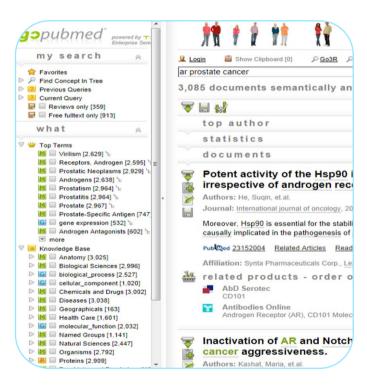


Disease gene search engine (DigSee): Text mining for identifying disease-gene-biological events relationships

Hyunju Lee Gwangju Institute of Science and Technology. Republic of Korea



Search disease-related genes

 Simplify the relations between genes and diseases into typed binary relations

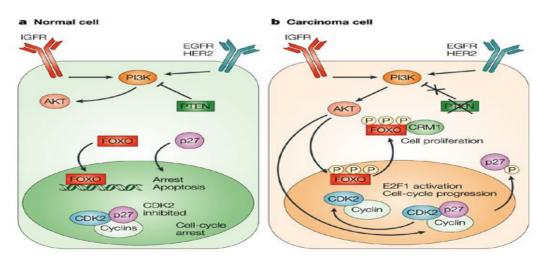
PubMed BioText GoPubMed

Search disease-related genes with biological events

- Understanding the gene—disease relation can be further enhanced by identifying in which biological events the genetic effect is valid for the disease development.
- Biological events
 - Gene expression, transcription, protein catabolism
 - Related to protein production and breakdown

An example sentence

We conclude that MMP-7 over-expression correlates with breast cancer in vitro invasiveness and that MMP-7 may promote invasion by increasing the secretion and activation of proMMP-2 and proMMP-9. (PMID: 16019136)


Gene Expression and Cancer Cytoplasm Nucleus Nucleolus Chromatin Chromatin Gene A Gene B Gene B Gene B Gene C Gene C Gene C

Search disease-related genes with biological events

- Understanding the gene—disease relation can be further enhanced by identifying in which biological events the genetic effect is valid for the disease development.
- Biological events
 - Phosphorylation

An example sentence

In carcinoma cells that lack PTEN activity, PI3K/AKT signalling is active, resulting in phosphorylation of FOXO and p27 by AKT. FOXO phosphorylation promotes its nuclear export in a CRM1-dependent manner, so that it can no longer activate transcription of its target genes. (PMID: 16450001)

Nature Reviews | Cancer

From Nature Reviews Cancer 4, 106-117

Search disease-related genes with biological events

- Understanding the gene—disease relation can be further enhanced by identifying in which biological events the genetic effect is valid for the disease development.
 - Localization: A change of the location or presence of a protein

RRR-alpha-tocopheryl succinate-induced apoptosis of human breast cancer cells involves Bax translocation to mitochondria. (PMID:12750270)

• Binding: The binding of two or more proteins, the binding of a protein and DNA

In breast cancer cells, NGF inhibits C2-induced apoptosis through binding of p75NTR and NF-kappaB activation. (PMID: 17638883)

• Regulation: A regulatory or causal relation between the above event classes or proteins

Since breast cancers that overexpress COX-2 are associated with a higher rate of metastasis to bone, we hypothesized that COX-2 expression in tumor cells would induce IL-11. (PMID:16457848)

Help

About us

Ver. cancer

Publication

Genes Disease List search Events Gene expression Regulation Protein catabolism Phosphorylation Localization Binding Transcription

For ~ 200 cancer names, 1,391,019 sentences were scored.

Breast Cancer	93,672
Cervical Cancer	11,308
Colon cancer	49,934
Gastric cancer	19,024
Glioblastoma	9,939
Hepatocellular cancer	18,079
Kidney cancer	10,998
Liver cancer	39,946
Lung cancer	38,205
Ovarian cancer	41,298
Prostate cancer	176,875
Retinoblastoma	43,955

For ~ 700 nervous system diseases names, 130,451 sentences were scored.

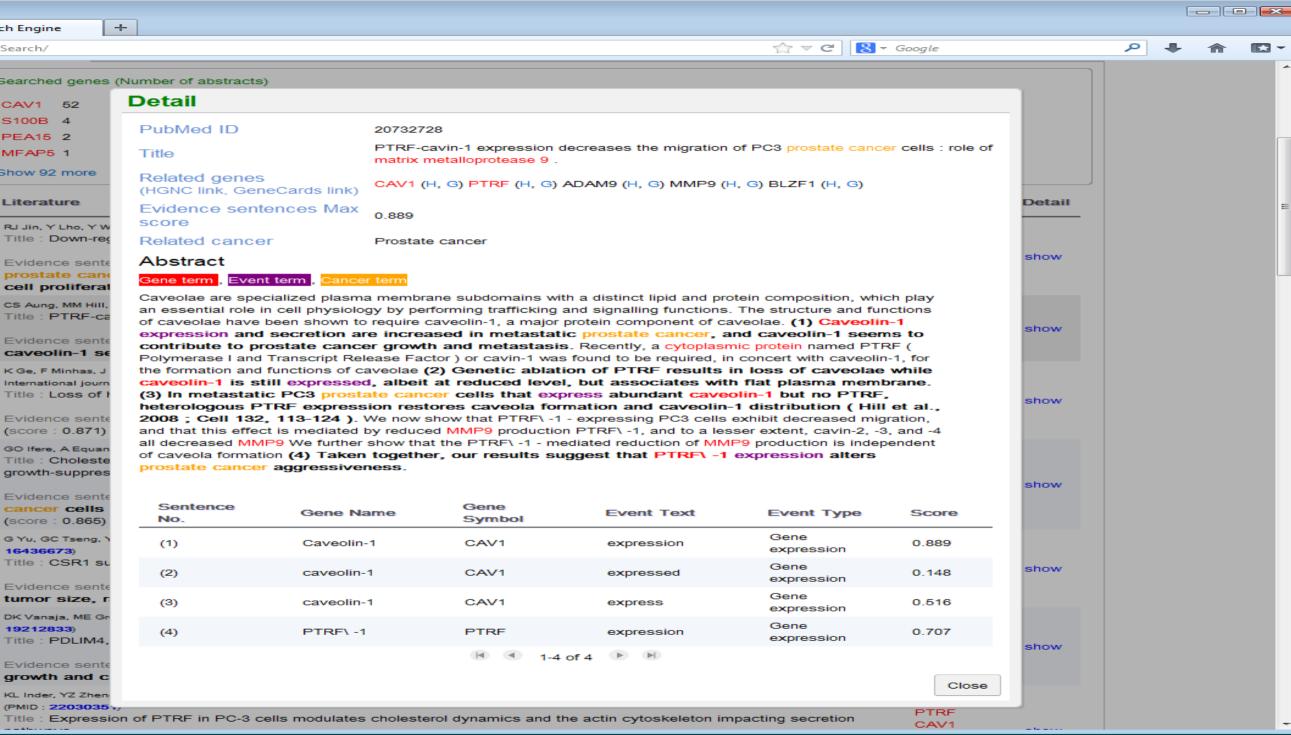
Alzheimer Disease	64,986
Back Pain	11,139
CNS Diseases	15,129
Chronic Pain	11,139
Dementia	7,587
Hearing Disorders	3,341
Multiple Sclerosis	3,999
Parkinson Disease	6,433
Pituitary Diseases	15,129
Seizures	3,850
Stroke	4,001
Tics	88,565

Example query (1)

Microarray experiments often identify more than hundreds of candidate cancer-related genes.

Finding literature evidence of these genes is the first step to validate them.

Example)124 differentially expressed genes on prostate cancer using microarray experiment (Jia et al. 2011)


DigSee returns evidence sentences for 49 genes of the 124 genes, which are highlighted with the expression changes and regulations of the candidate genes in prostate cancer.

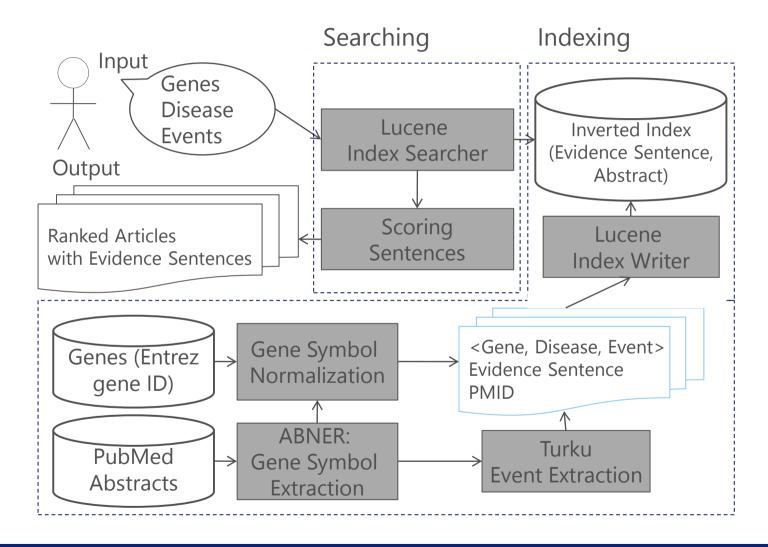
(score: 0.871)

Graph of gene co-occurrences

Send to file (Search result)

Total [22	Total [228] Gene expression [162] Regulation [123]															
Searched	genes (I	Number of	abstrac	ts)												
CAV1	60	ENO2	44	HSPB1	20	CDKN2C	9	BDNF	7	ITGA5	7	MCAM	7	S100B	6	
PTRF	5	CDKN1C	4	ITGB3	4	MTMR11	4	PDLIM4	4	ACTC1	3	BCHE	3	CRTC3	3	
PTPN11	3	ACO1	2	BIN1	2	CSPG4	2	FERMT2	2	PEA15	2	RXRG	2	TBXA2R	2	
CADM3	1	DPYSL3	1	EFEMP1	1	FEZ1	1	HNRNPD	1	HPD	1	HSPB8	1	KPNA3	1	
Show 92	more															
Literatu	ге														elated enes	Detail
Title : D	RJ Jin, Y Lho, Y Wang, M Ao, MP Revelo, SW Hayward, ML Wills, SK Logan, P Zhang, RJ Matusik - Cancer research, 2008, (PMID: 18483241) Title: Down-regulation of p57Kip2 induces prostate cancer in the mouse. Evidence sentence: Here, we show that the expression of p57 (Kip2) is significantly decreased in human prostate cancer, and the overexpression of p57 (Kip2) in prostate cancer cells significantly suppressed cell proliferation and reduced invasive ability. (score: 0.903)									show						
Title : P	TRF-cavi	in-1 expres	sion de	creases the	e migra	ournal of cell to tion of PC3 secretion ncer grow	prostat	e cancer c	ells : rol	le of mat	rostat			P	AV1 TRF DAM9 ! more)	show
Title : Cocells.	L Li, G Yang, S Ebara, T Satoh, Y Nasu, TL Timme, C Ren, J Wang, SA Tahir, TC Thompson - Cancer research, 2001, (PMID: 11389065) Title: Caveolin-1 mediates testosterone-stimulated survival\ growth and promotes metastatic activities in prostate cancer									show						
insensi	tivity. (score: 0.8	82)													
Internation	nal journal	of cancer. Jo	ournal inte	ernational du	cancer, 2	D Sakamuro, 000, (PMID : 1 activity of B	073824	10)			GC Pren	dergast -			IN1 ME2	show
Evidenc	e senten	ce : Ectop	oic exp	ression o	f Bin1	suppress	ed the	growth o	f prost	ate can	cer lin	es in v	itro.			

Example query (2)


• Show a list of genes whose localization and transcription are related to brain cancer.

Genes		Disease	brain cancer	List	search
Events	Gene expression Regulation Protein catab	oolism 🔲 F	Phosphorylation Localization Binding	▼ Transcript	tion

 DigSee system returns a list of 224 genes with evidence sentences in which localization and transcription events of these genes are related to brain cancer.

In tumor samples, ING1 proteins aberrantly localized to the cytoplasm, and to a lesser extent, to the nucleus of glioma cells. [PMID:14676120]

Indexing and searching processes in the DigSee system

Gene symbol extraction and normalization

• Entity recognition system (NER), ABNER, was used to recognize gene/protein names

Recognized genes were normalized using Moara

Moara uses gene synonyms from UniProt and the HUGO Gene Name

Consortium

Gene mentions in documents	Gene Symbols
Alpha 2 macroglobulin	
Alpha2 macroglobulin	
Alpha-2 macroglobulin	A2M
Alpha-2-macroglobulin	
•••	
Androgen receptor	
AR protein	AR
•••	

Biological event extraction

- Turku event extraction system
 - Extract complex events among genes and proteins from biomedical literature
 - Require named entity recognition system and sentence parser

Epidemiological studies and prevention trials suggest selenium is a promising preventive agent for prostate cancer. Seleniumcontaining compounds inhibited the growth of prostate cancer cell lines including androgen sensitive LNCaP and androgen insensitive DU145 and PC3 cells in vitro. Previous study revealed a novel mechanism of selenium action in which selenium (methylseleninic acid (MSA)) markedly reduced androgen receptor (AR) signaling in prostate cancer cells, suggesting that selenium might act as an antiandrogen, which could serve as a therapeutic agent for prostate cancer. In this study, we tested whether selenium (methylselenocysteine (MSC)) affects tumor growth of human prostate cancer cells by targeting AR signaling in vivo. Prostate tumor xenografts were established in nude mice by co-inoculating LNCaP cells with Matrigel. The mice-bearing tumors were treated with or without MSC (100 microg) via intraperitoneal injection for 2 weeks. The effect of MSC on tumor growth, AR, and prostate-specific antigen (PSA) expression was examined. Methylselenocysteine (MSC) significantly inhibited LNCaP tumor growth (P < 0.05). ARexpression in tumor tissues and serum PSA levels were considerably decreased in MSC-treated mice compared to the vehicle controls. Pharmacological dose of MSC inhibits the growth of LNCaP human prostate cancer in vivo accompanied by a decrease in the expression of AR and PSA. These findings suggest that selenium (MSC) can serve as a therapeutic agent aimed at disruption of AR signaling for prostate cancer.

The effect of MSC on tumor growth, AR, and prostate-specific antigen (PSA) expression was examined.

AR expression in tumor tissues and serum PSA levels were considerably decreased in MSC-treated mice compared to the vehicle controls.

Pharmacological dose of MSC inhibits the growth of LNCaP human prostate cancer in vivo accompanied by a decrease in the expression of AR and PSA.

Scoring sentences

• DigSee services the *evidence sentences* with information such that 'which genes' are involved in the development of 'which disease' through 'which biological events'.

Significantly, down-regulation of SOX9 by siRNA in prostate cancer cells reduced endogenous AR protein levels, and cell growth indicating that SOX9 contributes to AR regulation and decreased cellular proliferation.[PMID: 17234760]

• DigSee demotes sentences that do not show relation between gene and disease (For example, explaining an experimental procedure)

To determine the role of CD147 in the invasiveness properties of prostate cancer, we successfully down-regulated CD147 by RNA interference (RNAi) technology, in PC-3 cell line at high level of CD147 expression.[PMID: 16627983]

Scoring sentences: Corpus

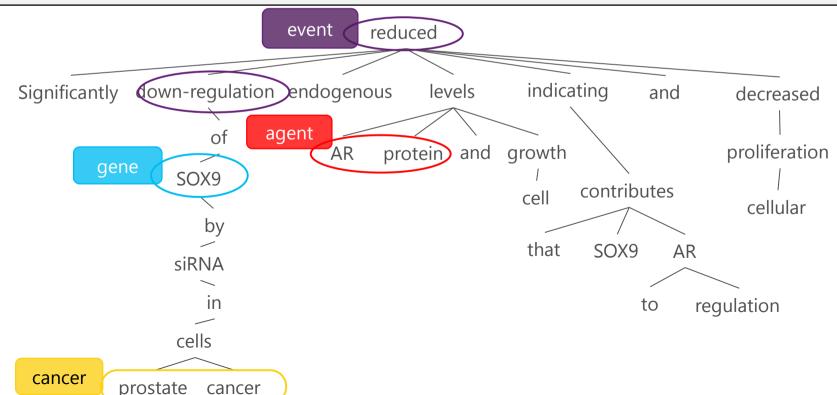
- The ranking step measures the relevance of the candidate evidence sentences
- Gold standard data: 207 positive and 356 negative sentences from cancer-related articles

[Feature selection sentences]

Events	Binding	Gene expression	Localization	Phosphorylation	Protein catabolism	Transcription
Positive	11	20	9	19	6	5
Negative	26	20	23	24	24	45
Total	37	40	32	43	30	50

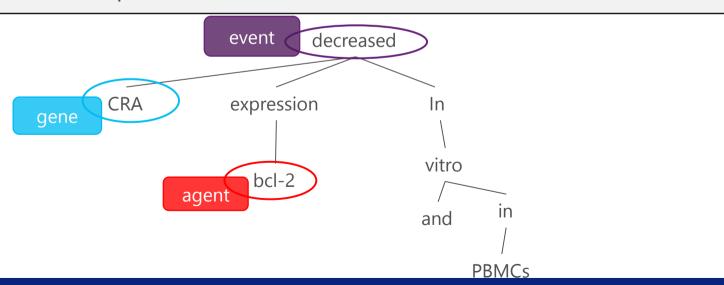
[Performance testing sentences]

Events	Binding	Gene expression	Localization	Phosphorylation	Protein catabolism	Transcription
Positive	18	52	19	18	8	22
Negative	29	46	38	38	17	26
Total	47	98	57	56	25	48


Gene expression event contains positive regulation, negative regulation, and regulation events.

- Based on Turku event extraction system
 - Normalized event SVM score
 - Normalized edge SVM score
- Based on the dependency parser tree
 - Distance between gene and event
 - Distance between event and regulation
 - Distance between event and cancer
 - Event depth
 - Agent
- Based on terms in the sentence
 - Cancer link keyword count
 - Cancer hallmark keyword count: apoptosis, angiogenesis, growth, invasion, metastasis, and proliferation
 - Negative scores (to + infinitive, study-related keywords, negative keywords)

Based on dependency parser tree


Gene-Event distance
Event-Regulation distance
Event-Cancer distance

Significantly, down-regulation of SOX9 by siRNA in prostate cancer cells reduced endogenous AR protein levels, and cell growth indicating that SOX9 contributes to AR regulation and decreased cellular proliferation. [PMID: 17234760]

- Based on dependency parser tree
 - Agent: the genes that have relations with a query gene in a sentence
 - Since our goal is to find the disease-gene relationship, the sentence only containing events for the *gene-gene relationship* is more likely to be classified as a negative sentence.

CRA decreased bcl-2 expression in vitro and in PBMCs. [PMID: 10561278]

- Based on terms in the sentence
 - Cancer link keyword count
 - # of cancer terms or cancer-related keywords in the sentence
 - Hyponyms and hypernyms of cancer collected from WordNet
 - Cancer hallmark keyword count:
 - Keywords of known characteristic of cancer during its initiation, development, and progress
 - Apoptosis, angiogenesis, growth, invasion, metastasis, and proliferation

Significantly, down-regulation of SOX9 by siRNA in prostate **cancer** cells reduced endogenous AR protein levels, and cell growth indicating that SOX9 contributes to AR regulation and decreased cellular **proliferation**. [PMID: 17234760]

Cancer link keyword

Cancer hallmark keyword

Based on terms in the sentence

Negative scores

- Negative scores: phrases to detect negative sentences
 - to + infinitive: to determine, to find, to assess
 - Study-related keywords: troponym of study from Wordnet
 - Negative keywords: not, never

To **determine** the role of CD147 in the invasiveness properties of prostate cancer, we successfully down-regulated CD147 by RNA interference (RNAi) technology, in PC-3 cell line at high level of CD147 expression. [PMID: 16627983]

Bayesian classifier

- Bayesian model
 - A Bayesian classifier with these features was modeled to identify positive evidence sentences from negative sentences
 - Same prior for positive and negative evidence sentences
 - Likelihood ratio of features

$$L(\text{features}) = \frac{p(\text{features} | \text{positive})}{p(\text{features} | \text{negative})}$$

Assuming independency between features except two cases

```
L(\text{features}) = \prod_{\text{features}_i} \frac{p(\text{features}_i \mid \text{positive})}{p(\text{features}_i \mid \text{negative})}
\cdot \frac{p(\text{cancer keywords} \mid \text{positive, event-cancer distance})}{p(\text{cancer keywords} \mid \text{negative, event-cancer distance})}
\cdot \frac{p(\text{agent} \mid \text{positive, hallmark keywords})}{p(\text{agent} \mid \text{negative, hallmark keywords})}
```

Accuracy evaluation of identifying evidence sentences

• Accuracies of individual features from cancer-related documents

Features	F-measure	AUC
Normalized event SVM score	62.7	57.8
Normalized edge SVM score	60.3	42.5
Gene–event distance	62.1	52.0
Event-regulation distance	64.5	59.7
Event–cancer distance	71.5	74.1
Cancer keywords count (depending on event–cancer distance)	72.5	72.5
Hallmark keywords count	64.4	58.8
Event depth	60.2	47.7
Negative score	68.7	59.3
Agent (depending on hallmark keywords count)	64.1	62.6
Total	72.7	80.5

Accuracy evaluation of identifying evidence sentences

Accuracies according to biological events from cancer-related documents

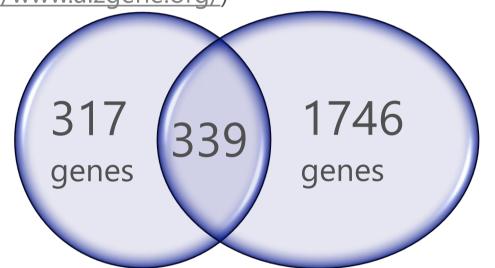
P:	Precision.	R:	Recall.	F:	F-measure
	1 100101011		1 10 00111/		1 1110000010

Biological events	Bayesian classifier				lassifier SVM classifier				Random order			
	Р	R	F	AUC	Р	R	F	AUC	Р	R	F	AUC
Binding	80.0	91.2	83.6	87.1	45.7	88.3	60.0	62.6	42.2	94.1	57.8	50.7
Gene expression	66.7	96.2	78.7	79.3	65.7	88.7	75.5	73.7	54.4	98.6	70.0	50.7
Localization	66.7	53.3	59.0	72.5	56.0	75.0	63.9	71.5	37.5	90.7	52.1	50.5
Phosphorylation	75.0	85.0	79.3	93.7	90.0	51.7	65.3	75.2	37.2	90.0	51.4	50.9
Protein catabolism	100	70.0	80.0	96.7	40.0	80.0	52.0	61.7	42.6	87.4	55.4	52.0
Transcription	63.3	87.0	73.1	74.7	54.3	86.0	66.4	71.0	48.5	97.2	64.5	48.6
Total	62.6	86.9	72.7	80.5	53.7	81.0	64.5	71.2	43.7	93.0	59.4	49.8

- SVM classifier (Bag of words model): 239 words were used.
- Random order (Baseline method): Sentences were randomly ordered 100 times

Accuracy evaluation of identifying evidence sentences

- Accuracies from Alzheimer's disease-related documents
 - ✓ Training with gold standard sentences from cancer


Biological Events	AUC	Precision	Recall	F-score
Binding	77.9	80.0	80.0	80.0
Gene expression	78.1	68.2	83.3	75.0
Localization	77.4	72.4	100	84.0
Negative regulation	89.4	86.7	100	92.9
Phosphorylation	86.6	81.0	100	89.5
Positive regulation	74.6	77.8	93.3	84.8
Protein catabolism	87.0	83.3	93.7	88.2
Regulation	70.0	83.3	100	90.9
Transcription	60.7	42.9	100	59.9
Total	78.9	73.0	88.5	80.0

✓ Training with gold standard sentences from Alzheimer's disease

Biological Events	AUC	Precision	Recall	F-score
Binding	86.9	81.2	86.7	83.9
Gene expression	78.7	73.7	77.8	75.7
Localization	89.3	84.0	100	91.3
Negative regulation	95.2	89.7	100	94.5
Phosphorylation	89.9	80.9	100	89.5
Positive regulation	80.8	80.0	93.3	86.2
Protein catabolism	83.9	75.0	93.7	83.3
Regulation	98.3	90.9	100	95.2
Transcription	63.8	52.4	91.7	66.7
Total	84.2	70.8	82.7	80.3

Comparison to Alzheimer's disease DB

AlzGene DB DigSee search engine (http://www.alzgene.org/)

A 8 to 16-fold **GFAP increase** in **Alzheimer** brain was established. [PMID:2514723]

Accordingly, **up-regulation** of **GSK-3** may contribute to cytoskeletal pathology within neurites in AD. [PMID: 12214113]

Future works

- We are currently incorporating all disease types and more biological events to DigSee thank to Windows Azure resource.
 - 32CPU cores and 10 TB for 1 year

		Crawling from PubMed	Gene Symbol Extraction	Gene Symbol Normalization	Biological Event Extraction	Scoring Evidence Sentences	Total
Cancer	Our previous work						
	# of abstracts	3,010,235	2,056,082	2,056,082	2,056,082	1,117,325	
	Processing time using a single CPU (days)	34	95	47	713	1	890
	Hard disk (GB)	1.5	2	2	120	20	145.5
All diseases	Current work						
	# of abstracts	25,923,285	17,282,190	17,282,190	17,282,190	8,641,095	
	Processing time using a single CPU (days)	300	800	400	6000	8	7508
	Hard disk (GB)	13	18	18	960	160	2951

Acknowledgement

- Data Mining and Computational Biology Laboratory at GIST
 - Jeongkyun Kim, and Seongeun So
- Nanyang Technological University, Singapore
 - Prof. Jung-jae Kim
- KAIST, Korea
 - Prof. Jong C. Park, Hee-Jin Lee

THANK YOU FOR YOUR ATTENTION

Save the planet and return your name badge before you leave (on Tuesday)

