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Summary

Communication is Expensive
in terms of time and energy

Avoiding Communication
some communication is necessary: we can prove lower bounds

theoretical analysis identifies suboptimal algorithms and spurs
algorithmic innovation

minimizing communication leads to speedups in practice

New Algorithms
(sometimes) require careful implementation to navigate tradeoffs

(sometimes) require numerical analysis to ensure correctness

Grey Ballard 1



Can we improve dense matrix multiplication?

Here’s a strong-scaling plot, for fixed matrix dimension: n = 94,080

0

10

20

30

40

50

P=49 P=343 P=2401

E
ff
e
c
ti
v
e
 G

F
L
O

P
S

 p
e

r 
n
o
d

e machine peak (for classical algorithms)

0

10

20

30

40

50

P=49 P=343 P=2401

E
ff

e
ct

iv
e

 G
F

L
O

P
S

 p
e

r 
n

o
d

e machine peak (for classical algorithms)

0

10

20

30

40

50

P=49 P=343 P=2401

E
ff

e
ct

iv
e

 G
F

L
O

P
S

 p
e

r 
n

o
d

e machine peak (for classical algorithms)

0

10

20

30

40

50

P=49 P=343 P=2401

E
ff

e
ct

iv
e

 G
F

L
O

P
S

 p
e

r 
n

o
d

e machine peak (for classical algorithms)

Grey Ballard 2

benchmarked on a Cray XT4
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We must consider communication

By communication, I mean
moving data within memory hierarchy on a sequential computer
moving data between processors on a parallel computer

For high-level analysis, we’ll use these simple memory models:

SLOW 

FAST 

Local 

Sequential Parallel 

Local Local 

Local 

Local Local Local 

Local 

Local 
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Runtime Model

Measure computation in terms
of # flops performed

Time per flop: γ

Measure communication in terms
of # words communicated

Time per word: β

Total running time of an algorithm (ignoring overlap):

γ · (# flops) + β · (# words)

β � γ as measured in time and energy, and the relative cost of
communication is increasing

Grey Ballard 4



Why avoid communication

Annual Improvements in Time
Flop rate DRAM Bandwidth Network Bandwidth

γ β β

59% per year 23% per year 26% per year

Energy cost comparisons

Grey Ballard 5
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Costs of matrix multiplication algorithms

n = matrix dimension
P = number of processors
M = size of the local memory

Computation Communication

“2D” Algorithm
(ScaLAPACK)

O
(

n3

P

)
O
(

n2
√

P

)

“2.5D” Algorithm O
(

n3

P

)
O
(

n3

P
√

M

)

Lower Bound Ω
(

n3

P

)
Ω
(

n3

P
√

M

)
2D algorithm is suboptimal if M � n2

P (extra memory available)

Takeaway: tradeoff extra memory for reduced communication

Grey Ballard 6
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Performance improvement in practice
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Lower bounds for classical matrix multiplication

Assume Θ(n3) algorithm
Sequential case with fast memory of size M

lower bound on words moved between fast/slow mem:

Ω

(
n3
√

M

)
[Hong & Kung 81]

attained by blocked algorithm
Parallel case with P processors (local memory of size M)

lower bound on words communicated (along critical path):

Ω

(
n3

P
√

M

)
[Toledo et al. 04]

also attainable

Grey Ballard 8
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Extensions to the rest of linear algebra

Grey Ballard 9

Theorem (Ballard, Demmel, Holtz, Schwartz 11)
If a computation “smells” like 3 nested loops, it must communicate

# words = Ω

(
# flops√

memory size

)

This result applies to
dense or sparse problems
sequential or parallel computers

This work was recognized with the SIAM Linear Algebra Prize,
given to the best paper from the years 2009-2011



Extensions to the rest of linear algebra
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Theorem (Ballard, Demmel, Holtz, Schwartz 11)
If a computation “smells” like 3 nested loops, it must communicate

# words = Ω

(
# flops√

memory size

)

What smells like 3 nested loops?

the rest of BLAS 3 (e.g. matrix multiplication, triangular solve)

Cholesky, LU, LDLT , LTLT decompositions

QR decomposition

eigenvalue and SVD reductions

sequences of algorithms (e.g. repeated matrix squaring)

graph algorithms (e.g. all pairs shortest paths)

This work was recognized with the SIAM Linear Algebra Prize,
given to the best paper from the years 2009-2011



Optimal Algorithms - Sequential O(n3) Linear Algebra

Computation Optimal
Algorithm

BLAS 3 blocked algorithms
[Gustavson 97]

Cholesky
LAPACK

[Ahmed & Pingali 00]
[BDHS10]

Symmetric LAPACK (rarely)
Indefinite [BDD+12a]

LU
LAPACK (rarely)

[Toledo 97]∗

[Grigori et al. 11]

QR

LAPACK (rarely)
[Frens & Wise 03]

[Elmroth & Gustavson 98]∗

[Hoemmen et al. 12]∗

Eig, SVD [BDK12a], [BDD12b]

Grey Ballard 10
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Example: Symmetric Indefinite Linear Solve

Suppose we want to solve Ax = b where A

is symmetric (save half the storage and flops)
but indefinite (need to permute rows/cols for numerical stability)

We generally want to compute a factorization

PAPT = LTLT

P is a permutation, L is triangular, and T is symmetric and “simpler”

Grey Ballard 11



Symmetric Indefinite Factorization

We’re solving Ax = b where A = AT but A is indefinite

Standard approach is to compute PAPT = LDLT

L is lower triangular and D is block diagonal (1× 1 and 2× 2 blocks)
requires complicated pivoting, harder to do tournament pivoting

Alternative approach is to compute PAPT = LTLT [Aas71]
L is lower triangular and T is tridiagonal
pivoting is more like LU (nonsymmetric case)

= A L T LT 

= A L H = H T LT 

Grey Ballard 12



Reducing communication improves performance

Performance of symmetric indefinite linear system solvers
on 48-core AMD Opteron node
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New Algorithm
LAPACK

Implemented within PLASMA library [BBD+13]
This work received a Best Paper Award at IPDPS ’13
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Example Application: Video Background Subtraction

Idea: use Robust PCA algorithm [Candes et al. 09] to subtract
constant background from the action of a surveillance video

Given a matrix M whose columns represent frames, compute

M = L + S

where L is low-rank and S is sparse

Grey Ballard 14



Example Application: Video Background Subtraction

Q 

U Σ VT * **
R"

Threshold these singular values 

Compute:

M = L + S

where L is low-rank and S is sparse

The algorithm works iteratively, each
iteration requires a singular value
decomposition (SVD)

M is 110,000×100

Communication-avoiding algorithm
provided 3× speedup over best GPU
implementation [ABDK11]

Grey Ballard 15



Let’s go back to matrix multiplication

Can we do better than the “2.5D” algorithm?

Given the computation involved, it minimized communication. . .

. . . but what if we change the computation?

It’s possible to reduce both computation and communication

Grey Ballard 16
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Strassen’s Algorithm
Strassen showed how to use 7 multiplies instead of 8 for 2× 2 multiplication[

C11 C12
C21 C22

]
=

[
A11 A12
A21 A22

] [
B11 B12
B21 B22

]
Classical Algorithm

M1 = A11 · B11

M2 = A12 · B21

M3 = A11 · B12

M4 = A12 · B22

M5 = A21 · B11

M6 = A22 · B21

M7 = A21 · B12

M8 = A22 · B22

C11 = M1 + M2

C12 = M3 + M4

C21 = M5 + M6

C22 = M7 + M8

Strassen’s Algorithm

M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6

Grey Ballard 17



Strassen’s Algorithm
Strassen showed how to use 7 multiplies instead of 8 for 2× 2 multiplication

Flop count recurrence:

F (n) = 7 · F (n/2) + Θ(n2)

F (n) = Θ
(
nlog2 7)

log2 7 ≈ 2.81

M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6
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Sequential Communication Costs

If you implement Strassen’s algorithm recursively
on a sequential computer:

Computation Communication
Classical

O(n3) O
((

n√
M

)3
M
)

(blocked)

Strassen O(nlog2 7) O
((

n√
M

)log2 7
M
)

Can we reduce Strassen’s communication cost further?

Grey Ballard 18
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Lower Bounds for Strassen’s Algorithm

Theorem (Ballard, Demmel, Holtz, Schwartz 12)
On a sequential machine, Strassen’s algorithm must communicate

# words = Ω

((
n√
M

)log2 7

M

)

and on a parallel machine, it must communicate

# words = Ω

((
n√
M

)log2 7 M
P

)

This work received the SPAA Best Paper Award [BDHS11] and appeared as
a Research Highlight in the Communications of the ACM

Grey Ballard 19
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Optimal Parallel Algorithm?

This lower bound proves that the sequential recursive algorithm is
communication-optimal

What about the parallel case?

Earlier attempts to parallelize Strassen had communication costs
that exceeded the lower bound
We developed a new algorithm that is communication-optimal,
called Communication-Avoiding Parallel Strassen (CAPS)
[BDH+12]

Grey Ballard 20



Optimal Parallel Algorithm?

This lower bound proves that the sequential recursive algorithm is
communication-optimal

What about the parallel case?

Earlier attempts to parallelize Strassen had communication costs
that exceeded the lower bound
We developed a new algorithm that is communication-optimal,
called Communication-Avoiding Parallel Strassen (CAPS)
[BDH+12]
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Main idea of CAPS algorithm

At each level of recursion tree, choose either breadth-first or depth-first
traversal of the recursion tree

Breadth-First-Search (BFS) Depth-First-Search (DFS)

Runs all 7 multiplies in parallel
each uses P/7 processors

Requires 7/4 as much extra memory

Requires communication, but
minimizes communication in subtrees

Runs all 7 multiplies sequentially
each uses all P processors

Requires 1/4 as much extra memory

Increases communication by factor of
7/4 in subtrees

Grey Ballard 21



Performance of CAPS on a large problem

Strong-scaling on a Cray XT4, n = 94,080
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Can we beat Strassen?

Strassen’s algorithm allows for less computation and communication
than the classical O(n3) algorithm

We have algorithms that attain its communication lower bounds and
perform well on highly parallel machines

Can we do any better?

Grey Ballard 23



Can we beat Strassen?

Exponent of matrix multiplication
over time

1960 1970 1980 1990 2000 2010
2

2.2

2.4

2.6

2.8

3 classical

Strassen

Schonhage

Coppersmith−Winograd Williams

Strassen

Bini et al.

Unfortunately, most of these
improvements are only theoretical
(i.e., not practical) because they

involve approximations
are existence proofs
have large constants

Grey Ballard 24
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Yes, it’s possible!

Other practical fast algorithms exist (with slightly better exponents)
Smaller arithmetic exponent means less communication
Rectangular matrix multiplication prefers rectangular base case
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For more details...

For a more comprehensive (150+ pages) survey, see our

Communication lower bounds and optimal algorithms
for numerical linear algebra

in the most recent Acta Numerica volume
[BCD+14]

Grey Ballard 27



Avoiding Communication in Linear Algebra

Grey Ballard
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Main Idea of Classical Lower Bound Proof

Crux of proof based on geometric inequality [Loomis & Whitney 49]

x 

z 

z 

y 

x 
y 

A B 
C 

V

Volume of box

V = xyz =
√

xz · yz · xy

�A shadow� 

�B
 shadow�

 

�C shadow� 

A B 
C 

V

Volume of a 3D set

V ≤
√

area(A shadow) ·√
area(B shadow) ·√
area(C shadow)

Given limited set of data, how much useful computation can be done?
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Memory-Independent Lower Bounds

Summary for matrix multiplication:

Classical Strassen
Memory-dependent

Ω
(

n3

P
√

M

)
Ω
(

nω

PMω/2−1

)
lower bound

Memory-independent
Ω
(

n2

P2/3

)
Ω
(

n2

P2/ω

)
lower bound

Perfect strong
P = O

(
n3

M3/2

)
P = O

(
nω

Mω/2

)
scaling range

Attaining algorithm [SD11] [BDH+12]
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Algorithms - Parallel O(n3) Linear Algebra

Algorithm Reference
Factor exceeding Factor exceeding
lower bound for lower bound for

# words # messages
Matrix Multiply [Can69] 1 1

Cholesky ScaLAPACK log P log P
Symmetric [BDD+12a] ? ?
Indefinite ScaLAPACK log P (N/P1/2) log P

LU [GDX11] log P log P
ScaLAPACK log P (N/P1/2) log P

QR [DGHL12] log P log3 P
ScaLAPACK log P (N/P1/2) log P

SymEig, SVD [BDK12a] ? ?
ScaLAPACK log P N/P1/2

NonsymEig [BDD12b] log P log3 P
ScaLAPACK P1/2 log P N log P

*This table assumes that one copy of the data is distributed evenly across processors

Red = not optimal Local 

Local Local 

Local 

Local Local Local 

Local 

Local 

Grey Ballard 32
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Example: Compute Eigenvalues of Band Matrix

Suppose we want to solve Ax = λx where A

is symmetric (save half the storage and flops)
has band structure (exploit sparsity – ignore zeros)

We generally want to compute a factorization

A = QTQT

Q is an orthogonal matrix and T is symmetric tridiagonal

Grey Ballard 33



Successive Band Reduction (bulge-chasing)

constraint:
c + d ≤ b

5 

Q1 

4 

3 

2 

1 
6 

Q1
T

 

b+
1 

d+
1 

c

c+
d 

c    d 

Q2 

Q2
T

 

Q3 

Q3
T

 

Q4 

Q4
T

 

Q5 

Q5
T

 

b = bandwidth
c = columns
d = diagonals
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Implementation of Band Eigensolver (CASBR)

Speedup of parallel CASBR (10 threads) over PLASMA library
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Symmetric Eigenproblem and SVD via SBR

We’re solving the symmetric eigenproblem via reduction to tridiagonal form

Conventional approach (e.g. LAPACK) is direct tridiagonalization

Two-phase approach reduces first to band, then band to tridiagonal

Direct:

1 2 1 2 

A T 
Two-step:

1 2 1 2 1 2 

A B T 

first phase can be done efficiently

second phase is trickier, requires
successive band reduction (SBR)
[BLS00]

involves “bulge-chasing”
we’ve improved it to reduce
communication [BDK12b]

Grey Ballard 36
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Communication-Avoiding SBR - theory

Flops Words Moved Data Re-use
Schwarz 4n2b O(n2b) O(1)

M-H 6n2b O(n2b) O(1)

B-L-S* 5n2b O(n2 log b) O
(

b
log b

)
CA-SBR† 5n2b O

(
n2b2

M

)
O
(M

b

)
*with optimal parameter choices

†assuming 1 ≤ b ≤
√

M/3
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Performance of CAPS on large problems

Strong-scaling on Intrepid (IBM BG/P), n = 65,856.
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Performance of CAPS on large problems

Strong-scaling on Intrepid (IBM BG/P), n = 65,856.
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Performance: Model vs Actual
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Can an n × n linear system of equations Ax = b be solved in O(n2+ε)
operations, where ε is arbitrarily small?

. . . if solved affirmatively, [this] would change the world.

It is an article of faith for some of us that if O(n2+ε) is ever achieved, the
big idea that achieves it will correspond to an algorithm that is really
practical.

-Nick Trefethen, 2012 SIAM President
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Solving the base case. . .

2× 2× 2 [
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
=

[
c11 c12
c21 c22

]

multiplies 6 7 8

flop count O
(
n2.58) O

(
n2.81) O

(
n3)

3× 3× 3 a11 a12 a13

a21 a22 a23

a31 a32 a33

b11 b12 b13

b21 b22 b23

b31 b32 b33

 =

c11 c12 c13

c21 c22 c23

c31 c32 c33



multiplies 19 21 23 27

flop count O
(
n2.68) O

(
n2.77) O

(
n2.85) O

(
n3)
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