 satisfies the weighted mistake bound,

n∑
τ=1

Lα(WτXτ , yτ ) ≤ 4R2α2
1

α2
2γ

2
.

We are not aware of such results for weighted loss. Previous work [8] studies perceptrons
with uneven margins, and the loss bound there only implies a bound on the unweighted loss:∑n
τ=1 L0-1(tτ , yτ ). In a technical note, Rätsch and Kivinen [9] provide a mistake bound of the
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form (without proof):
∑n
τ=1 Lα(WτXτ , yτ ) ≤ R2

4γ2 , but for the specific choice of weights α1 = a2

and α2 = (1− a)2 for any a ∈ [0, 1].

Another interesting extension is obtained by allowing the predictions to have a REJECT option. De-
fine LREJ(REJECT, y) = βy and LREJ(σ, y) = L0-1(σ, y) otherwise. Assume 1 ≥ β1 ≥ β2 > 0 with-
out loss of generality. Choosing the standard basis vectors in R2 to be rep(σ) for the positive and the
negative classes, and rep(REJECT) = 1√

2

∑
σ∈{1,2} rep(σ), we obtain

∑n
τ=1 LREJ(WτXτ , yτ ) ≤

4R2β2
1

γ2β2
2

(See Appendix C.1).

Multiclass Classification. Each instance is assigned exactly one of m classes (i.e., ` = m).
Extending binary classification, we choose the standard basis vectors in Rm to be rep(σ) for
the m classes. The learner predicts score t ∈ Rm using the predictor W ∈ Rm×p. So,
pred(t) = argmaxi ti. Let wj denote the jth row of W (corresponding to label j). The defini-
tion of margin becomes:

〈wy, X〉 −max
j 6=y
〈wj , X〉 ≥ γ

which is identical to the multiclass margin studied earlier [10]. For the multiclass 0-1 loss L0-1, we
recover their bound, up to constants2. Moreover, our surrogate φ for L0-1:

φ(t, y) = max
(
0, 1 + max

σ 6=y
tσ − ty

)
,

matches the multiclass extension of the Hinge loss studied by [11]. Finally, note that it is straight-
forward to obtain loss bounds for multiclass perceptron with REJECT option by naturally extending
the definitions of rep and LREJ for the binary case.

Ordinal Regression. The goal is to assign ordinal classes (such as ratings) to a set of objects
{X1, X2, . . . } described by their features Xi ∈ Rp. In many cases, precise rating information
may not be available, but only their relative ranks; i.e., the observations consist of object-rank pairs
(Xτ , yτ ) where yτ ∈ [`]. Y is totally-ordered with “>” relation, which in turn induces a partial
ordering on the objects (Xj is preferred to Xj′ if yj > yj′ , Xj and Xj′ are not comparable if
yj = yj′ ). For the ranking loss L(σ, y) = |σ − y|, the PRank perceptron algorithm [12] enjoys the
bound

∑n
τ=1 L(ττ , yτ ) ≤ (` − 1)(R2 + 1)/γ̃2, where γ̃ is a certain rank margin. By a reduction

to multi-class classification with ` classes, Algorithm 1 achieves the loss bound 4(` − 1)2R2/γ2

(albeit, for a different margin γ).

Multilabel Classification. This setting generalizes multiclass classification in that instances are
assigned subsets of m classes rather than unique classes, i.e., ` = 2m. The loss function L of
interest may dictate the choice of rep and in turn pred. For example, consider the following subset
losses that treat labels as well as predictions as subsets: (i) Subset 0-1 loss: LIsErr(σ, y) = 1 if
σ = y or 0 otherwise; (ii) Hamming loss: LHam(σ, y) = |σ ∪ y| − |σ ∩ y|, and (ii) Error set
size: LErrSetSize(σ, y) =

∣∣{(r, s) ∈ y × ([m] \ y) : r 6∈ σ, s ∈ σ}
∣∣. A natural choice of rep then

is the subset indicator vector in {+1,−1}d, where d = m = log `, which can be expressed as
rep(σ) = 1√

m

(∑
j∈σ ej−

∑
j 6∈σ ej

)
(where ej’s are the standard basis vectors in Rm). The learner

predicts score t ∈ Rm using a matrix W ∈ Rm×p. Note that pred(t) = sign(t), where sign is
applied component-wise. The number of predictions is 2m, but we show in Appendix C.2 that the
surrogate (2) and its gradient can be efficiently computed for all of the above losses.

4 Subset Ranking

In subset ranking [13], the task is to learn to rank a number of documents in order of their relevance to
a query. We will assume, for simplicity, that the number of documents per query is constant that we
denote by m. The input space is a subset of Rm×p0 that we can identify with Rp for p = mp0. Each
row of an input matrix corresponds to a p0-dimensional feature vector derived jointly using the query

2Perceptron algorithm in [10] is based on a slightly different loss defined as LErrSet(t, y) = 1 if |{r 6= y :
tr ≥ ty}| > 0 or 0 otherwise (where t = WX). This loss upper bounds L0-1 (because of the way ties are
handled, there can be rounds when L0-1 is 0, but LErrSet is 1).
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and one of the documents associated with it. The predictions σ are all m! permutations of degree m.
The most natural (but by no means the only one) representation of permutations is to set rep(σ) =
−σ/Z where σ(i) is the position of the document i in the predicted ranking and the normalization
Z ensures that rep(σ) is a unit vector. Note that the dimension d of this representation is equal tom.
The minus sign in this representation ensures that pred(t) outputs a permutation that corresponds to
sorting the entries of t in decreasing order, a common convention in existing work. A more general
representation is obtained by setting rep(σ) = f(σ)/Z where f : R → R is a strictly decreasing
real valued function that is applied entry-wise to σ. The normalization Z =

√∑m
i=1 f

2(i) ensures
that ‖ rep(σ)‖2 = 1. To convert an input matrix X ∈ Rp (p = mp0) into a score vector t ∈ Rm,
it seems that we need to learn a matrix W ∈ Rm×mp0 . However, a natural permutation invariance
requirement (if the documents associated are presented in a permuted fashion, the output scores
should also get permuted in the same way) reduces the dimensionality of W to p0 (see, e.g., [14] for
more details). Thus, given a vector w ∈ Rp0 we get the score vector as t = Xw. The label space
consists of relevance score vectors y ∈ {0, 1, . . . , Ymax}m where Ymax is typically between 1 and
4 (yielding 2 to 5 grades of relevance). Note that the prediction space (of size k = m!) is different
from the label space (of size ` = (Ymax + 1)m).

A variety of loss functions have been used in subset ranking. For multigraded relevance judgments,
a very popular choice is NDCG which is defined as NDCG(σ, y) =

(∑m
i=1

2y(i)−1

log2(1+σ(i))

)
/Z(y)

where Z(y) is a normalization constant ensuring NDCG stays bounded by 1. To convert it into a
loss we define LNDCG = 1 − NDCG. Note that any permutation that sorts y in decreasing order
gets zero LNDCG. One might worry that the computation of the surrogate defined in (2) and its
gradient might require an enumeration of m! permutations. The next lemma allays such a concern.
Lemma 3. When L = LNDCG and rep(σ) is chosen as above, the computation of the surrogate (2),
as well as its gradient, can be reduced to solving a linear assignment problem and hence can be
done in O(m3) time.

We now give a result explaining what it means for a score vector t to have a margin γ on y when we
use a representation of the form described above. Without loss of generality, we may assume that y
is sorted in decreasing order of relevance judgements.
Lemma 4. Suppose rep(σ) = f(σ)/Z for a strictly decreasing function f : R → R and Z =√∑m

i=1 f
2(i). Let y be a non-constant relevance judgement vector sorted in decreasing order.

Suppose i1 < i2, . . . < iN , N ≥ 1 are the positions where the relevance drops by a grade or more
(i.e., y(ij) < y(ij − 1)). Then t has a margin γ on y iff t is compatible with y and, for j ∈ [N ],

tij−1 ≥ tij +
γZ

f(ij − 1)− f(ij)

where we define i0 = 1, iN+1 = m+ 1 to handle boundary cases.

Note that if we choose f(i) = −iα, α > 1 then f(ij − 1) − f(ij) = O(iα−1
j ) for large ij . In

that case, the margin condition above requires less separation between documents with different
relevance scores down the list (when viewed in decreasing order of relevance scores) than at the top
of the list. We end this section with a loss bound for LNDCG under a margin condition.
Corollary 5. Suppose L = LNDCG and rep(σ) is as in Lemma 4. Then, assuming the dataset is
linearly separable with margin γ, the sequence generated by Algorithm 1 with line 9 replaced by

∇τ = X>τ (pred−1(σ̃τ )− pred−1(σy)) ∈ Rp0×1

satisfies
n∑
τ=1

LNDCG(Xτwτ , yτ ) ≤ 2Ymax+3 ·m2 log2
2(2m) ·R2

γ2

where ‖Xτ‖op ≤ R.

Note that the result above uses the standard `2-norm based notion of margin. Imagine a subset
ranking problem, where only a small number of features are relevant. It is therefore natural to
consider a notion of margin where the weight vector that ranks everything perfectly has low group `1
norm, instead of low `2 norm. The `1 margin also appears in the analysis of AdaBoost [2, Definition
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6.2]. We can use a special case of a more general algorithm given in the appendix (Appendix B.2,
Algorithm 3). Specifically, we replace line 10 with the step wτ+1 = (∇ψ)−1 (∇ψ(wτ )−∇τ )
where ψ(w) = 1

2‖w‖
2
r . We set r = log(p0)/(log(p0) − 1). The mapping ∇ψ and its inverse can

both be easily computed (see, e.g., [6, p. 145]).

Corollary 6. Suppose L = LNDCG and rep(σ) is as in Lemma 4. Then, assuming the dataset is
linearly separable with margin γ by a unit `1 norm w? (‖w?‖1 = 1), the sequence generated by
Algorithm 3 with ψ chosen as above (and line 9 modified as in Corollary 5), satisfies

n∑
τ=1

LNDCG(Xτwτ , yτ ) ≤ 9 · 2Ymax+3 ·m2 log2
2(2m) ·R2 · log p0

γ2

where maxj=1,...,po ‖Xτ,j‖2 ≤ R and Xτ,j denotes the jth column of Xτ .

5 Multilabel Ranking

As discussed in Section 3, in multilabel classification, both prediction space and label space are
{0, 1}m with sizes k = ` = 2m. In multilabel ranking, however, the learner has to output rankings
as predictions. So, as in the previous section, we have k = m! since the prediction σ can be any
one of m! permutations of the labels. As before, we choose rep(σ) = f(σ)/Z and hence d = m.
However, unlike the previous section, the input is no longer a matrix but a vector X ∈ Rp. A
prediction t ∈ Rd is obtained as WX where W ∈ Rm×p. Note the contrast with the last section:
there, inputs are matrices and a weight vector is learned; here, inputs are vectors and a weight matrix
is learned. Since we output rankings, it is reasonable to use a loss that takes positions of labels into
account. We can use L = LNDCG. Algorithm 1 now immediately applies. Lemma 3 already showed
that is efficiently implementable. We have the following straightforward corollary.

Corollary 7. Suppose L = LNDCG and rep(σ) is as in Lemma 4. Then, assuming the dataset is
linearly separable with margin γ, the sequence generated by Algorithm 1 satisfies

n∑
τ=1

LNDCG(Xτwτ , yτ ) ≤ 2Ymax+3 ·m2 log2
2(2m) ·R2

γ2

where ‖Xτ‖2 ≤ R.

The bound above matches the corresponding bound, up to loss specific constants, for the multiclass
multilabel perceptron (MMP) algorithm studied by [15]. The definition of margin by [15] for MMP
is different from ours since their algorithms are designed specifically for multilabel ranking. Just like
them, we can also consider other losses, e.g., precision at top K positions. Another perceptron style
algorithm for multilabel ranking adopts a pairwise approach of comparing two labels at a time [16].
However, no loss bounds are derived.

The result above uses the standard Frobenius norm based margin. Imagine a multilabel problem,
where only a small number of features are relevant across all labels. Then, it is natural to consider a
notion of margin where the matrix that ranks everything perfectly has low group (2, 1) norm, instead
of low Frobenius norm, where ‖W‖2,1 =

∑p
j=1 ‖Wj‖2 (Wj denotes a column of W ). We again

use a special case of Algorithm 3 (Appendix B.2). Specifically, we replace line 10 with the step
Wτ+1 = (∇ψ)−1 (∇ψ(Wτ )−∇τ ) where ψ(W ) = 1

2‖W‖
2
2,r. Recall that the group (2, r)-norm is

the `r norm of the `2 norm of the columns of W . We set r = log(p)/(log(p) − 1). The mapping
∇ψ and its inverse can both be easily computed (see, e.g., [17, Eq. (2)]).

Corollary 8. Suppose L = LNDCG and rep(σ) is as in Lemma 4. Then, assuming the dataset is
linearly separable with margin γ by a unit group norm W ? (‖W ?‖2,1 = 1), the sequence generated
by Algorithm 3 with ψ chosen as above, satisfies

n∑
τ=1

LNDCG(Xτwτ , yτ ) ≤ 9 · 2Ymax+3 ·m2 log2
2(2m) ·R2 · log p

γ2

where ‖Xτ‖∞ ≤ R.
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Figure 1: Subset Ranking: NDCG loss for different pred−1 functions with varying n (Plot (a)) and
m (Plot (b)). As predicted by our mistake bounds in Lemmas 4 and 5, pred−1(σi) = −i1.1 is
significantly more accurate than pred−1(σi) = 1/i. (c): L1 vs L2 margin. LNDCG for two different
Predtron algorithms based on L1 and L2 margin. Data is generated using L1 margin notion but with
varying sparsity of the optimal scoring function given by w∗.

6 Experiments

We now present simulation results to demonstrate the application of our proposed Predtron frame-
work to subset ranking. We also demonstrate that empirical results match the trend predicted by
our error bounds, hence hinting at tightness of our (upper) bounds. Due to lack of space, we focus
only on the subset ranking problem. Also, we would like to stress that we do not claim that the
basic version of Predtron itself (with η = 1) provides a state-of-the-art ranker. Instead, we wish to
demonstrate the applicability and flexibility of our framework in a controlled setting.

We generated n data points Xτ ∈ Rm×p0 using a Gaussian distribution with independent rows. The
ith row of Xτ represents a document and is sampled from a spherical Gaussian centered at µi. We
selected a w∗ ∈ Rp0 and also a set of thresholds [ζ1, . . . , ζm+1] to generate relevance scores; we
set ζj = 1

j , ∀2 ≤ j ≤ m and ζ1 = +∞ and ζm+1 = −∞. We set relevance score yτ (i) of the
ith document in the τ th document-set as: yτ (i) = m − j iff ζj+1 ≤ 〈Xτ (i), w∗〉 ≤ ζj . That is,
yτ (i) ∈ [m− 1].

We measure performance of a given method using the NDCG loss LNDCG defined in Section 4.
Note that LNDCG is less sensitive to errors in predictions for the less relevant documents in the list.
On the other hand, our selection of thresholds ζi’s implies that the gap between scores of lower-
ranked documents is very small compared to the higher-ranked ones, and hence chances of making
mistakes lower down the list is higher.

Figure 1 (a) shows LNDCG (on a test set) for our Predtron algorithm (see Section 4) but with different
pred−1 functions. For pred−1(σ(i)) = f2(σ) = −i1.1, f2(i−1)−f2(i) is monotonically increasing
with i. On the other hand, for pred−1(σ(i)) = f1(σ) = 1/i, f1(i − 1) − f1(i) is monotonically
decreasing with i. Lemma 4 shows that the mistake bound (in terms of LNDCG) of Predtron is better
when pred−1 function is selected to be f2(σ(i)) = −i1.1 (as well as for f3(σ(i)) = −i2) instead of
f1(σ(i)) = 1/i. Clearly, Figure 1 (a) empirically validates this mistake bound with LNDCG going
to almost 0 for f2 and f3 with just 60 training points, while f1 based Predtron has large loss even
with n = 100 training points.

Next, we fix the number of training instances to be n = 30 and vary the number of documents
m. As the gap between ζi’s is decreasing for larger i, increasing m implies reducing the margin
of the dataset. Naturally, Predtron with the above mentioned inverse functions has monotonically
increasing loss (see Figure 1 (b)). However, f2 and f3 provide zero-loss solutions for larger m when
compared to f1.

Finally, we conduct an experiment to demonstrate that by selecting appropriate notion of margin,
Predtron can obtain significantly more accurate solutions. To this end, we generate data from
[−1, 1]p0 and select a sparse w∗. Now, Predtron with `2-margin notion, i.e., standard gradient
descent has

√
p0 dependency in the error bounds while the `1-margin (see Corollary 6) has only

s log(p0) dependence. This error dependency is also revealed by Figure 1 (c), where increasing p0

with fixed s leads to minor increase in the loss for `1-based Predtron but leads to significantly higher
loss for `2-based Predtron.
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A Proof of Theorem 1

Before we prove the main result, we provide a couple of useful lemmas. The first shows that φ(t, y)
is an upper bound on L(t, y).

Lemma 9. For any t ∈ Rd, y ∈ [`], we have φ(t, y) ≥ L(t, y).

Proof. We have,

max
σ∈[k]

(
L(σ, y)−

〈
pred−1(σy)− pred−1(σ), t

〉)
≥ L(pred(t), y)−

〈
pred−1(σy)− pred−1(pred(t)), t

〉
≥ L(t, y).

Note that the last step is by the similarity maximization property of pred−1(pred(t)).

The next lemma proves a key self-bounding property of the derivative of φ(t, y), w.r.t. t, that is
crucial for the analysis of the generalized perceptron algorithm to go through.

Lemma 10. Fix a t ∈ Rd, y ∈ [`] such that L(t, y) > 0. Then, we have

‖∇tφ(t, y)‖22 ≤
4

cL
L(t, y)

Proof. Note that ∇tφ(t, y) is
pred−1(σ̃t,y)− pred−1(σy)

where
σ̃t,y = argmax

σ∈[k]

(
L(σ, y)−

〈
pred−1(σy)− pred−1(σ), t

〉)
So, ‖∇tφ(t, y)‖22 ≤ (‖ pred−1(σ̃t,y)‖2 + ‖ pred−1(σy)‖2)2 ≤ 4. On the other hand, on a mistake
round, L(t, y) ≥ cL.

Finally, the lemma below states that if t gets large enough margin on a label y then φ(t, y) is zero.

Lemma 11. If t ∈ Rd has margin γ ≥ CL on y, then φ(t, y) = 0.

Proof. Note that for any σ /∈ Σy ,

L(σ, y)−
〈
pred−1(σy)− pred−1(σ), t

〉
≤ L(σ, y)− γ ≤ L(σ, y)− CL ≤ 0

For any σ′y ∈ Σy , we have L(σ′y, y) = 0 and〈
pred−1(σy), t

〉
=
〈
pred−1(σ′y), t

〉
= max

σ

〈
pred−1(σ), t

〉
.

Therefore, φ(t, y) = 0.

Now we have all the ingredients to prove the main result.

Proof of Theorem 1. Recall that a mistake round is one where L(WτXτ , Yτ ) > 0. Define the fol-
lowing sequence of convex functions:

fτ (W ) =

{
0 on non-mistake round
W 7→ φ(WXτ , Yτ ) on mistake round

Consider online gradient descent (OGD) updates: Wτ+1 = Wτ − η∇fτ (Wτ ). Standard OGD
analysis (see, e.g., [6, Eq. (2.15)]) implies that, for any W (we will deal with the issue of choosing
η shortly):

n∑
τ=1

fτ (Wτ ) ≤
n∑
τ=1

fτ (W ) +
η

2

n∑
τ=1

‖∇τ‖2F +
‖W‖2F

2η
(3)
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where∇τ = ∇W fτ (Wτ ).

On non-mistake rounds, the gradient as well as loss, are both zero. On mistake rounds, the gradient
is

∇τ = ∇W fτ (Wτ ) = ∇tφ(WτXτ , Yτ )X>τ
and therefore

‖∇τ‖2F ≤
4

cL
R2L(WτXτ , Yτ )

by the self-bounding property (Lemma 10) and boundedness of Xτ . Therefore, we have

η

2

n∑
τ=1

‖∇τ‖2F ≤
2ηR2

cL

n∑
τ=1

L(WτXτ , Yτ ) (4)

On non-mistake rounds, fτ as well as loss, are both zero. On mistake rounds,

fτ (Wτ ) = φ(WτXτ , Yτ ) ≥ L(WτXτ , Yτ )

by upper bound property of φ (Lemma 9). So we also have
n∑
τ=1

L(WτXτ , Yτ ) ≤
n∑
τ=1

fτ (Wτ ) (5)

Now plugging in (5) and (4) into (3), we get
n∑
τ=1

L(WτXτ , Yτ ) ≤
n∑
τ=1

fτ (W ) +
2ηR2

cL

n∑
τ=1

L(WτXτ , Yτ ) +
‖W‖2F

2η

By assumption, the sequence (Xτ , yτ ) is linearly separable with margin γ. That is, there exists a
W ? with margin γ on (Xτ , yτ ). By the scaling property of margin, this means that W = CLW

?/γ
has marginCL on (Xτ , yτ ). For thisW , by Lemma 11, we have

∑n
τ=1 fτ (W ) = 0. Since ‖W‖2F ≤

C2
L/γ

2, we have the bound (
1− 2ηR2

cL

) n∑
τ=1

L(WτXτ , Yτ ) ≤ C2
L

2γ2η

and choosing η = cL/(4R
2) gives the bound

n∑
τ=1

L(WτXτ , Yτ ) ≤ 4R2C2
L

cLγ2

B Algorithm Variants

We provide two variants of Predtron. First, we present Predtron.LD, a loss driven version that uses a
surrogate that is not dependent on the loss but incorporates the loss in the stepsize. Then, we present
Predtron.Link, a version that allows for margin to be defined w.r.t. an arbitrary norm and uses an
appropriate link function in its updates.

B.1 Choice of Surrogate

Consider using the surrogate:

φ1(t, y) = max{0, 1 + max
σ/∈Σy

〈
pred−1(σ), t

〉
−
〈
pred−1(σy), t

〉
}

For any y, φ1(t, y) is obviously non-negative and convex in t. Moreover, when a mistake is made
this surrogate is at least 1.
Lemma 12. Suppose t, y are such that L(t, y) > 0. Then φ1(t, y) ≥ 1.

11



Proof. Since L(t, y) > 0, there exists σ /∈ Σy such that
〈
pred−1(σ), t

〉
= maxσ′

〈
pred−1(σ′), t

〉
.

Therefore, we have
max
σ/∈Σy

〈
pred−1(σ), t

〉
≥
〈
pred−1(σy), t

〉
and therefore φ1(t, y) ≥ 1.

The surrogate φ1 is also zero given large enough margin.

Lemma 13. If t ∈ Rd has margin γ ≥ 1 on y, then φ1(t, y) = 0.

Proof. Note that for any σ /∈ Σy ,

1−
〈
pred−1(σy)− pred−1(σ), t

〉
≤ 1− γ ≤ 0.

Therefore,
1 + max

σ/∈Σy

〈
pred−1(σ), t

〉
−
〈
pred−1(σy), t

〉
≤ 0

and hence φ1(t, y) = 0.

Algorithm 2 Predtron.LD: A Loss Driven Version of Predtron
1: W1 ← 0
2: for τ = 1, 2, . . . do
3: Receive Xτ ∈ Rp
4: Predict στ = pred(WτXτ ) ∈ [k]
5: Receive label yτ ∈ [`]
6: if L(στ , yτ ) > 0 then
7: (t, y) = (WτXτ , yτ )
8: σ̃τ = argmaxσ/∈Σy

〈
pred−1(σ), t

〉
∈ [k]

9: ∇τ = (pred−1(σ̃τ )− pred−1(σy)) ·X>τ ∈ Rd×p
10: Wτ+1 = Wτ − ηL(στ , yτ ) · ∇τ
11: else
12: Wτ+1 = Wτ

13: end if
14: end for

Theorem 14. Suppose the dataset (X1, y1), . . . , (Xn, yn) is linearly separable with margin γ. Then
the sequence Wτ generated by Algorithm 2 with η = 1/(4CLR

2) satisfies the loss bound

n∑
τ=1

L(WτXτ , yτ ) ≤ 4R2CL

γ2

where ‖Xτ‖2 ≤ R for all τ .

Proof. As before, let a mistake round be one where L(WτXτ , Yτ ) > 0. Let Lτ = L(WτXτ , yτ ).
Define the following sequence of convex functions:

fτ (W ) = Lτ · φ1(WXτ , yτ ).

Algorithm 2 is simply running online gradient descent (OGD) updates: Wτ+1 = Wτ −∇fτ (Wτ ).
This is trivial to see for non-mistake round. On mistake rounds, observe that the outer maximum in
the definition of φ1 is not achieved at 0 and hence the gradient is given by

∇tφ(t, y) = pred−1(σ̃)− pred−1(σy)

where
σ̃ = argmax

σ/∈Σy

〈
pred−1(σ), t

〉
.

12



Setting ∇τ = ∇W fτ (Wτ ) and using standard OGD analysis (see, e.g., [6, Eq. (2.15)]) we get that,
for any W :

n∑
τ=1

fτ (Wτ ) ≤
n∑
τ=1

fτ (W ) +
η

2

n∑
τ=1

‖∇τ‖2F +
‖W‖2F

2η

≤
n∑
τ=1

fτ (W ) +
η

2

n∑
τ=1

L2
τ · ‖∇tφ1(XτWτ , yτ )‖22 · ‖Xτ‖22 +

‖W‖2F
2η

≤
n∑
τ=1

fτ (W ) +
η

2

n∑
τ=1

CL · Lτ · 4 ·R2 +
‖W‖2F

2η

=

n∑
τ=1

fτ (W ) + 2ηCLR
2

n∑
τ=1

Lτ +
‖W‖2F

2η
.

By Lemma 12, we know that Lτ ≤ fτ (Wτ ). Further, by assumption, the sequence (Xτ , yτ ) is
linearly separable with margin γ. That is, there exists a W ? with margin γ on (Xτ , yτ ). By the
scaling property of margin, this means that W = W ?/γ has margin 1 on (Xτ , yτ ). For this W , by
Lemma 13, we have

∑n
τ=1 fτ (W ) = 0. Since ‖W‖2F ≤ 1/γ2, we have the bound

(
1− 2ηCLR

2
) n∑
τ=1

Lτ ≤
1

2γ2η

and choosing η = 1/(4CLR
2) gives the bound

n∑
τ=1

L(WτXτ , Yτ ) ≤ 4R2CL

γ2
.

B.2 Choice of Norm

Algorithm 3 Predtron.Link: Predtron with a Link Function (∇ψ)−1

1: Θ1 ← 0;W1 = (∇ψ)−1(Θ1)
2: for τ = 1, 2, . . . do
3: Receive Xτ ∈ Rp
4: Predict στ = pred(WτXτ ) ∈ [k]
5: Receive label yτ ∈ [`]
6: if L(στ , yτ ) > 0 then
7: (t, y) = (WτXτ , yτ )
8: σ̃τ = argmaxσ∈[k]

(
L(σ, y)−

〈
pred−1(σy)− pred−1(σ), t

〉)
∈ [k]

9: ∇τ = (pred−1(σ̃τ )− pred−1(σy)) ·X>τ ∈ Rd×p
10: Θτ+1 = Θτ − η∇τ ; Wτ+1 = (∇ψ)−1(Θτ+1)
11: else
12: Θτ+1 = Θτ ; Wτ+1 = Wτ

13: end if
14: end for

Let ‖ · ‖ be a norm and ψ(W ) = 1
2‖W‖

2 be α-strongly convex w.r.t. ‖ · ‖. Note that ψ(0) = 0 and
∇ψ(cW ) = c∇ψ(W ) for c > 0. Consider Algorithm 3, a version of Algorithm 1 that uses inverse
of the mapping ∇ψ to generate iterates. Since ψ is strongly convex, the mapping ∇ψ is indeed
invertible. Let ‖ · ‖? be the norm dual to ‖ · ‖. Since the gradients ∇τ are rank one, we need one
additional property. Suppose there exists a norm |||·||| such that, for any u ∈ Rd, v ∈ Rp, we have

‖uv>‖? ≤ ‖u‖2 · |||v||| (6)

We can now prove a loss bound for Algorithm 3.
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Theorem 15. Suppose ψ, ‖ · ‖, ‖ · ‖?, |||·||| are as above. In particular, let ψ be α-strongly convex
w.r.t. ‖ · ‖. Suppose the dataset (X1, y1), . . . , (Xn, yn) is linearly separable by a unit norm W ?

(‖W ?‖ = 1), by margin γ. Then, Algorithm 3 with η = αcL/(4R
2) satisfies the loss bound

n∑
τ=1

L(WτXτ , Yτ ) ≤ 4R2C2
L

αcLγ2

where |||Xτ ||| ≤ R.

Proof. Recall that a mistake round is one where L(WτXτ , Yτ ) > 0. Define the following sequence
of convex functions:

fτ (W ) =

{
0 on non-mistake round
W 7→ φ(WXτ , Yτ ) on mistake round

Consider online mirror descent (OMD) updates: ∇ψ(Wτ+1) = ∇ψ(Wτ ) − η∇fτ (Wτ ). Standard
OMD analysis (see, e.g., [6, Theorem 2.21]) implies that, for any W (we will deal with the issue of
choosing η shortly):

n∑
τ=1

fτ (Wτ ) ≤
n∑
τ=1

fτ (W ) +
η

2α

n∑
τ=1

‖∇τ‖2? +
‖W‖2

2η
(7)

where∇τ = ∇W fτ (Wτ ).

On non-mistake rounds, the gradient as well as loss, are both zero. On mistake rounds, the gradient
is

∇τ = ∇W fτ (Wτ ) = ∇tφ(WτXτ , Yτ )X>τ
and therefore

‖∇τ‖2? ≤ ‖∇tφ(WτXτ , Yτ )‖22 · |||Xτ |||2 ≤
4

cL
R2L(WτXτ , Yτ )

by the inequality (6), the self-bounding property (Lemma 10), and boundedness of Xτ . Therefore,
we have

η

2α

n∑
τ=1

‖∇τ‖2F ≤
2ηR2

αcL

n∑
τ=1

L(WτXτ , Yτ ) (8)

On non-mistake rounds, fτ as well as loss, are both zero. On mistake rounds,

fτ (Wτ ) = φ(WτXτ , Yτ ) ≥ L(WτXτ , Yτ )

by upper bound property of φ (Lemma 9). So we also have
n∑
τ=1

L(WτXτ , Yτ ) ≤
n∑
τ=1

fτ (Wτ ) (9)

Now plugging in (9) and (8) into (7), we get
n∑
τ=1

L(WτXτ , Yτ ) ≤
n∑
τ=1

fτ (W ) +
2ηR2

αcL

n∑
τ=1

L(WτXτ , Yτ ) +
‖W‖2

2η

By assumption, the sequence (Xτ , yτ ) is linearly separable with margin γ. That is, there exists a
W ? with margin γ on (Xτ , yτ ). By the scaling property of margin, this means that W = CLW

?/γ
has margin CL on (Xτ , yτ ). For this W , by Lemma 11, we have

∑n
τ=1 fτ (W ) = 0. Since ‖W‖2 ≤

C2
L/γ

2, we have the bound (
1− 2ηR2

αcL

) n∑
τ=1

L(WτXτ , Yτ ) ≤ C2
L

2γ2η

and choosing η = αcL/(4R
2) gives the bound

n∑
τ=1

L(WτXτ , Yτ ) ≤ 4R2C2
L

αcLγ2
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C Details of Results in Section 3

C.1 Classification with REJECT option

We note that the separability requirement to allow REJECT option is more stringent than the standard
classification in the following sense. If a dataset is linearly separable with margin γ for the standard
classification, it may no longer be linearly separable with the same margin γ if we allow REJECT
option. The other way, however, holds true. This is observed by examining the definition of margin
requirement in Section 2.2. Consider 1 ≥ β1 ≥ β2 > 0. Then, a score t ∈ R2 has a margin γ > 0
on label y = 1, iff pred(t) = 1 and t1 ≥ max

(
t2,

t1+t2√
2

)
+ γ, and a margin γ > 0 on label y = 2,

iff pred(t) = 2 and t2 ≥ max
(
t1,

t1+t2√
2

)
+ γ. For the case β2 = 0 (i.e. instance of class 2 can be

predicted as REJECT without penalty), then a score t ∈ R2 has a margin γ > 0 on label y = 2, iff
pred(t) ∈ {2,REJECT} and t1 ≤ min

(
t2,

t1+t2√
2

)
− γ.

C.2 Subset losses for Multilabel learning

For a given y and t, using the definition of rep in Section 3 for multilabel learning, the surrogate (2)
for a given loss L can be expressed as:

φ(t, y) = −
〈
pred−1(σy), t

〉
+ max

v∈{+1,−1}m
L(v, y) + 〈v, t〉 .

Clearly, we can compute the surrogate (and its gradient) efficiently if we can compute the max
efficiently. Define the indicator function I(P ) = 1 if predicate P is true or 0 otherwise. Let:

a =
∑
i

I(vi = 1)I(i ∈ y), b =
∑
i

I(vi = 1)I(i 6∈ y),

c =
∑
i

I(vi = −1)I(i ∈ y), d =
∑
i

I(vi = −1)I(i 6∈ y).

In the following, we show that the max in the surrogate can be computed in time O(m2), for any
loss which can be expressed as a function of a, b, c and d, i.e.

max
v∈{+1,−1}m

f(a, b, c, d) + 〈v, t〉 .

The three subset losses listed in main text take this form: LIsErr(v, y) = I(b = 0)I(c = 0),
LHam(v, y) = b + c, and LErrSetSize(v, y) = bc. The key idea is that though the max itself is

over 2m quantities, there are only O(m2) possible values for C =

[
a b
c d

]
— note that fixing a

(where 0 ≤ a ≤ m) also fixes c = |y| − a, and similarly fixing d (where 0 ≤ d ≤ m) also fixes
b = m− |y| − d. For any fixed C (i.e. fixing a, b, c and d), let Vabcd denote the set of vectors v that
yield C. We can compute maxv∈VC 〈v, t〉 in closed form, because the objective to be maximized is
linear. Let Ipos denote the classes in y sorted in decreasing order of t. Let Ineg denote the classes
not in y sorted in decreasing order of t. Now, for v to be optimal, we set the values corresponding
to the first a indices in Ipos to 1, the remaining indices in Ipos to -1, the last d indices in Ineg to−1,
and the remaining indices in Ineg to +1.

The procedure can be implemented with two for loops, where in the innermost for loop, we will
set v∗C that maximizes maxv∈VC 〈v, t〉, compute JC = f(a, b, c, d) + 〈v∗C , t〉 and keep track of the
best JC so far. Finally we note that faster implementations can be obtained for specific functions
f(a, b, c, d).

D Proofs for Results in Section 4

Proof of Lemma 3. Both the surrogate as well as its gradient (w.r.t. t) can be computed if we can
compute

σ̃t,y = argmax
σ∈[k]

(
L(σ, y)−

〈
pred−1(σy)− pred−1(σ), t

〉)
15



Let L(σ, y) be a loss derived from an NDCG type gain function. That is, let

L(σ, y) = 1− 1

W (y)

m∑
i=1

F (y(i))

G(σ(i))

for some monotonically increasing functions F,G and

W (r) = max
σ

m∑
i=1

F (y(i))

G(σ(i))
.

Note that W (r) can be computed easily by sorting y. Since rep(σ) = pred−1(σ) = f(σ)/Z, where
Z =

√∑
i f

2(i), we have,

σ̃t,y = argmax
σ∈[k]

(
L(σ, y)−

〈
pred−1(σy)− pred−1(σ), t

〉)
= argmax

σ∈[k]

(
L(σ, y) +

〈
pred−1(σ), t

〉)
= argmax

σ∈[k]

(
1− 1

W (y)

m∑
i=1

F (y(i))

G(σ(i))
+

1

Z

m∑
i=1

f(σ(i))ti

)

= argmax
σ∈[k]

(
m∑
i=1

−F (y(i))

W (y)G(σ(i))
+
f(σ(i))ti

Z

)
.

This is a linear assignment problem where the cost C(i, j) of assigning item i to position j is

C(i, j) =
−F (y(i))

W (y)G(j)
+
f(j)ti
Z

which can be solved, e.g., using the O(m3) time complexity Hungarian algorithm (also known as
Munkres’ algorithm).

Proof of Lemma 4. Note that y is sorted in decreasing order with relevance grade changes at posi-
tions i1, . . . , iN . That is, the entries of y obey the following ordering:
y(1) = . . . = y(i1 − 1) > y(i1) = . . . = y(i2 − 1) > y(i2) = [. . .] = y(iN − 1) > y(iN ) = . . . = y(m)

Define N + 1 sets Gj = {ij , . . . , ij+1 − 1} for j ∈ {0, . . . , k} where i0 = 1 and iN+1 = m+ 1 to
handle boundary cases. If t has margin γ on y, it has to be first of all compatible with y. So entries
of t in group j − 1 should be equal to each other and larger than the entries in group j:

tij−1
= . . . = tij−1 > tij = . . . = tij+1−1

for j ∈ [N ]. Moreover, we should have

min
σ∈Σy

〈f(σ), t〉 ≥ max
σ′ /∈Σy

〈f(σ), t〉+ γ′

where γ′ = γZ and Z is the normalization needed so that f(σ)/Z is a unit vector.

Note that σ′ /∈ Σy means that there is at least one “bad” pair (i, i′) such that y(i) > y(i′) (and
hence ti > ti′ ) and yet σ′(i) > σ′(i′). We now claim that the maximum on the RHS is achieved at a
σ′ /∈ Σy with exactly one such bad pair. This is because, if we swap a bad pair in σ′′ to get a new σ′

then 〈f(σ′′), t〉 < 〈f(σ′), t〉. So we can eliminate all bad pairs but one. This keeps us outside of Σy
and increases 〈f(σ′), t〉. We further claim that if there is exactly one bad pair (i, i′) then i, i′ have to
be in adjacent groups with one of them right next to a group boundary. This is because, otherwise,
there will have to be bad pairs other than (i, i′).

Let the bad pair be in groups j − 1 and j, i.e. i ∈ Gj−1, i
′ ∈ Gj and σ(i) = i′, σ(i′) = i. The

margin condition then says that,

f(i)tij−1 + f(i′)tij ≥ f(i′)tij−1 + f(i)tij + γ′

which means

tij−1 − tij ≥ max
i∈Gj−1,i′∈Gj

γ′

f(i)− f(i′)

Since f is strictly decreasing, the worst case is when i = ij−1, i′ = ij . This proves the lemma.
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Proof of Corollary 5. The condition ‖Xτ‖op arises because the form of ∇τ in the subset ranking
setting implies ‖∇τ‖2 ≤ 2 ‖Xτ‖op. For L = LNDCG, CL = 1 and cL can be computed as follows.
Let y be sorted in decreasing order of its entries. Minimum non-zero loss occurs if the last two
documents are relevant and irrelevant get ranked incorrectly (errors higher up in the ranking will
only incur more loss). So the minimum possible non-zero loss for a given y is

2y(m−1)−1
log2(1+m−1) + 2y(m)−1

log2(1+m) −
(

2y(m−1)−1
log2(1+m) + 2y(m)−1

log2(1+m−1)

)
∑m
i=1

2y(i)−1
log2(1+i)

≥
1

log2m
− 1

log2(m+1)

(2Ymax − 1)
∑m
i=1

1
log2(1+i)

=

log2(1+1/m)
log2m·log2(m+1)

(2Ymax − 1)
∑m
i=1

1
log2(1+i)

≥
1

2m·log2
2(m+1)

(2Ymax − 1) · m
log2 2

=
1

2(2Ymax − 1)m2 log2
2(m+ 1)

.

Therefore, the bound in Theorem 1 becomes

4C2
LR

2

cLγ2
≤ 2Ymax+3m2 log2

2(2m)R2

γ2
.

Proof of Corollary 6. We use Theorem 15 with ψ(w) = ‖w‖2r where r = log p0/(log p0 − 1). For
such an r, ‖w‖r ≤ ‖w‖1 ≤ 3‖w‖r. Also, ‖ · ‖ = ‖ · ‖r, ‖ · ‖? = ‖ · ‖q where q = log p0. Note that
ψ is (r − 1)-strongly convex w.r.t. ‖ · ‖r (see, e.g., [17]). Since

‖X>u‖q ≤ 3‖X>u‖∞ ≤ 3‖X>‖2→∞‖u‖2

the norm |||·||| is simply 3‖X>‖2→∞ where ‖X>‖2→∞ = maxj=1,...,p ‖Xj‖2 (Xj’s are columns of
X). Since ‖w?‖r ≤ ‖w?‖1 there obviously exists a unit `r norm vector that has margin at least γ
on the dataset. The bound in Theorem 15 then becomes

4(3R)2C2
L

(r − 1)cLγ2
≤ 36R2 log p0C

2
L

cLγ2
.

Corollary nows follows by using the bounds for CL, cL from proof of Corollary 5.

E Proofs for Results in Section 5

Proof of Corollary 7. Corollary follows immediately from Theorem 1 and the CL, cL calculations
in the proof of Corollary 5.

Proof of Corollary 8. We use Theorem 15 with ψ(w) = ‖W‖22,r where r = log p/(log p− 1). For
such an r, ‖W‖2,r ≤ ‖W‖2,1 ≤ 3‖W‖2,r. Also, ‖ · ‖ = ‖ · ‖2,r, ‖ · ‖? = ‖ · ‖2,q where q = log p.
Note that ψ is (r − 1)-strongly convex w.r.t. ‖ · ‖2,r (see, e.g., [17]). Since

‖uv>‖2,q ≤ 3‖uv>‖2,∞ = 3‖u‖2‖v‖∞
the norm |||·||| is simply 3‖ · ‖∞. Since ‖W ?‖2,r ≤ ‖W ?‖2,1 there obviously exists a unit group
(2, r)-norm matrix that has margin at least γ on the dataset. The bound in Theorem 15 then becomes

4(3R)2C2
L

(r − 1)cLγ2
≤ 36R2 log p C2

L

cLγ2
.

Corollary nows follows by using the bounds for CL, cL from proof of Corollary 5.
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