

Big Data Infrastructure at Microsoft: From Research to Production

Lidong Zhou Microsoft Research



### Big Data Infrastructure: The Evolution

#### Foundation:

- Large-Scale Distributed Storage
- Data Flow Machinery
- Declarative Data Parallel Language

..... 2011 2012 2013 2014 2015 2016





### SCOPE/Cosmos in Production: 2010 - 2013

#### Scale

Maximum Utilization and Throughput with High Reliability At Low Cost





#### Ecosystem

Bing, Ad Center, MSN, Maps, Windows Phone, Xbox Live, Windows Live, Office365, STB, ...





#### Simplicity

Developers, Researchers, Data Scientists, PM, Product Management, Marketing, and Sales



Courtesy of Big Data Team



# SCOPE: Database Meets Map/Reduce



```
REFERENCE @"/shares/searchDM/SearchLogApi.dll";
USING MS.Internal.Bing.DataMining.SearchLogApi;
//Search Merge Log Impressions
   VIEW "/shares/searchDM/SearchLogPageView.view"
       PARAMS (Start = 0"2013-07-10", End = 0"2013-07-11")
//Windows Blue distinct users
WindowsBlueClicks =
                               SQL relational algebra
   SELECT.
       Request ClientId AS Client,
       QueryParser.GetFcsNormalizedQuery(Query RawQuery) AS Query,
       SUM(PageClicks Count > 0 ? 1 : 0) AS Clicks,
       MAX(Metrics DwellTime) AS DwellTime
       SMLPageView
    WHFRF
                                                        Predicates
       Market == "en-us"
       AND Request_OSInfo.ProductName == "Windows 8.1"
//Windows Blue user sessions
WindowsBlueSessions =
    REDUCE WindowsBlueClicks ON Client
       USING MySessionReducer() Custom Reduce Function
//Cook for later use
OUTPUT WindowsBlueSessions
    TO SSTREAM @@WindowsBlueSessions@@
    CLUSTERED BY Vertical SORTED BY Client
                                                         Courtesy of Big Data Team
```

## Big Data Infrastructure: The Evolution

#### Foundation:

- Large-Scale Distributed Storage
- Data Flow Machinery
- Declarative
   Data Parallel
   Language

Holistic Code Optimization

- Database Query Optimization
- Program
   Analysis and
   Compiler
   Optimization

2011 2012 2013 2014 2015 2016

OSDI'12 NSDI'12





PeriSCOPE: Pipeline-aware Holistic Code Optimization





### Optimization Steps



Step 1: Construct inter-procedural flow graph

Step 2: Add safety constraints for skipping shuffling code

Step 3: Transform code for reducing shuffling I/O



### Column Reduction: Reduce Number of Columns





### Early Filtering: Reduce Number of Rows





### Smart Cut: Reduce Size of Each Row





# Coverage Study\*

| Optimization     | Eligible jobs  |
|------------------|----------------|
| Column           | 4,052 (14.05%) |
| Reduction        |                |
| Early Filtering  | 3,020 (10.47%) |
| Smart Cut        | 1,544 ( 5.35%) |
| Overlapped Total | 6,397 (22.18%) |

<sup>\*</sup> Study on **28,838** jobs collected from SCOPE clusters in 2010/2011.





## Significant I/O Reduction Observed







### Research to Production

- State-of-art research in OSDI
- Validated with real jobs



### Surprise: Not good enough!

- Absolutely do no harm: correctness and performance
- Coverage and overhead
- Complexity and tool maturity

Image credits:

http://m.rgbimg.com/cache1nvK96/users/o/oz/ozetsky/600/mfe0irG.jpg http://cdn2.everyjoe.com/wp-content/uploads/2013/05/shocked-baby-146x104.jpg







### Big Data Infrastructure: The Evolution

#### Foundation:

- Large-ScaleDistributedStorage
- Data Flow Machinery
- DeclarativeData ParallelLanguage

Holistic Code Optimization

- Database Query Optimization
- Program
   Analysis and
   Compiler
   Optimization

Scheduling and Resource Management

- Coordinated scheduling
- Opportunistic tasks
- Corrective actions

..... 2011 2012 2013 2014 2015 2016

OSDI'12

OSDI'14

NSDI'12





# Scheduling at Scale

Jobs process gigabytes to petabytes of data and issue peaks of 100,000 scheduling requests/seconds

Clusters run up to 170,000 tasks in parallel track 14,000,000 pending tasks and each contains over 20,000 servers

Incrementally rolled out from September to December 2013





# Scheduling Quality

- 60-90% median CPU utilization
- Largely balanced load



- Opportunistic tasks fill the gaps (e.g., during weekends)
- Negligible queuing time for regular tasks







### Big Data Infrastructure: The Evolution

#### Foundation:

- Large-Scale Distributed Storage
- Data Flow Machinery
- DeclarativeData ParallelLanguage

Holistic Code Optimization

- Database Query Optimization
- Program
   Analysis and
   Compiler
   Optimization

Scheduling and Resource Management

- Coordinated scheduling
- Opportunistic scheduling
- Corrective actions

Beyond Batch Processing

- Graph Computation
- Machine Learning and Deep Learning
- Streaming

..... 2011 2012 2013 2014 2015 2016

OSDI'12

OSDI'14

NSDI'12 Eurosys'13

SoCC'15 **NSDI'16** 





# Big Stream Computation







#### From social networks

Tyler Neilson

0 16 Dec 2011

Can I use a Nike+ without Nike+

www.guora.com The answer is yes, the trade offs are it is difficult to find...

Phillip Yip

Q 05 Apr 2012

Do Nike Free shoes have a barefoot feel? www.guora.com (source:..

Allan Brettman writes for Oregonian

22 Feb 2012

Nike new product: Basketball an training shoes that. Oregonlive.com

NEW YORK - Nike this morning announced its latest leap into the world of digital...

- Continuous input
- Near real-time computation
- Scaling to thousands of nodes
- Fault tolerant
- Strongly consistent









Decoupling Vertically



#### <u>rStream</u>

Provides the illusion of reliable and asynchronous communication channels





# Decoupling Horizontally

3,4,5,6,7 X: t<sub>1</sub>



B



$$s_2 = <\{3\}, \{b\}, t_2>$$

rVertex
Replayable vertex, can
replay from any snapshot

Timeline



5,6,7

$$s_3 = \langle \{4\}, \{d\}, t_3 \rangle$$

Restart from any snapshot

### Power of Abstraction

- Easy to reason about correctness
- Enabling powerful optimizations seamlessly Move reliable persistent writes off the critical path
- Allowing different instantiations throughout life cycle
  - Offline mode to test, profile, and debug individual vertices
  - · Optimized implementation when deployed; simple ones for validation
  - Replication based failure recovery
  - Duplicate execution to handle stragglers and planned maintenance









### Research and Production: Lessons and Experiences

#### Research

- Deep insights
- Well founded architecture and methodology
- Simple abstractions
- Fundamental principles



#### Production

- Keep it simple and operation friendly
- Unexpected will happen at scale
- Service mindset: test, validate, deploy, and operate at scale
- No regression, no significant complexity, no unpredictable behavior





### Big Data Infrastructure: What's Next

- Convergence of database, systems, programming language, hardware architecture, machine learning and artificial intelligence
- Heterogeneous workloads on heterogeneous hardware: scheduling and resource management
- Continuous, interactive, and rich-structured big data processing
- → Research and production better together for greater impact





Faculty
Summit
2016