
Scalable Semi-Supervised Query Classification Using Matrix Sketching

Young-Bum Kim† Karl Stratos‡ Ruhi Sarikaya†

†Microsoft Corporation, Redmond, WA
‡Columbia University, New York, NY

{ybkim, ruhi.sarikaya}@microsoft.com
stratos@cs.columbia.edu

Abstract

The enormous scale of unlabeled text
available today necessitates scalable
schemes for representation learning in
language processing. For instance, in
this paper we are interested in classifying
the intent of a user query. While our
labeled data is quite limited, we have
access to virtually an unlimited amount
of unlabeled queries, which could be
used to induce useful representations: for
instance by principal component analysis
(PCA). However, it is prohibitive to even
store the data in memory due to its sheer
size, let alone apply conventional batch
algorithms. In this work, we apply the
recently proposed matrix sketching algo-
rithm to entirely obviate the problem with
scalability (Liberty, 2013). This algorithm
approximates the data within a specified
memory bound while preserving the
covariance structure necessary for PCA.
Using matrix sketching, we significantly
improve the user intent classification
accuracy by leveraging large amounts of
unlabeled queries.

1 Introduction

The large amount of high quality unlabeled data
available today provides an opportunity to im-
prove performance in tasks with limited supervi-
sion through a semi-supervised framework: learn
useful representations from the unlabeled data and
use them to augment supervised models. Un-
fortunately, conventional exact methods are no
longer feasible on such data due to scalability is-
sues. Even algorithms that are considered rela-
tively scalable (e.g., the Lanczos algorithm (Cul-
lum and Willoughby, 2002) for computing eigen-

value decomposition of large sparse matrices) fall
apart in this scenario, since the data cannot be
stored in the memory of a single machine. Con-
sequently, approximate methods are needed.

In this paper, we are interested in improving
the performance for sentence classification task by
leveraging unlabeled data. For this task, supervi-
sion is precious but the amount of unlabeled sen-
tences is essentially unlimited. We aim to learn
sentence representations from as many unlabeled
queries as possible via principal component anal-
ysis (PCA): specifically, learn a projection matrix
for embedding a bag-of-words vector into a low-
dimensional dense feature vector. However, it is
not clear how we can compute an effective PCA
when we are unable to even store the data in the
memory.

Recently, Liberty (2013) proposed a scheme,
called matrix sketching, for approximating a ma-
trix while preserving its covariance structure. This
algorithm, given a memory budget, deterministi-
cally processes a stream of data points while never
exceeding the memory bound. It does so by occa-
sionally computing singular value decomposition
(SVD) on a small matrix. Importantly, the algo-
rithm has a theoretical guarantee on the accuracy
of the approximated matrix in terms of its covari-
ance structure, which is the key quantity in PCA
calculation.

We propose to combine the matrix sketching al-
gorithm with random hashing to completely re-
move limitations on data sizes. In experiments, we
significantly improve the intent classification ac-
curacy by learning sentence representations from
huge amounts of unlabeled sentences, outperform-
ing a strong baseline based on word embeddings
trained on 840 billion tokens (Pennington et al.,
2014).

2 Deterministic Matrix Sketching

PCA is typically performed to reduce the dimen-
sion of each data point. Let X ∈ Rn×d be a
data matrix whose n rows correspond to n data
points in Rd. For simplicity, assume that X is pre-
processed to have zero column means. The key
quantity in PCA is the empirical covariance ma-
trix X>X ∈ Rd×d (up to harmless scaling). It is
well-known that the m length-normalized eigen-
vectors u1 . . . um ∈ Rd of X>X corresponding
to the largest eigenvalues are orthogonal directions
along which the variance of the data is maximized.
Then if Π ∈ Rd×m be a matrix whose i-th col-
umn is ui, the PCA representation of X is given by
XΠ. PCA has been a workhorse in representation
learning, e.g., inducing features for face recogni-
tion (Turk et al., 1991).

Frequently, however, the number of samples n
is simply too large to work with. As n tends
to billions and trillions, storing the entire matrix
X in memory is practically impossible1. One
solution is to approximate the matrix with some
Y ∈ Rl×d where l � n. Many matrix ap-
proximation techniques have been proposed, such
as random projection (Papadimitriou et al., 1998;
Vempala, 2005), sampling (Drineas and Kannan,
2003; Rudelson and Vershynin, 2007), and hash-
ing (Weinberger et al., 2009). Most of these tech-
niques involve randomness, which can be undesir-
able in certain situations (e.g., when experiments
need to be exactly reproducible). Moreover, many
are not designed directly for the objective that we
care about: namely, ensuring that the covariance
matrices X>X and Y >Y remain “similar”.

A recent result by Liberty (2013) gives a de-
terministic matrix sketching algorithm that tightly
preserves the covariance structure needed for
PCA. Specifically, given a sketch size l, the algo-
rithm computes Y ∈ Rl×d such that

∣∣∣∣∣∣X>X − Y >Y
∣∣∣∣∣∣
2
≤ 2 ||X||2F /l (1)

This result guarantees that the error decreases
in O(1/l); in contrast, other approximation tech-

1Processing large datasets often require larger memory
than the capacity of a typical single enterprise server. Clusters
may enable a aggregating many boxes of memory on differ-
ent machines, to build distributed memory systems achieving
large memory capacity. However, building and maintaining
these industry grade clusters is not trivial and thus not acces-
sible to everyone. It is critical to have techniques that can
process large data within a limited memory budget available
in most typical enterprise servers.

Input: data stream x1 . . . xn ∈ Rd, sketch size l

1. Initialize zero-valued Y ∈ 0l×d.

2. For i = 1 . . . n,

(a) Insert xi to the first zero-valued row of Y .
(b) If Y has no zero-valued row,

i. Compute SVD of Y = UΣV > where Σ =
diag(σ1 . . . σl) with σ1 ≥ · · · ≥ σl.

ii. Compute a diagonal matrix Σ with at least
dl/2e zeros by setting

Σj,j =

√
max

(
Σ2

j,j − σ2
bl/2c, 0

)
iii. Set Y = ΣV >.

Output:Y ∈ Rl×d s.t.
∣∣∣∣X>X − Y >Y ∣∣∣∣

2
≤ 2 ||X||2F /l

Figure 1: Matrix sketching algorithm by Liberty
(2013). In the output, X ∈ Rn×d denotes the data
matrix with rows x1 . . . xn.

niques have a significantly worse convergence
bound of O(1/

√
l).

The algorithm is pleasantly simple and is given
in Figure 1 for completeness. It processes one data
point at a time to update the sketch Y in an on-
line fashion. Once the sketch is “full”, its SVD is
computed and the rows that fall below a threshold
given by the median singular value are eliminated.
This operation ensures that every time SVD is per-
formed at least a half of the rows are discarded.
Consequently, we perform no more than O(2n/l)
SVDs on a small matrix Y ∈ Rl×d. The analy-
sis of the bound (1) is an extension of the “median
trick” for count sketching and is also surprisingly
elementary; we refer to Liberty (2013) for details.

3 Matrix Sketching for Sentence
Representations

Our goal is to leverage enormous quantities of un-
labeled sentences to augment supervised training
for intent classification. We do so by learning a
PCA projection matrix Π from the unlabeled data
and applying it on both training and test sentences.
The matrix sketching algorithm in Figure 1 en-
ables us to compute Π on arbitrarily large data.

There are many design considerations for using
the sketching algorithm for our task.

3.1 Original sentence representations

We use a bag-of-words vector to represent a
sentence. Specifically, each sentence is a d-
dimensional vector x ∈ Rd where d is the size
of the vocabulary and xi is the count of an n-gram
i in the sentence (we use up to n = 3 in exper-
iments); we denote this representation by SENT.
In experiments, we also use a modification of this
representation, denoted by SENT+, in which we
explicitly define features over the first two words
in a query and also use intent predictions made by
a supervised model.

3.2 Random hashing

When we process an enormous corpus, it can be
computationally expensive just to obtain the vo-
cabulary size d in the corpus. We propose using
random hashing to avoid this problem. Specif-
ically, we pre-define the hash size H we want,
and then on encountering any word w we map
w → {1 . . . H} using a fixed hash function. This
allows us to compute a bag-of-words vector for
any sentence without knowing the vocabulary size.
See Weinberger et al. (2009) for a justification of
the hashing trick for kernel methods (applicable in
our setting since PCA has a kernel (dual) interpre-
tation).

3.3 Parallelization

The sketching algorithm works in a sequential
manner, processing each sentence at a time. While
it leaves a small memory footprint, it can take pro-
hibitively long time to process a large corpus. Lib-
erty (2013) shows it is trivial to parallelize the al-
gorithm: one can compute several sketches in par-
allel and then sketch the conjoined sketches. The
theory guarantees that such layered sketches does
not degrade the bound (1). We implement this par-
allelization to obtain an order of magnitude speed-
up.

3.4 Final sentence representation:

Once we learn a PCA projection matrix Π, we use
it in both training and test times to obtain a dense
feature vector of a bag-of-words sentence repre-
sentation. Specifically, if x is the original bag-of-
words sentence vector, the new representation is
given by

xnew =
x

||x||
⊕ xΠ

||xΠ||
(2)

where ⊕ is the vector concatenation operation.
This representional scheme is shown to be effec-
tive in previous work (e.g., see Stratos and Collins
(2015)).

3.5 Experiment
To test our proposed method, we conduct in-
tent classification experiments2 (Celikyilmaz et
al., 2011; Ji et al., 2014; El-Kahky et al., 2014)
across a suite of 22 domains shown in Table 13.
To learn a PCA projection matrix from the un-
labeled data, we collected around 17 billion un-
labeled queries from search logs, which give the
original data matrix whose columns are bag-of-n-
grams vector (up to trigrams) and has dimensions
approximately 17 billions by 41 billions, more
specifically,

X ∈ R17,032,086,719×40,986,835,008

We use a much smaller sketching matrix Y ∈
R1,000,000×1,000,000 to approximate X . Note that
column size is hashing size. We parallelized the
sketching computation over 1,000 machines; we
will call the number of machines parallelized over
“batch”. In all our experiments, we train a linear
multi-class SVM (Crammer and Singer, 2002).

Results of Intent Classification Task: Table
1 shows the performance of intent classification
across domains. For the baseline, SVM without
embedding (w/o Embed) achieved 91.99% accu-
racy, which is already very competitive. How-
ever, the models with word embedding trained
on 6 billion tokens (6B-50d) and 840 billion
tokens (840B-300d) (Pennington et al., 2014)
achieved 92.89% and 93.00%, respectively4. To
use word embeddings as a sentence representation,
we simply use averaged word vectors over a sen-
tence, normalized and conjoined with the original
reprsentation as in (2). Surprisingly, when we use
sentence representation (SENT) induced from the
sketching method with our data set, we can boost
the performance up to 93.49%, corresponding to a
18.78% decrease in error relative to a SVM with-
out representation. Also, we see that the exten-

2An intent is defined as the type of content the user is
seeking. This task is part of the spoken language understand-
ing problem (Kim et al., 2015a; Kim et al., 2015b).

3The amount of training data we used ranges from 12k to
120k (in number of queries) across different domains, the test
data was from 2k to 20k. The number of intents ranges from
5 to 39 per domains.

450d and 300d denote size of embedding dimension

w/o Embed 6B-50d 840B-300d SENT SENT+
alarm 97.25 97.68 97.5 97.68 97.74
apps 89.16 91.07 92.52 94.24 94.3

calendar 91.34 92.43 92.32 92.53 92.43
communication 99.1 99.13 99.08 99.08 99.12

finance 90.44 90.84 90.72 90.76 90.82
flights 94.19 92.99 93.99 94.59 94.59
games 90.16 91.79 92.09 93.08 92.92
hotel 93.23 94.21 93.97 94.7 94.78

livemovie 90.88 92.64 92.8 93.28 93.37
livetv 83.14 85.02 84.67 85.41 85.86

movies 93.27 94.01 93.97 94.75 95.16
music 87.87 90.37 90.9 91.75 91.33

mystuff 94.2 94.4 94.51 94.51 94.95
note 97.62 98.36 98.36 98.49 98.52

ondevice 97.51 97.77 97.6 97.77 97.84
places 97.29 97.68 97.68 98.01 97.75

reminder 98.72 98.96 98.94 98.96 98.96
sports 76.96 78.53 78.38 78.7 79.44
timer 91.1 91.79 91.33 92.33 92.61
travel 81.58 82.57 82.43 83.64 82.81

tv 91.42 94.11 94.91 95.19 95.47
weather 97.31 97.33 97.4 97.4 97.47
Average 91.99 92.89 93.00 93.49 93.56

Table 1: Performance comparison between different embeddings style.

dend sentence representation SENT+ can get ad-
ditional gains.

As in Table 2 , we also measured performance
of our method (SENT+) as a function of the per-
centage of unlabeled data we used from total un-
labeled sentences. The overall trend is clear: as
the number of sentences are added to the data for
inducing sentence representation, the test perfor-
mance improves because of both better coverage
and better quality of embedding. We believe that
if we consume more data, we can boost up the per-
formance even more.

Results of Parallelization: Table 3 shows the
sketching results for various batch size. To
evaluate parallelization, we first randomly gener-
ate a matrix R1,000,000×100 and it is sketched to
R100×100. And then we sketch run with different
batch size. The results show that as the number
of batch increases, we can speed up dramatically,
keeping residual value

∣∣∣∣X>X − Y >Y
∣∣∣∣
2
. It in-

deed satisfies the bound value, ||X||2F /l, which
was 100014503.16.

Batch Size
∣∣∣∣X>X − Y >Y

∣∣∣∣
2

time
1 1019779.69 100.21
2 1019758.22 50.31
4 1019714.19 26.50
5 1019713.43 21.67
8 1019679.67 14.53
10 1019692.67 12.13
16 1019686.35 8.53
20 1019709.03 7.35
25 1019650.51 6.40
40 1019703.24 4.97
50 1019689.33 4.48

Table 3: Results for corresponding batch size.
Second column indicates the norm of gap between
original and sketching matrix. Time represents the
running time for sketching methods, measured in
seconds.

4 Conclusion

We introduced how to use matrix sketching al-
gorithm of (Liberty, 2013) for scalable semi-
supervised sentence classification. This algorithm
approximates the data within a specified mem-

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
apps 89.16 89.83 90.04 90.26 90.88 91.9 92.41 92.41 92.95 93.72 94.3

music 87.87 89.12 89.61 90.4 90.83 91.26 91.31 91.33 91.38 91.33 91.33
tv 91.42 92.28 92.83 93.61 93.96 94.67 94.91 95.12 95.34 95.44 95.47

Table 2: Performance for selected domains as the number of unlabeled data increases.

ory bound while preserving the covariance struc-
ture necessary for PCA. Using matrix sketching,
we significantly improved the classification accu-
racy by leveraging very large amounts of unla-
beled sentences.

References
Asli Celikyilmaz, Dilek Hakkani-Tür, and Gokhan Tür.

2011. Leveraging web query logs to learn user intent
via bayesian discrete latent variable model. ICML.

Koby Crammer and Yoram Singer. 2002. On the learn-
ability and design of output codes for multiclass
problems. Machine Learning, 47(2-3):201–233.

Jane K Cullum and Ralph A Willoughby. 2002. Lanc-
zos Algorithms for Large Symmetric Eigenvalue
Computations: Vol. 1: Theory, volume 41. SIAM.

Petros Drineas and Ravi Kannan. 2003. Pass effi-
cient algorithms for approximating large matrices.
In SODA, volume 3, pages 223–232.

Ali El-Kahky, Xiaohu Liu, Ruhi Sarikaya, Gokhan Tur,
Dilek Hakkani-Tur, and Larry Heck. 2014. Ex-
tending domain coverage of language understand-
ing systems via intent transfer between domains
using knowledge graphs and search query click
logs. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on,
pages 4067–4071. IEEE.

Yangfeng Ji, Dilek Hakkani-Tur, Asli Celikyilmaz,
Larry Heck, and Gokhan Tur. 2014. A variational
bayesian model for user intent detection. In Acous-
tics, Speech and Signal Processing (ICASSP), 2014
IEEE International Conference on, pages 4072–
4076. IEEE.

Young-Bum Kim, Minwoo Jeong, Karl Stratos, and
Ruhi Sarikaya. 2015a. Weakly supervised slot
tagging with partially labeled sequences from web
search click logs. In Proc. of the Conference on
the North American Chapter of the Association for
Computational Linguistics - Human Language Tech-
nologies, pages 84–92.

Young-Bum Kim, Karl Stratos, Ruhi Sarikaya, and
Minwoo Jeong. 2015b. New transfer learning tech-
niques for disparate label sets. In Proc. of Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies.

Edo Liberty. 2013. Simple and deterministic ma-
trix sketching. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 581–588. ACM.

Christos H Papadimitriou, Hisao Tamaki, Prabhakar
Raghavan, and Santosh Vempala. 1998. La-
tent semantic indexing: A probabilistic analy-
sis. In Proceedings of the seventeenth ACM
SIGACT-SIGMOD-SIGART symposium on Princi-
ples of database systems, pages 159–168. ACM.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for
word representation. Proceedings of the Empiricial
Methods in Natural Language Processing (EMNLP
2014), 12:1532–1543.

Mark Rudelson and Roman Vershynin. 2007. Sam-
pling from large matrices: An approach through ge-
ometric functional analysis. Journal of the ACM
(JACM), 54(4):21.

Karl Stratos and Michael Collins. 2015. Simple semi-
supervised pos tagging. In Proceedings of NAACL-
HLT, pages 79–87.

Matthew Turk, Alex P Pentland, et al. 1991. Face
recognition using eigenfaces. In Computer Vi-
sion and Pattern Recognition, 1991. Proceedings
CVPR’91., IEEE Computer Society Conference on,
pages 586–591. IEEE.

Santosh S Vempala. 2005. The random projection
method, volume 65. American Mathematical Soc.

Kilian Weinberger, Anirban Dasgupta, John Langford,
Alex Smola, and Josh Attenberg. 2009. Fea-
ture hashing for large scale multitask learning. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, pages 1113–1120.
ACM.

