

Microsoft Research Faculty Summit 2016

Wearable Computers on the Edge of Cloud

Roozbeh Jafari Embedded Signal Processing Lab

http://jafari.tamu.edu

A Brief History

- What will drive the wearable market?
 - Driven by needs, fashion, or both?

Pocket watch, ca. 1876

Ear wor in V

ĀМ

Early wrist watch worn by soldiers in WWI

'EXAS A&M

UNIVERSITY_®

A Success Story

An open and programmable platform with a user-centered design

Unique Characteristics

- In direct contact with human body
 - User is in the loop and can identify errors quickly
 - Must exhibit high degrees of robustness completing the assigned tasks
 - Power, computational resources and connectivity have unique requirements
 - High degrees of customization for individuals

Embedded Signal Processing Laboratory

Monitoring Motor Functions

Neurological disorders, activities of daily living (ADLs), gait monitoring and fall prevention

Brain Computer Interface

Assist locked-in individuals to communicate, used for gaming, facilitate care-giver/patient communication in ICU units

EEG Dry-Contact Electrode Characterization

Using the best combination of fingers reduces this noise level by about 40% on average

BioWatch capable of measuring ECG, PPG and Blood Pressure

Case Study: Heart Rate Tracking

http://www.dailymail.co.uk/sciencetech/article-2415943/Now-NISSAN-jumps-smartwatchbandwagon-Wearable-tech-monitors-performance-car-driver.html

http://www.wareable.com/smartwatches/sony-smartwatch-vs-samsung-gear

http://www.mensjournal.com/health-fitness/articles/get-in-tennis-shape-5-drills-one-serious-workout-w 204391

UNIVERSITY.

11

Noise Sources

- Comfort => Noisier interface (*e.g.* wet vs dry electrodes)
- Motion Artifacts
- Errors in usage/placement of sensors
- Need to adapt to changing conditions over long periods

Multiple Sensors

- Multiple sensors simultaneously measuring same phenomenon
- Fusion of sensor streams

Particle Filter

- Probabilistic state estimation
- Sequential Monte Carlo with numerous 'particles' representing possible states
- Observations of system update particle weights
- Particles converge to posterior probability distribution

 $X_t \sim Uniform(HR_{min}, HR_{max})$

$$W_{X_t^p} \propto p(Z_t | X_t^p) = \sum_{n=1}^{O_t} p(Z_t^n | X_t^p)$$
$$= \sum_{n=1}^{O_t} N(Z_t^n, X_t^p, \sigma_z)$$
$$WNorm_{X_t^p} = W_{X_t^p} / \sum_{r=1}^{N_p} W_{X_t^r}$$

 $HREst_t \sim Maximum \ a \ posteriori$ (MAP) estimate

Particle Filter Applications

- Computer vision
- Speech
 Recognition
- Target
 Localization
- ... and many more

Using measurements from range sensor, robot localizes itself in environment

Case Study: Heart Rate Tracking

- Each particle represents a possible heart rate
- Observations with suitable 'operators' made in windows
 - Not tied down to any particular type of operator
 - R-R distance for ECG, max slope point for PPG etc.
- Observations guide update of weights of particles
- Particles redistributed according to weights
- Particles converge to posterior probability distribution of true state

Overall Flow

ECG Observation

PPG Observation

Accelerometer Observation

Particle Weighting

$$W_{X_t^p} \propto p(Z_t | X_t^p) = \begin{cases} (\sum_{n=1}^{o_t} N(Z_t^n, X_t^p, \sigma_z)) \times \beta, for \ ECG \\ \varphi_t^d \times (1 - \tilde{\varphi}_t^d), for \ PPG \\ \forall p \in (1, N_p) \end{cases}$$

Where,

 X_t^p is the p^{th} particle of window t,

 $W_{X_t^p}$ is the weight of particle X_t^p ,

 $N(Z_t^n, X_t^p, \sigma_z)$ is the value of a Gaussian distribution with mean X_t^p and standard deviation σ_z evaluated at Z_t^n ,

 β is a constant biasing factor,

 φ_t^d is the probability of the event that the frequency corresponding to X_t^p represents the true heart rate. $\tilde{\varphi}_t^d$ is the probability of the event that the frequency corresponding to X_t^p is not the heart rate, which for our purposes means it is noise

Sensor Fusion

$$W_{X_t^p}^{fusion} = \prod_{s=1}^{S} p(Z_t^s | X_t^p)$$

Where,

 $W_{X_t^p}^{fusion}$ is the weight assigned to particle X_t^p when fusing the information from multiple sources of observation S is the total number of observation sources under consideration Z_t^s is the set of observations in time window t from source s

Case Study: HR Sensor Fusion

$$W_{X_t^p}^{fusion} = p(Z_t^{ECG} | X_t^p) \times p(Z_t^{PPG+ACC} | X_t^p)$$

$$p(Z_t^{ECG}|X_t^p) = \left(\sum_{n=1}^{O_t} N(Z_t^n, X_t^p, \sigma_z)\right) \times \beta$$

$$p(Z_t^{PPG+ACC} | X_t^p) = \varphi_t^d \times (1 - \tilde{\varphi}_t^d)$$

Results – HR Estimation Error

PPG PARTICLE FILTER ESTIMATION ERROR											
Subject #	1	2	3	4	5	6	7	8	9	10	11
HR Error (bpm)	4.35	43.7	3.82	1.52	1.01	1.97	0.87	0.96	0.88	7.10	11.3

ECG PARTICLE FILTER ESTIMATION ERROR

Subject #	1	2	3	4	5	6	7	8	9	10	11
HR Error (bpm)	2.19	2.89	2.12	1.93	1.24	5.84	4.32	2.04	1.54	1.39	1.64

PPG+ECG PARTICLE FILTER ESTIMATION ERROR

Subject #	1	2	3	4	5	6	7	8	9	10	11
HR Error (bpm)	1.38	1.63	1.18	1.67	1.08	1.18	1.26	1.37	1.15	1.40	1.87

Concluding Remarks

- Robustness of sensing is of paramount importance.
- Context and sensor fusion can empower many new application paradigms.
- Wearables know quite a bit their users, and could potentially enable application development beyond the rate that we have observed with Smart Phones.
- Very personal! Requiring deep user customization capabilities.
- Empower students and researchers with the tools, hardware and know-how's.

Video Link

Thanks & Questions

Roozbeh Jafari, rjafari@tamu.edu http://jafari.tamu.edu

