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a b s t r a c t

We investigate an image classification task where training images come along with tags, but only a
subset being labeled, and the goal is to predict the class label of test images without tags. This task is
important for image search engine on photo sharing websites. In previous studies, it is handled by first
training a multiple kernel learning classifier using both image content and tags to score unlabeled
training images and then establishing a least-squares regression (LSR) model on visual features to
predict the label of test images. Nevertheless, there remain three important issues in the task: (1) image
tags on photo sharing websites tend to be imperfect, and thus it is beneficial to refine them for final
image classification; (2) since supervised learning with a subset of labeled samples may be unreliable in
practice, we adopt a graph-based label propagation approach by extra consideration of unlabeled data,
and also an approach to combining multiple graphs is proposed; (3) kernel method is a powerful tool in
the literature, but LSR simply treats the visual kernel matrix as an image feature matrix and does not
consider the powerful kernel method. By considering these three issues holistically, we propose a graph-
based multimodal semi-supervised image classification (GraMSIC) framework to handle the aforemen-
tioned task. Extensive experiments conducted on three publicly available datasets show the superior
performance of the proposed framework.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Image classification has been studied for decades [1–6]. The
goal of image classification is to determine whether an image
belongs to a predefined category or not. In the literature, different
types of categories have been investigated, e.g., scenes [7] or
objects [8]. To handle an image classification problem, a super-
vised framework can be used, where a binary classifier is first
learned from manually labeled training images and then used to
predict the class label of test images. By increasing the quantity
and diversity of manually labeled images, the learned classifier can
be enhanced. However, it is a time-consuming task to label images
manually. Although it is possible to label large numbers of images
for many categories for research purposes [9], it is usually
unrealistic, e.g., in photo sharing applications. In practice, we
usually have to handle a challenging classification problem by
using only a small number of labeled samples. In the literature,
semi-supervised learning [10] has been proposed to exploit the
large number of unlabeled samples and thus helps to handle the
scarcity of labeled samples to some extent.

In this paper, we investigate a multimodal semi-supervised image
classification problem originally raised in [11]. In this problem,

training images have associated tags (e.g., from Flickr), and only a
limited number of the training samples come along with class labels.
The goal of this problem is to predict the class label of test images
without tags. This is an important problem for image search engine
on photo sharing websites. Since a newly uploaded image and also
a considerable part of the existing images on websites have no
associated tags, it is necessary to build up an image-only classifier for
such image search engines with available resources (i.e., tagged
images, and only a subset is labeled). To solve this problem, a two-
step method has been proposed in [11]. In the first step, a multiple
kernel learning (MKL) [12,13] classifier is learned by utilizing labeled
training images with tags, which is then used to score unlabeled
training images. In the second step, a least-squares regression (LSR)
model is learned on the training set by using centered visual kernel
columns as independent variables and using centered classification
scores as dependent variables, which is then used to predict the
scores of test images.

Nevertheless, we still need to consider the following three
important issues, since they all may lead to performance degen-
eration in the aforementioned problem:

Tag imperfectness: Image tags on photo sharing websites (e.g.,
Flickr) are often inaccurate and incomplete, i.e., they may not
directly relate to the image content and typically some relevant
tags are missing. Some example images are shown in Fig. 1. For
example, as we can see from the image on the upper left corner,
the tag ‘car’ is inaccurate and the tag ‘bird’ is missing. Since the
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original tags are imperfect, it is a suboptimal choice to use them
directly. Hence, we propose to refine these tags by using the
affinity of image content as the first step.

Label scarcity: Since only a subset of the training images is
labeled, supervised models such as an MKL classifier learned by
using only labeled samples may be unreliable in practice. To
handle the scarcity of labeled samples, we adopt a graph-based
label propagation method to leverage the large number of unla-
beled samples. By exploiting the graph structure of labeled and
unlabeled samples, the label propagation method is shown to
perform better in the experiments. More notably, since an average
combination of multiple graphs for label propagation is only
a suboptimal choice, we propose an approach to learning the
combination weights of multiple graphs.

Ignorance of kernel method: The LSR model used in [11] simply
treats the visual kernel matrix as an image feature matrix and does
not consider the powerful kernel method. Moreover, the singular
value decomposition (SVD) step involved in the LSR model is time-
consuming. Instead of LSR, we propose to use support vector
regression (SVR) to predict the class label of test images, since
SVR can readily leverage the original visual kernel and make full
use of image features in the reproducing kernel Hilbert space
(RKHS) [14].

In summary, taking into account the three important issues, we
propose a graph-based multimodal semi-supervised image classi-
fication (GraMSIC) framework to handle the aforementioned task
by combining the following three components: (1) tag refinement;
(2) graph-based label propagation by combining multiple graphs;
(3) SVR. Fig. 2 shows the schematic overview of the proposed
framework.

Upon our short conference version [15], this paper provides
two additional contributions: (1) an approach to learning the combi-
nation weights of multiple graphs is proposed; (2) more exten-
sive experimental results are added on three publicly available

datasets, i.e., PASCAL VOC'07 [8], MIR Flickr [16] and NUS-WIDE-
Object [17]. In the next two subsections, we briefly present
preliminary notations and paper organization.

1.1. Preliminary notations

We denote training image set and test image set by Itr ¼
fx1; x2;…; xn1 g and Ite ¼ fxn1 þ1; xn1 þ2;…; xn1 þn2 g, respectively. Note
that n¼ n1þn2 is the total number of samples. Training images
come along with tags, where the tag set is represented by
V ¼ fv1; v2;…; vmg and m stands for the size of the tag set. The
initial tag membership for all training images can be denoted by a
binary matrix TtrAf0;1gn1�m whose element Ttrði; jÞ indicates the
presence of tag vj in image xi, i.e., Ttrði; jÞ ¼ 1 if tag vj is associated
with image xi, and Ttrði; jÞ ¼ 0 otherwise. Moreover, only a small
number of the training images are assigned with class labels
from c categories, and the initial label matrix is denoted by
YtrAf1;0; �1gn1�c , whose element Ytrði; jÞ indicates the label of
image xi, i.e., Ytrði; jÞ ¼ 1 if xi is labeled as a positive sample of
category j, Ytrði; jÞ ¼ �1 if xi is labeled negative, and Ytrði; jÞ ¼ 0 if xi
is unlabeled. The goal is to predict the class label of test images
without tags, i.e., an n2 � c matrix Yte.

Moreover, in order to state conveniently, the values determined
by the learning algorithm are called ‘parameters’, and the values
which require hand-tuning in advance are called ‘hyperpara-
meters’ [18].

1.2. Paper organization

The paper is organized as follows. We begin by introducing
related studies in the literature in Section 2. Then, we present the
GraMSIC framework in Section 3. In Section 4, we discuss in detail
the proposed approach to combining multiple graphs for label
propagation. Moreover, we investigate the complexity issues and

Fig. 1. Example images from PASCAL VOC'07 (top row) and MIR Flickr (bottom row) datasets with their associated tags and class labels. Tags in bold are inaccurate ones.
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summarize our algorithm in Section 5. To evaluate the proposed
framework, we report experimental results on three publicly avai-
lable datasets in Section 6. Finally, Section 7 draws the conclusions.

2. Related work

2.1. Multimodal semi-supervised image classification

To the best of our knowledge, [11] has been the first attempt to
handle the multimodal semi-supervised image classification task,
where training images come along with tags, but only a subset
being labeled, and the goal is to predict the class label of test
images without tags. This task is illustrated in the uppermost
subfigure of Fig. 2.

To handle this task, [11] proposes a two-step approach. In the
first step, an MKL classifier is built up by using the labeled train-
ing images. The classifier is then used to predict the class label of
other unlabeled training images with tags. Note that the original
decision values instead of the classification results (i.e., 1 or �1)
are used for the next step.

In the next step, a linear regression model is established by
utilizing the visual kernel matrix and the decision values obtained
in the previous step. In order to remove bias in the data, all the

independent variables (i.e., visual kernel columns) and dependent
variables (i.e., decision values of training samples) are normalized
to zero mean. The regression model is then used to predict the
scores of test images based on their visual features. A ranked list
containing all the test images sorted by their predicted scores in
descending order is returned as the final result.

2.2. Tag refinement

Since image tags on photo sharing websites (e.g., Flickr) tend to
be inaccurate and incomplete, it is a necessary task to refine them.
Based on the fundamental hypothesis that similar images should
contain similar tags, neighbor voting [19] and kernel density
estimation [20] approaches have been proposed. However, these
two methods only take into account similar samples and do not
consider dissimilar samples.

By considering both similar samples and dissimilar samples
simultaneously, many more models have been proposed. Chen
et al. [21] proposed to propagate tag probabilities based on a visual
graph and a tag graph. Xu et al. [22] proposed a probabilistic
graphical model named regularized latent Dirichlet allocation by
exploiting both the statistics of tags and visual affinities. Moreover,
a tag refinement approach based on low-rank and sparse matrix
decomposition is proposed in [23]. Besides these, [24] proposes to
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Fig. 2. Illustration of the proposed GraMSIC framework. Inputs and outputs of the corresponding step are denoted by bold words in square brackets and italic words in
parentheses, respectively.
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refine tags by exploiting not only visual and tag similarity, but also
the WordNet lexicon [25].

It should be noted that we adopt a simple and effective method
by dealing with local and global consistency [26] for tag refine-
ment, given that our objective in this paper is to tackle the three
issues mentioned in Section 1 and to propose a more effective and
efficient solution to the multimodal semi-supervised image clas-
sification problem.

2.3. Graph-based learning

Graph-based learning is a wide research area, and [10] is a
comprehensive overview. Graph-based methods are often based
on the hypothesis of label scarcity, where supervised methods may
fail. Different from supervised models, graph-based methods
pursue more robust results by leveraging the affinity of samples.
Therefore, many graph-based learning methods are transductive.
The Gaussian random fields and harmonic function method [27]
and the local and global consistency method [26] are two well-
known transductive approaches.

Besides the transductive methods, there are also inductive meth-
ods in the literature. Laplacian support vector machine (LapSVM) [28]
is one of the inductive approaches. LapSVM incorporates a Laplacian
regularizer into the support vector machine formulation, and the
learned model can be directly used to predict a new test sample
without retraining.

However, since our aim is to propose a novel graph-based
solution to the multimodal semi-supervised image classification
task, we only adopt the local and global consistency method [26]
as the learning algorithm.

2.4. Combining multiple graphs

The affinity graph is an essential point of graph-based learning
methods. In many recent real-world applications, there are multi-
ple graphs of the same data. A key challenge under this setting is
to combine different graphs automatically to achieve better pre-
dictive performance. In the literature, there are some studies
which considered the task in different applications and demon-
strated that integrating multiple graphs improve the prediction
performance.

One of the first studies is in bioinformatics, where a label
propagation approach to combining multiple graphs for protein
function prediction is proposed [29]. This method is however not
robust against noisy graphs, and a more robust probabilistic model
named robust label propagation on multiple networks (RLPMN)
is proposed [30]. Similarly, in genetic engineering, approaches to
combining multiple graphs are proposed [31–33] by optimizing a
predefined criterion named kernel-target alignment [34].

Besides, in the machine learning literature, an MKL-based
algorithm is proposed to learn graph combination weights by
integrating a graph regularizer into the formulation [35]. In the
literature of multimedia content analysis, a method for integrating
multiple graphs for the video annotation problem is proposed [36].

Recently, an algorithm has been proposed by taking into
account sparse combination of multiple graphs [37]. As reported
in [37], the proposed sparse multiple graph integration (SMGI)
approach generally performs better than other existing methods.
In cases where there are tens or hundreds of graphs, the approach
in [37] will automatically select relevant graphs and ignore irrele-
vant graphs.

It should be noted that the current multimodal semi-
supervised image classification task is different from the standard
label propagation task. An approach which performs well in the
standard label propagation task may not remain effective in the
current task in this paper. In the current task, there are only three

graphs in total, and thus sparse combination is relatively unsui-
table. Actually, all the graph weights are nonzero in the experi-
ments. Moreover, learning graph combination weights for each
class separately is rather time-consuming. In order to accelerate
the learning algorithm, we propose to learn graph combination
weights for all the classes simultaneously.

3. The proposed framework

In this section, we present in detail the three components of
the proposed GraMSIC framework in the following three subsec-
tions respectively, i.e., tag refinement in Section 3.1, graph-based
label propagation in Section 3.2 and SVR in Section 3.3.

3.1. Tag refinement

As shown in Fig. 1, image tags on photo sharing websites (e.g.,
Flickr) tend to be inaccurate and incomplete, and thus directly
using them may lead to inferior results. With this in mind, we
propose to refine tags by using the affinity of image content as the
first step. Although there have already been a series of studies on
tag refinement in the literature [19–24], we adopt a simple and
effective method by dealing with local and global consistency [26],
given that our objective in this paper is to tackle the three issues
mentioned in Section 1 and to propose a more effective and
efficient solution to the multimodal semi-supervised image clas-
sification problem.

The local and global consistency method [26] propagates labels
according to a graph. To handle the tag refinement problem, tags
in the membership matrix Ttr are propagated by using a visual
similarity graph. We denote the visual kernel of training samples
by Ktr

v and adopt it as the graph. The normalized Laplacian of Ktr
v is

defined as Lvtr ¼ I�D�1=2Kv
trD

�1=2, where D is a diagonal matrix
with its (i,i)-element equal to the sum of the i-th column of Ktr

v and
I denotes an identity matrix. Therefore, the objective function for
dealing with the tag refinement problem by using the local and
global consistency method [26] is shown as

min
Ttr*

ð1�α1Þ‖Ttr*�Ttr‖2F þα1 trðT >
tr*L

v
trTtr*Þ ð1Þ

where α1 is a regularization hyperparameter, and Ttr* is the refined
tag membership matrix. The first term of the above objective
function is the Frobenius-norm constraint, and the second term
is the Laplacian constraint, which means that a good refined tag
representation should not change too much between similar
images. By resorting to the analytical solution to Eq. (1) given by

Ttr* ¼ Iþ α1

1�α1
Lvtr

� ��1

Ttr ð2Þ

we can obtain the refined tags Ttr*.

3.2. Graph-based label propagation

After refining image tags, we have obtained a more precise
similarity measure of training samples by learning to combine visual
graph, tag graph and refined tag graph (which will be discussed at
length later in Section 4). Here, we focus on the inference of the class
label of unlabeled training images. As mentioned in Section 1,
supervised models such as MKL may be unreliable by using only
a limited number of labeled samples. Therefore, we adopt a graph-
based label propagation method to tackle this problem by fully
leveraging unlabeled samples. To be consistent with Section 3.1, we
similarly adopt the local and global consistency method [26]. By
denoting L as the combined graph Laplacian (which will be formally
defined in Section 4), and thus we obtain the objective function for
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scoring unlabeled training images shown as

min
Ytr*

ð1�α2ÞJYtr*�Ytr J2F þα2 trðY >
tr*LYtr*Þ ð3Þ

where α2 is also a regularization hyperparameter, and Ytr* denotes the
predicted scores of all training samples. The closed-form solution of
Eq. (3) is given by

Ytr* ¼ Iþ α2

1�α2
L

� ��1

Ytr ð4Þ

It should be noted that most of the elements in Ytr* have a small
absolute value (i.e., close to 0), which may yield inferior final
performance. To normalize the values in Ytr*, we use a simple
algorithm shown in Eq. (5). Note that we define Y1

tr* as the subset
of Ytr* where the corresponding original labels in Ytr equals 1 (i.e.,
positive), and we may similarly define Y �1

tr* and Y0
tr* as

Y1
tr*⟵1; Y �1

tr* ⟵�1

Y0
tr*⟵Y0

tr*�1
2 ðmaxðY0

tr*ÞþminðY0
tr*ÞÞ

Y0
tr*⟵Y0

tr*=maxðY0
tr*Þ ð5Þ

After the normalization step, the resultant Ytr* represents the
predicted scores of all training samples.

3.3. Support vector regression

After obtaining scores of all training samples, the class label of
test images can be inferred by resorting to a classification or
regression model. Since the predicted scores of training samples
are real-valued (i.e., the scores have not been quantized to 1 or �1),
a regression model is preferred. In [11], SVD is performed on the
centered kernel matrix for Ktr

v (i.e., each column of Ktr
v is normal-

ized to 0 mean), and the regression coefficients can be computed
by multiplying the pseudoinverse matrix of Ktr

v (which can be
easily obtained after performing SVD) by the centered scores of
training samples.

However, [11] simply treats each row of the visual kernel
matrix as an individual image representation, and does not
consider the powerful kernel method. Moreover, the SVD step is
time-consuming. In order to directly leverage the kernel Ktr

v and
to accelerate the learning algorithm, we propose to use SVR as
the regression model. Similar to the SVM classifier, SVR can be
kernelized to fully leverage image features in the RKHS along with
the real-valued predicted scores of all training samples. The class
label of test images predicted by SVR, i.e., Yte, is the final result of
the multimodal semi-supervised image classification problem
addressed in this paper.

4. Learning to combine multiple graphs

In Section 3.2, we have already presented graph-based label
propagation with multiple graphs. However, an average combina-
tion of multiple graphs for label propagation is only a suboptimal
choice. Therefore, we will present in this section the approach
to learning to combine multiple graphs. We first introduce the
background and then discuss our approach in detail.

4.1. Background

After refining tags, we have obtained three graphs representing
the training samples: the visual graph Ktr

v , the tag graph Ktr
t and the

refined tag graph Kt
tr*. Since we have these different data sources

and they are likely to contain different information, we expect that
effective integration of the complementary pieces of information
will enhance the predictive performance. In order to combine
multiple graphs, a natural choice is to take a weighted sum of the

graph Laplacians [38]. By denoting Ltr
v , Ltrt and Lttr* as the corre-

sponding three Laplacians, and wtr
v , wtr

t and wt
tr* as the combination

weights, we can arrive at the following equations:

L¼wv
trL

v
trþwt

trL
t
trþwt

tr*L
t
tr*

w¼ ½wv
tr ;w

t
tr ;w

t
tr*�> ; 1>w¼ 1; wZ0 ð6Þ

where L denotes the combined Laplacian, and w the vector of
combination weights. To make things even clearer, we can further
simplify Eq. (6) as

L¼w1L1þw2L2þw3L3 ¼ ∑
3

i ¼ 1
wiLi ð7Þ

where

w¼ ½w1;w2;w3�> ; 1>w¼ 1; wZ0 ð8Þ
Based on the aforementioned notations, the problem to be

addressed can be formulated as follows:

min
Ytr* ;w

ð1�α2Þ‖Ytr*�Ytr‖2F þα2 trðY >
tr*LYtr*Þ

s:t: L¼ ∑
3

i ¼ 1
wiLi; 1>w¼ 1; wZ0 ð9Þ

Eq. (9) can be solved in a straightforward manner by iteratively
optimizing Ytr* with w fixed and optimizing w with Ytr* fixed.
However, the aforementioned formulation always leads to a
degenerated result given by Eq. (10)

wi ¼
1 trðYtr*LiYtr*Þ ¼minðtrðYtr*LjYtr*ÞÞ; j¼ 1;2;3
0 otherwise;

(
i¼ 1;2;3

ð10Þ
We can discover from Eq. (10) that the combined graph

consequently degenerates to only one of the three graphs, which
is an unsatisfactory result.

However, relatively fewer attempts have been made to tackle
the graph combination problem in the literature. Tsuda et al. [29]
proposed an algorithm which treats Lagrangian multipliers as
combination weights. However, as declared by Kato et al. [30],
the algorithm proposed in [29] tends to assign large weights
to graphs which are less contributive to the classification task.
In order to combine multiple graphs more robustly, the robust
label propagation on multiple networks (RLPMN) [30] approach is
proposed to tackle the following optimization problem:

min
f;w

βy ∑
l

i ¼ 1
ðyi� f iÞ2þβbias ∑

n

i ¼ 1
f 2i þβnetfLf

s:t: L¼ ∑
M

i ¼ 1
wiLi; wZ0 ð11Þ

where M denotes the number of graphs, which equals 3 in our
problem. It should be noted that the difference between Eq. (11)
and our problem shown in Eq. (9) is threefold:

� Eq. (11) considers only one group of class labels (i.e., f), while
multiple groups of class labels (i.e., Ytr*) have been simulta-
neously taken into account in Eq. (9).

� We do not impose an L2-norm regularizer on unlabeled data
in Eq. (9).

� Combination weights w are normalized to sum to 1 in Eq. (9),
whereas the resultant weights tend to be too large or too small
in Eq. (11).

With these differences in mind and inspired by [30], we
propose an approach to learning combination weights for the
label propagation step in Eq. (9). Experimental results show that
the approach to graph combination is beneficial for the later SVR
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step and the final performance of the multimodal semi-supervised
image classification problem.

It should be noted that we have conducted extra experiments
to combine different graphs. For convenience, we temporarily
denote the visual graph by ‘v’, the original tag graph by ‘t’, and
the refined tag graph by ‘r’. It can be observed that ‘vþtþr’
performs better than other combinations (i.e., ‘vþt’, ‘vþr’, and
‘tþr’) in our experiments. A similar observation can also be found
in another work dealing with supervised learning issues (see
Table 3 in Reference [39]), where the combination of all three
kinds of features yields the best performance. It may be due to the
fact that the refined tags are derived by propagating visual affinity
to the original tag representation, and thus ‘r’ is not a simple linear
combination of ‘v’ and ‘t’. Therefore, the three graphs (i.e., ‘v’, ‘t’
and ‘r’) are complementary to each other. With this in mind,
adding ‘t’ into ‘vþr’ can bring a further improvement due to such
complementarity.

Our approach will be discussed in detail in the next subsection.

4.2. Our approach to learning combination weights

In this subsection, we formulate the graph combination pro-
blem in a probabilistic framework. We begin by establishing a
probabilistic model for label propagation with a fixed Laplacian,
and then introduce a prior of the weights. Finally, an EM algorithm
is derived for maximum a posteriori (MAP) estimation according
to the probabilistic model.

4.2.1. Label propagation with a fixed Laplacian
Here we give a probabilistic interpretation of label propagation

with a fixed Laplacian. The label propagation method can be seen
as an MAP estimation of the score matrix Ytr* in the probabilistic
model described below. The score matrix Ytr* is in the set of model
parameters. The observations Ytr are drawn according to the
Gaussian distribution

pðYtrði; jÞjYtr*ð:; jÞÞ ¼N Ytrði; jÞ;Ytr*ði; jÞ;
1

1�α2

� �
ð12Þ

where Ytr*ð:; jÞ denotes the j-th column vector of Ytr*, and N ðy;m; SÞ
is a Gaussian probability density function of the observation ywith
mean m and covariance S defined as

N ðy;m; SÞ ¼ 1
ð2πÞn=2jSj1=2

exp �1
2
ðy�mÞ> S�1ðy�mÞ

� �
ð13Þ

where j � j denotes the determinant of a matrix. The prior of the
model parameters is defined by the multivariate Gaussian dis-
tribution

pðYtr*ð:; jÞÞ ¼N Ytr*ð:; jÞ;0;
1
α2

L�1
� �

ð14Þ

It should be noted that, since the Laplacian L is a positive
semidefinite matrix but not a positive definite matrix, L�1 denotes
the pseudoinverse matrix of L. MAP estimation pursues the value
of the model parameters Ytr* which maximizes the posterior
probability

∏
c

j ¼ 1
pðYtr*ð:; jÞjYtrð:; jÞÞ ¼ ∏

c

j ¼ 1

pðYtr*ð:; jÞÞ∏n1
i ¼ 1pðYtrði; jÞjYtr*ð:; jÞÞ
pðYtrð:; jÞÞ

ð15Þ

Since the denominator of Eq. (15) is constant for maximization,
the MAP estimation is equivalent to maximizing the following
objective function:

∑
c

j ¼ 1
log pðYtr*ð:; jÞÞþ ∑

n1

i ¼ 1
log pðYtrði; jÞjYtr*ði; jÞÞ

 !

¼ �1
2

∑
c

j ¼ 1
ðα2Ytr*ð:; jÞ> LYtr*ð:; jÞþð1�α2Þ‖Ytr*ð:; jÞ�Ytrð:; jÞ‖2ÞþC

¼ �1
2
ðα2 trðY >

tr*LYtr*Þþð1�α2Þ‖Ytr*�Ytr‖2F ÞþC ð16Þ

where C denotes a constant value irrelevant to the score matrix
Ytr*. The value of C is shown as follows:

C ¼ �cn1ðn1þ1Þ
2

log ð2πÞ� c
2
log α�1

2 L�1 þcn1

2
log ð1�α2Þ

������ ð17Þ

We can see from Eq. (16) that the values of Ytr* at the maximum
of the posterior probability are equal to the solution of Eq. (9).
The validity of the aforementioned equivalence is due to the
proper selection of the prior distribution (Eq. (14)) and the like-
lihood function (Eq. (12)), both of which are key components of a
Bayesian probabilistic model.

More notably, if we replace the Laplacian L in Eq. (14) by Eq. (7),
we can arrive at the following equation:

pðYtr*ð:; jÞÞ ¼
1
Z

∏
3

i ¼ 1
N Ytr*ð:; jÞ;0;

1
α2wi

L�1
i

� �
ð18Þ

where Z is a normalizing constant defined as follows:

Z ¼ ð2πÞ�n1 jα�1
2 L�1j

∏3
i ¼ 1jα�1

2 w�1
i L�1

i j
ð19Þ

From Eq. (18), we can observe that the prior distribution of the
model parameters for the fixed weight combination of multiple
graphs is expressed as the product of multiple Gaussians. This
formulation facilitates the development of the probabilistic model
of the graph combination algorithm.

4.2.2. Prior distribution over graph weights
As described above, we have obtained the probabilistic model

for label propagation with a fixed Laplacian. Here we investigate
the situation where the graph weights are unknown. We introduce
a prior of the graph weights and marginalize out the random
variables of the weights from the expressions. To begin with, we
employ the Gamma distribution for the prior of the weights. The
Gamma distribution is defined as

Gammaðw;α;βÞ ¼ βα

ΓðαÞw
α�1expð�βwÞ ð20Þ

where wZ0, αZ0, βZ0. In the probabilistic model described
here, each component (i.e., a Gaussian distribution) of Eq. (18)

N Ytr*ð:; jÞ;0;
1

α2wi
L�1
i

� �
ð21Þ

is substituted by an infinite mixture of GaussiansZ 1

0
Gamma wi;

1
2
ν;
1
2
ν

� �
N Ytr*ð:; jÞ;0;

1
α2wi

L�1
i

� �
dwi ð22Þ

where ν is a positive hyperparameter. In Eq. (22), the mixture
coefficients are expressed by the Gamma distribution, and the
weights w¼ ½w1;w2;w3�> can be seen as latent variables. The
prior distribution of the graph weights is flatter if ν is chosen to be
smaller.

4.2.3. EM algorithm for MAP estimation
With the Gamma distribution being the prior of the graph

weights, we present an EM algorithm for MAP estimation of model
parameters Ytr*. Given that the hyperparameters α2 and ν are fixed
in advance, MAP estimation finds the model parameters by
maximizing Eq. (16):

∑
c

j ¼ 1
log pðYtr*ð:; jÞÞþ ∑

n1

i ¼ 1
log pðYtrði; jÞjYtr*ði; jÞÞ

 !
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By considering Eq. (22), the logarithm of the prior distribution
is rewritten to be

∑
c

j ¼ 1
ðlog pðYtr*ð:; jÞÞÞ ¼ log Zþ ∑

c

j ¼ 1
∑
3

i ¼ 1
log

Z 1

0
hiðYtr*ð:; jÞ;wiÞ dwi

ð23Þ

where Z is a normalizing constant defined as

Z ¼ cn1 log ð2πÞ�c log jα�1
2 L�1jþc ∑

3

i ¼ 1
log jα�1

2 w�1
i L�1

i j ð24Þ

and the function hið�; �Þ is defined as

hiðYtr*ð:; jÞ;wiÞ ¼Gamma wi;
1
2
ν;
1
2
ν

� �
N Ytr*ð:; jÞ;0;

1
α2wi

L�1
i

� �
ð25Þ

It should be noted that the EM algorithm consists of E-step and
M-step: E-step computes the optimal distribution denoted by
rðwiÞ, and M-step maximizes the logarithm of the posterior
probability with respect to the model parameters Ytr*.

Based on the aforementioned definitions, we can derive
the optimal distribution rðwiÞ to be computed in E-step by using
variational analysis as follows:

log rðwiÞ ¼ ∑
c

j ¼ 1
log hiðYtr*ð:; jÞ;wiÞþC

¼ ∑
c

j ¼ 1
log Gamma wi;

1
2
ν;
1
2
ν

� �
N Ytr*ð:; jÞ;0;

1
α2wi

L�1
i

� �
þC

¼ �α2wi

2
∑
c

j ¼ 1
Ytr*ð:; jÞ> LiYtr*ð:; jÞþ

cn1

2
log wi

þ cν
2
�c

� �
log wi�

cν
2
wiþC

¼ log Gamma wi;
cνþcn1

2
�cþ1;

cν
2
þα2

2
trðY >

tr*LiYtr*Þ
� �

ð26Þ

where C denotes the terms independent of wi. Since the expecta-
tion of Gamma distribution Gammaðw;α;βÞ is w ¼ α=β [40],
we can obtain the expectation of wi over the optimal distribution
rðwiÞ by

wi ¼
Z 1

0
wirðwiÞ dwi ¼

cνþcn1�2cþ2
cνþα2 trðY >

tr*LiYtr*Þ
ð27Þ

It can be concluded from Eq. (9) that the importance of a graph
is determined by the trace norm trðY >

tr*LiYtr*Þ. With this in mind, a
graph with a large trðY >

tr*LiYtr*Þ may dominate the final result.
Therefore, large trðY >

tr*LiYtr*Þ should be penalized to allow for a
better combination. Since the term trðY >

tr*LiYtr*Þ is in the denomi-
nator of Eq. (27), the weights of graphs with large trðY >

tr*LiYtr*Þ will
be small. After obtaining the graph weightsw, we can compute Ytr*
according to the following analytical solution:

Ytr* ¼ Iþ α2

1�α2
L

� ��1

Ytr ð28Þ

which can also be viewed as the M-step. However, there is still a
problem to be addressed: the resultant graph weights w may be
too large or too small if we simply iterate between Eqs. (27)
and (28) until convergence. Fortunately, Eq. (9) is equivalent to the
following objective function:

min
Ytr* ;w

λð1�α2Þ‖Ytr*�Ytr‖2F þλα2 trðY >
tr*LYtr*Þ

s:t: L¼ ∑
3

i ¼ 1
wiLi; 1>w¼ 1; wZ0 ð29Þ

where λ is an arbitrary positive factor. Therefore, we can rewrite
Eq. (27) as follows:

wi ¼
cνþcn1�2cþ2

cνþλα2 trðY >
tr*LiYtr*Þ

ð30Þ

Since the Laplacian Li is a positive semidefinite matrix, the
expression trðY >

tr*LiYtr*ÞZ0 always holds. Therefore, wi in Eq. (30)
is a monotonic decreasing function with respect to λ, and thus we
can search for the appropriate λ by using Newton's method in
order to let the expression 1>w¼ 1 hold true. Finally, the EM
algorithm for learning the graph weights for label propagation is
summarized as follows.

E-step: Update w using Eq. (30) by searching for the appropriate
λ via Newton's method to let the expression 1>w¼ 1
hold true.

M-step: Update Ytr* using Eq. (28).

The two steps are repeated until convergence. EM algorithms
are guaranteed to converge to a local optimum [41], so is the
aforementioned algorithm. Currently, we only select the equal
weights as the initial point. It should be noted that a multipoint
search strategy may be adopted to further improve the perfor-
mance, although it will increase the computational complexity.
More notably, instead of learning model parameters for c classes
simultaneously, we can learn to combine multiple graphs for each
class separately, although this increases the computational cost.

5. Complexity issues and algorithm summary

We begin by analyzing the complexity issues in this section.
Recall that the sample size is denoted by n. Since training sample
size and test sample size have the same orders of magnitude, we
do not explicitly distinguish between them. The method proposed
in [11] consists of an MKL classifier and an LSR model. Since the
MKL classifier is built upon a limited number of samples (i.e., no
more than 200 in our experiments), the computational cost of the
training and inference steps is negligible. However, the SVD of the
centered visual kernel matrix involved in the LSR is time-consum-
ing, where the time complexity is Oðn3Þ.

As a comparison, the proposed GraMSIC framework is made up
of three components: tag refinement, graph-based label propaga-
tion by combining multiple graphs and SVR. The most time-
consuming step is the inversion of an n� n matrix when comput-
ing the analytical solution to a semi-supervised problem, where
the time complexity is Oðn3Þ. However, we can adopt the iterative
steps suggested in [26] to accelerate the semi-supervised learning,
and thus the computational complexity of the label propagation
algorithm can be reduced to Oðn2Þ with respect to the data size n.

As for the third component (i.e., SVR), the complexity is also Oðn2Þ,
since the LIBSVM implementation [42] we adopt is a decomposition-
based algorithm [43]. As a consequence, the total computational
complexity of the proposed GraMSIC framework is Oðn2Þ, whereas
the method in [11] has a time complexity of Oðn3Þ. Therefore, the
proposed GraMSIC framework can perform more efficiently.

Moreover, as a summarization of the above discussion, the
proposed GraMSIC framework is shown in Algorithm 1.

Algorithm 1. The proposed GraMSIC framework.

Input:
Visual kernel of training samples Kv

trARn1�n1

Visual kernel of test samples Kv
teARn2�n1 (each value in this

matrix is computed using a training sample and a test
sample)

W. Xie et al. / Neurocomputing 138 (2014) 167–179 173



Tag membership matrix TtrAf0;1gn1�m

Label matrix of training samples YtrAf1;0; �1gn1�c

Hyperparameters α1, α2, ν, Creg
Output:

Label matrix of test samples YteAf1;0; �1gn2�c

1: Compute Ltr
v , the Laplacian of Ktr

v .
2: Obtain refined tags Ttr* by solving Eq. (1).
3: Initialize graph combination weights w¼ ½1=3;1=3;1=3�.
4: repeat
5: Compute Laplacian L¼∑3

i ¼ 1wiLi.
6: Compute predicted labels of training samples Ytr* using

Eq. (28).
7: Compute w using Eq. (30) by searching for the

appropriate λ via Newton's method to let the expression

1>w¼ 1 hold true.
8: until convergence
9: Normalize Ytr* according to Eq. (5).
10: Train an SVR model using Ktr

v and normalized Ytr*.
11: Predict Yte by using the trained SVR model along with Kte

v .

6. Experimental results

We conduct extensive experiments to evaluate the effective-
ness of the proposed GraMSIC framework. In this section, we begin
by describing the experimental setup and the evaluation metric.
Secondly, we evaluate the effectiveness of each component of the
proposed GraMSIC framework. Thirdly, we compare the proposed
approach with the state-of-the-art graph combination algorithms
[37,30]. Finally, we present the hyperparameter tuning details and
discuss the complexity issues.

6.1. Experimental setup

The experiments are conducted on three publicly available
datasets, i.e., the PASCAL VOC'07 [8], the MIR Flickr [16] and the
NUS-WIDE-Object [17]. In particular, there are 9963 images with
804 tags from 20 categories in the PASCAL VOC'07 dataset, 25,000
images with 457 tags from 38 categories in the MIR Flickr dataset,
and 30,000 images with 1000 tags from 31 categories in the
NUS-WIDE-Object dataset. In addition, the PASCAL VOC'07 dataset
is split into a training set of 5011 images and a test set of 4952
images, the MIR Flickr dataset is equally split into a training set of
12,500 images and a test set of 12,500 images, and the NUS-WIDE-
Object dataset is split into a training set of 17,928 images and a test
set of 12,072 images.

Note that both the PASCAL VOC'07 dataset and the MIR Flickr
dataset have been used in [11]. There are P¼15 different image
representations and a tag membership matrix publicly available on
these two datasets. The 15 different image representations are
derived from two local descriptors (SIFT, Hue), three global color
histograms (RGB, HSV and LAB) and a GIST descriptor. Fig. 3
illustrates all the aforementioned image representations. We use
the same visual kernel as that in [11]. Specifically, we average the
distances between images based on these different representa-
tions, and use it to compute an RBF kernel, which is shown as

kvðxi; xjÞ ¼ expð�λ�1dðxi; xjÞÞ ð31Þ

where the scale factor λ is set to the average pairwise distance, i.e.,
λ¼ n�2∑n

i;j ¼ 1dðxi; xjÞ, and dðxi; xjÞ ¼∑P
p ¼ 1λ

�1
p dpðxi; xjÞ, where the

scale factor is defined as λp ¼maxi;j dpðxi; xjÞ. Following the settings
in [11], we adopt L1 distance for the color histograms, L2 for GIST,
and χ2 for the visual word histograms. Moreover, we compute the
cosine similarity kernel for tag features.

As for the NUS-WIDE-Object dataset, we adopt the 500-
dimensional bag of words based on SIFT descriptions publicly
available in the dataset and compute a χ2 kernel. Moreover, to be
in accordance with the aforementioned two datasets, we also
compute the cosine similarity kernel for tag features for the
NUS-WIDE-Object dataset.

There are four tunable hyperparameters in our model, i.e., α1,
α2, ν and the regularization hyperparameter of SVR denoted by
Creg. The setting of these hyperparameters will be investigated in
Section 6.5.

6.2. Evaluation metric

In our experiments, we evaluate results by using the mean
average precision (mAP) over all classes. To be in accordance
with [11], we adopt the evaluation criterion in the PASCAL VOC
challenge evaluation [8], which is given as

AP ¼ 1
11

∑
r
PðrÞ ð32Þ

where P(r) denotes the maximum precision over all recalls larger
than rAf0;0:1;0:2;…;1:0g. A larger value indicates a better per-
formance. It should be noted that all the AP scores are computed
based on the ranked lists of all test samples.

6.3. Evaluation of the GraMSIC framework

Since the proposed GraMSIC framework consists of three
components (i.e., tag refinement, graph-based label propagation
by combining multiple graphs and SVR), we conduct experiments
to demonstrate the effectiveness of each of the three compo-
nents respectively. Concretely, we compare the following four
approaches:

� MKLþLSR[11]: An MKL classifier learned on labeled training
samples, followed by least-squares regression on the MKL
scores for all training samples to obtain the visual classifier.

� GLPþSVR(ours): A graph-based label propagation approach
based on a combined graph Laplacian L by averagely fusing
visual graph and tag graph, followed by SVR on the normalized
decision values of all training samples to predict the scores of
test samples.

� TRþGLPþSVR(ours): Tag refinement by using the local and
global consistency method [26], followed by a graph-based
label propagation method based on a combined graph Lapla-
cian L by averagely fusing visual graph, tag graph and refined
tag graph. Finally, SVR is learned on the normalized decision
values.

� TRþGLP*þSVR(ours): Tag refinement by using the local and
global consistency method [26], followed by a graph-based
label propagation method by combining multiple graphs which
simultaneously learns predicted scores and graph weights.
Finally, SVR is learned on the normalized decision values.

Global, 
3 horizontal regions 

Harris interest points,
Dense sampling 

SIFT, 
Hue 

RGB, HSV, LAB 

GIST 

2 spatial layouts 2 interest point detectors 

(2*2+3)*2+1=15 image representations 

Fig. 3. Fifteen image representations [11] used in the PASCAL VOC'07 and the MIR
Flickr datasets. SIFT [44] and Hue are extracted with two interest point detectors
and two spatial layouts. RGB, HSV, and LAB are extracted with two spatial layouts.
GIST [45] is extracted globally.
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It should be noted that there is also a related paper [46] on
multi-label image classification using the same datasets, where
the authors assume that the class label vector (i.e., all class label
assignments) is known for some given samples. Nevertheless,
following the problem settings in [11], positive and negative
samples are randomly chosen for only one class at a time. Most
probably, different labeled samples are chosen for different classes,
and thus the aforementioned problem does not belong to a multi-
label classification problem. Due to different settings of input class
labels, we do not make direct comparisons with the results in [46].

We randomly select nl positive and the same number of
negative samples for each class and all the rest are unlabeled.
As nl varies, the mAP scores for all the three datasets are illustrated
in Fig. 4.

Since the sampling strategy of labeled training images may
affect the final result, the averaged performance over 10 random
samplings is reported in the figures. Besides that the performance
improves as the number of labeled samples increases, we have the
following three additional observations from Fig. 4:

� GLPþSVR performs much better than MKLþLSR on all datasets.
It may be due to that, although MKL [13] is a powerful algo-
rithm, it performs unsatisfactorily when using only a limited
number of labeled samples. In contrast, graph-based label
propagation is good at dealing with such problems. Moreover,
the LSR model does not consider the powerful kernel method,
while SVR can readily utilize the original visual kernel and thus
leverage its full power.

� TRþGLPþSVR performs significantly better1 than GLPþSVR on
the PASCAL VOC'07 dataset and the MIR Flickr dataset, and
slightly better on the NUS-WIDE-Object dataset. Since the
original tags tend to be inaccurate and incomplete, directly
using them may lead to inferior results. Therefore, refining the
initial tags with the help of the visual content is beneficial for
the final performance.

� Compared to TRþGLPþSVR, TRþGLP*þSVR performs signifi-
cantly better on the PASCAL VOC'07 dataset, and slightly better
on the MIR Flickr dataset and the NUS-WIDE-Object dataset.
These results show that the proposed approach to graph
combination performs more effectively than a simple average
combination of multiple graphs for label propagation.

As a consequence, the GraMSIC framework (i.e., TRþGLP*þSVR)
performs significantly better than the existing MKLþLSR approach
[11], due to the effectiveness of the three components. It should
be noted that only a slight improvement is observed on the

NUS-WIDE-Object dataset after adding the tag refinement compo-
nent and the graph combination component, which may be due to
the fact that the NUS-WIDE-Object dataset (mAP is less than 0.25)
is more challenging than the other two datasets (mAP is around
0.4). It is beneficial to take into account both tag refinement
and graph combination on such a challenging dataset, but the
improvement may be limited.

We also note that, since there are no published results of the
MKLþLSR approach [11] on the NUS-WIDE-Object dataset, we
implement the algorithm by using the MKL code [13] publicly
available.2 Moreover, to make a detailed comparison, we report
the per-class results of the proposed GraMSIC framework along
with the published results in [11] on the PASCAL VOC'07 dataset in
Table 1 and the MIR Flickr dataset in Table 2 using 50 positive
and 50 negative labeled examples for each class. We can observe
from these two tables that (1) TRþGLP*þSVR (i.e., the proposed
GraMSIC framework) outperforms other methods for most of the
categories; (2) as for the other categories, the differences between
the results of TRþGLP*þSVR and the best ones are relatively small.

6.4. Comparison with state-of-the-art graph combination algorithms

Recall that the problemwe investigate in this paper is an image
classification task where training images come along with tags,
but only a subset being labeled, and the goal is to predict the class
label of test images without tags. This task, as illustrated in the
uppermost subfigure of Fig. 2, is different from many other image
classification problems. Therefore, there are few related studies
addressing this task in the literature.

In this subsection, we make comparisons between the graph
combination approach in the GraMSIC framework and the state-
of-the-arts [37,30]. We compare with the recent algorithm named
sparse multiple graph integration (SMGI) [37], since it is reported
to perform better than other methods [29–33,35,36] by taking into
account the sparse constraints. Moreover, we compare with the
robust label propagation on multiple networks (RLPMN) algorithm
[30], since the proposed graph combination approach is inspired
by [30] and is most related to [30]. It should be noted that we
conduct all the experiments in the GraMSIC framework (i.e.,
TRþGLP*þSVR), and the only difference is the graph combination
methods.

As a quantitative comparison, the mAP scores for all the three
datasets are illustrated in Fig. 5 using varied number of labeled
examples for each class. It can be observed from Fig. 5 that, in
the multimodal semi-supervised image classification task, the
proposed graph combination approach performs better than

10 20 30 40 50 60 70 80 90 100 110
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

Labeled positive & negative samples per class

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

 (m
A

P
)

10 20 30 40 50 60 70 80 90 100 110
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Labeled positive & negative samples per class

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

 (m
A

P
)

10 20 30 40 50 60 70 80 90 100 110
0.19

0.2

0.21

0.22

0.23

0.24

0.25

Labeled positive & negative samples per class

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

 (m
A

P
)

Fig. 4. Performance in mAP (mean7standard deviation) on the three datasets using varied number of labeled examples for each class. (a) PASCAL VOC'07. (b) MIR Flickr.
(c) NUS-WIDE-Object.

1 The significance is judged by the paired t-test with a significance level of 0.05. 2 http://asi.insa-rouen.fr/enseignants/�arakoto/code/mklindex.html.
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Table 1
AP scores for all the classes using 50 positive and 50 negative labeled examples for each class on the PASCAL VOC'07 dataset.

Methods Aeroplane Bicycle Bird Boat Bottle

MKLþLSR [11] 0.5920 0.3240 0.3760 0.5190 0.1540
GLPþSVR 0.627270.0073 0.399870.0251 0.403570.0143 0.550970.0226 0.158570.0272
TRþGLPþSVR 0.639670.0077 0.421670.0256 0.412370.0197 0.557970.0187 0.161370.0283
TRþGLP*þSVR 0.650970.0217 0.459770.0247 0.436170.0091 0.586970.0107 0.182270.0471

Bus Car Cat Chair Cow Diningtable

0.2780 0.5010 0.3660 0.3000 0.1170 0.2550
0.376570.0287 0.505670.0314 0.402070.0204 0.279170.0372 0.244370.0199 0.296470.0263
0.410470.0256 0.524870.0362 0.427470.0186 0.296570.0304 0.263670.0238 0.288670.0367
0.429970.0252 0.568670.0187 0.441770.0187 0.285770.0393 0.280270.0328 0.277770.0125

Dog Horse Motorbike Person Pottedplant Sheep

0.3310 0.6370 0.3830 0.7030 0.2120 0.2180
0.337170.0247 0.667770.0137 0.446670.0362 0.666470.0234 0.215170.0373 0.322070.0178
0.358270.0175 0.688570.0086 0.456670.0282 0.679570.0283 0.262270.0318 0.318670.0273
0.351970.0209 0.690070.0185 0.461170.0219 0.682170.0155 0.292670.0429 0.323070.0189

Sofa Train TVmonitor Mean

0.1910 0.6170 0.2360 0.3660
0.206470.0423 0.656870.0219 0.301270.0348 0.403270.0026
0.211070.0297 0.668270.0207 0.315970.0390 0.418170.0055
0.196570.0566 0.693970.0085 0.352070.0402 0.432170.0070

Table 2
AP scores for all the classes using 50 positive and 50 negative labeled examples for each class on the MIR Flickr dataset.

Methods Animals Baby Babyn Bird Birdn

MKLþLSR [11] 0.3100 0.0750 0.1610 0.1240 0.1630
GLPþSVR 0.324670.0250 0.128670.0290 0.189970.0127 0.157370.0276 0.196570.0169
TRþGLPþSVR 0.341870.0246 0.130070.0278 0.187970.0092 0.165870.0162 0.203870.0175
TRþGLP*þSVR 0.360870.0237 0.126770.0364 0.189270.0030 0.173170.0059 0.200870.0277

Car Carn Clouds Cloudsn Dog Dogn

0.2290 0.3050 0.6120 0.5370 0.1820 0.2120
0.251070.0231 0.416370.0310 0.616970.0345 0.542170.0187 0.249870.0074 0.272170.0158
0.272270.0259 0.447070.0155 0.635470.0308 0.556870.0210 0.259770.0075 0.279670.0113
0.288670.0259 0.461470.0173 0.626070.0293 0.550070.0192 0.263970.0093 0.294170.0158

Female Femalen Flower Flowern Food Indoor

0.4400 0.3130 0.3730 0.4240 0.3330 0.5140
0.430070.0166 0.365070.0451 0.424570.0069 0.508770.0163 0.391470.0258 0.568470.0203
0.433270.0151 0.382970.0382 0.439170.0098 0.522970.0142 0.406470.0227 0.571470.0219
0.425570.0186 0.412170.0322 0.447370.0037 0.529070.0185 0.428070.0079 0.581770.0253

Lake Male Malen Night Nightn People

0.1590 0.3660 0.2550 0.4710 0.3680 0.6290
0.214870.0237 0.383470.0233 0.270370.0433 0.514470.0278 0.383770.0327 0.641270.0193
0.221270.0207 0.383670.0173 0.286070.0324 0.519770.0264 0.429270.0266 0.646570.0189
0.224270.0309 0.375670.0369 0.299970.0236 0.515070.0340 0.418170.0092 0.650770.0204

Peoplen Plant life Portrait Portraitn River Rivern

0.5540 0.6130 0.4740 0.4290 0.2340 0.0470
0.548970.0237 0.611370.0247 0.416070.0423 0.408070.0613 0.189770.0365 0.087270.0089
0.556970.0143 0.610870.0174 0.442470.0461 0.431870.0626 0.205170.0297 0.078170.0090
0.560770.0118 0.599870.0127 0.436870.0125 0.477770.0462 0.223670.0166 0.075470.0131

Sea Sean Sky Structures Sunset Transport

0.4370 0.2550 0.6930 0.6550 0.5430 0.3210
0.432870.0229 0.271970.0243 0.683970.0466 0.619870.0265 0.553370.0236 0.288370.0360
0.447170.0187 0.276870.0162 0.692070.0499 0.633770.0218 0.563970.0248 0.294570.0418
0.445370.0204 0.272270.0189 0.692570.0575 0.633670.0113 0.573470.0095 0.313370.0290

Tree Treen Water Mean

0.4530 0.2310 0.4520 0.3670
0.426970.0276 0.288170.0651 0.453470.0312 0.387470.0038
0.416570.0276 0.333470.0434 0.452670.0287 0.398970.0024
0.408570.0246 0.351170.0397 0.454370.0294 0.404270.0022
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SMGI [37] and RLPMN [30]. SMGI [37] is proposed to handle sparse
integration of tens or hundreds of graphs by discarding irrelevant
graphs. However, all the three graphs are relevant to the current
task and thus sparsity is an inappropriate constraint. Therefore,
SMGI performs unsatisfactorily here.

Besides, we observe in our experiments that RLPMN [30]
converges quickly and the learned weights of the three graphs
are always the same. Therefore, the results of RLPMN are similar
to those of an average combination of the three graphs (i.e., TRþ
GLPþSVR), and thus the proposed graph combination approach in
this paper performs better.

6.5. Hyperparameter tuning

At the beginning of this subsection, it should be noted that, due
to the lack of labeled samples, a cross-validation strategy may not
be applicable. Recall that there are four tunable hyperparameters
in total in our model, i.e., α1, α2, ν and Creg. In this subsection, we
focus on the setting of these hyperparameters.

To begin with, the results of TRþGLP*þSVR on the PASCAL
VOC'07 dataset with 50 positive and 50 negative labeled examples
are taken as examples. We report the mAP scores with varied
α1, α2, and Creg in Fig. 6. Note that α1 and α2 are chosen from
f0:001;0:01;0:1;0:2;…;0:9;0:99;0:999g, and Creg is chosen from
f10�4;10�3;…;104g. As shown in Fig. 6, α1 is relatively insensitive,
whereas a small α2 is beneficial for the final performance.
More importantly, a small Creg may lead to catastrophic results,
and thus a large Creg (i.e., larger than 1) is necessary. We have
also conducted experiments on other datasets and observed
similar trends. Therefore, we adopt the same settings for the three
aforementioned hyperparameters in all the experiments for con-
ciseness and fairness, i.e., α1 ¼ 0:9, α2 ¼ 0:01 and Creg ¼ 10.

As a next step, we investigate the tuning of ν. We observe in
our experiments that the hyperparameter ν does not affect the
performance too much when it is chosen to be relatively small,
and the graph combination approach degenerates to a simple
average combination when ν is chosen to be relatively large.
Table 3 shows the weights of different graphs and the mAP scores
with varied ν.

Recall that wtr
v , wtr

t and wt
tr* respectively denote the combina-

tion weights of visual graph, tag graph and refined tag graph, as
shown in Eq. (6). From Table 3, we can observe that the mAP score
is relatively insensitive to ν when ν is chosen to be small (i.e., no
larger than 100). However, as ν becomes larger, the graph weights
tend to be equal to each other and thus the approach to combining
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Fig. 5. Performance of different graph combination approaches in mAP (mean7standard deviation) in the multimodal semi-supervised image classification task on the
three datasets using varied number of labeled examples for each class. (a) PASCAL VOC'07. (b) MIR Flickr. (c) NUS-WIDE-Object.
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Fig. 6. Performance of TRþGLP*þSVR in mAP (mean7 standard deviation) using 50 positive and 50 negative labeled examples for each class on the PASCAL VOC'07 dataset
with varied: (a) α1, (b) α2, (c) Creg.

Table 3
Weights of different graphs and the mAP scores (mean7standard deviation) of
TRþGLP*þSVR with varied ν using 50 positive and 50 negative labeled examples
for each class on the PASCAL VOC'07 dataset.

ν wtr
v wtr

t wt
trn mAP

1 0.0089 0.9857 0.0055 0.428470.0063
2 0.0089 0.9856 0.0055 0.428270.0040
5 0.0092 0.9851 0.0057 0.430470.0048
10 0.0095 0.9846 0.0059 0.430770.0053
20 0.0104 0.9831 0.0065 0.431870.0061
50 0.0128 0.9792 0.0080 0.429170.0044
100 0.0203 0.9668 0.0129 0.432170.0070
200 0.2220 0.6095 0.1685 0.423670.0058
500 0.3095 0.4151 0.2755 0.421970.0072
1000 0.3236 0.3718 0.3046 0.421570.0071
2000 0.3291 0.3520 0.3189 0.419270.0043
5000 0.3317 0.3407 0.3276 0.420970.0056
10,000 0.3325 0.3370 0.3305 0.418970.0069
1 0.3333 0.3333 0.3333 0.418270.0083
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multiple graphs degenerates to a simple average combination.
Therefore, we choose a small ν for all the experiments.

6.6. Complexity issues

Recall that we have compared four approaches in Section 6.3 to
evaluate the effectiveness of each component of the proposed
GraMSIC framework. To systematically investigate the complexity
issues, we report in Table 4 the running time (measured in
seconds) of the four approaches on the three datasets.

Note that we run MATLAB codes on a server with 2.20 GHz3

CPU and 128 GB RAM. Among the four approaches, GLPþSVR is the
most efficient, since only label propagation and SVR are involved.
TRþGLPþSVR takes a little bit more time than GLPþSVR since the
tag refinement procedure is integrated. TRþGLP*þSVR requires
almost twice as much time as TRþGLPþSVR due to a few
iterations of the EM algorithm. However, despite that the total
computational complexity of the aforementioned three appro-
aches is Oðn2Þ, the LSR has a time complexity of Oðn3Þ due to the
SVD of the centered visual kernel matrix. As a consequence, the
proposed GraMSIC framework (i.e., TRþGLP*þSVR) performs more
efficiently than the method in [11].

Moreover, we have also conducted experiments on the three
datasets to evaluate the complexity of different approaches
to graph combination. Concretely, we list in Table 5 the running
time (measured in seconds) of the three approaches compared
in Section 6.4. Note that all the three methods are used in the
multimodal semi-supervised image classification task.

We can observe from Table 5 that the proposed graph combi-
nation approach performs more efficiently than the other two
methods. This is due to the fact that SMGI [37] and RLPMN [30] are
both proposed to handle general binary classification problems.
However, there are many classes in the three datasets. For
example, there are 20 classes in total in the PASCAL VOC'07
dataset, which means that there are 20 binary classification tasks
in total.4 SMGI and RLPMN learn to combine multiple graphs for
each class separately, and thus require more time. In contrast to
the aforementioned two methods, the proposed graph combina-
tion approach in this paper can learn graph combination weights
for all the classes simultaneously, and thus is more efficient.

7. Conclusion

In this paper, we investigate an important task for image search
engine on photo sharing websites, where training images come along
with tags, but only a subset being labeled, and the goal is to infer the
class label of test images without tags. We propose a GraMSIC
framework to handle the task, which is made up of the following
three components: (1) tag refinement is used to refine the inaccurate
and incomplete tags on photo sharing websites such as Flickr; (2)
graph-based label propagation is adopted to learn with a limited
number of labeled samples, where the performance can be further
enhanced by using the proposed approach to combining multiple
graphs; (3) SVR is adopted to predict the class label of test images by
readily leveraging the image features in the RKHS. Experimental
results show that the proposed method performs more efficiently
and achieves significantly better results than existing methods.
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