Scalable Mobility Support for Overlay Networks

Venkata N. Padmanabhan

Randy H. Katz

(Includes collaborative work with Ramon Caceres)

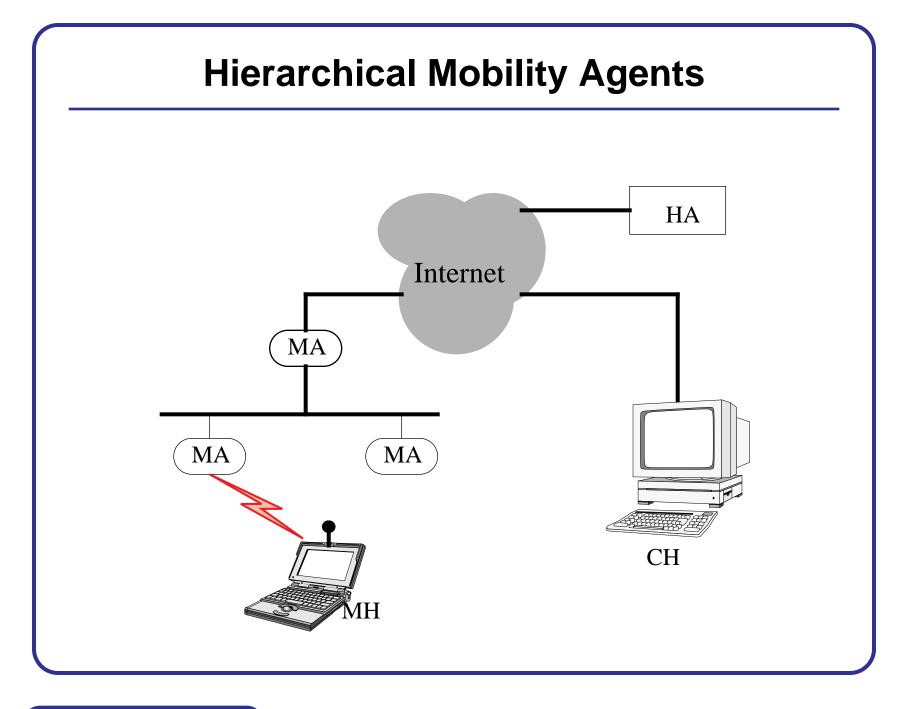
University of California at Berkeley

Objectives

- Scalable mobility support over a wide area
- Support for fast handoffs within a local environment
 - real-time audio/video across handoffs
- Support for overlay networks
 - using multiple NIs simultaneously
 - vertical handoffs

Mobile IP

• Entities


- Mobile host
- Home agent
- Foreign agent
- Correspondent host
- MH registers its care-of-address with its HA after each handoff
- Normal data flow: tunneled from HA to FA or MH
- Route optimization: tunneled from CH to FA or MH

Why Mobile IP is inadequate?

- Excessive communication with the home agent
 - latency of communication
 - load on home agent and backbone network
- Local handoff protocol is coupled with the global mobile routing protocol
- No support for multiple care-of-addresses for a mobile host
 - simultaneous registrations is not quite the same thing

Hierarchical Mobility Agents

- Hierarchy of mobility agents (MA) in a domain (like UCB)
 - incorporate some functionality of both home agents and foreign agents
- MH uses address of top-level MA as care-of-address
- Common case: local mobility
 - changes confined to subtree rooted at common ancestor MA
 - protocol between lower-level and higher-level MAs

Issues

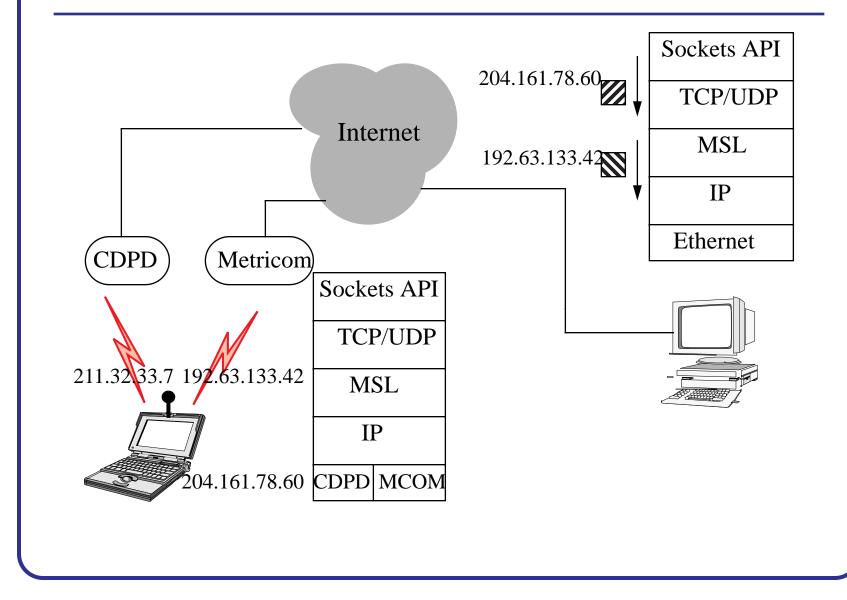
• Security

- MA hierarchy should coincide with security domain
- authentication protocol between MAs in a domain
- Routing
 - host routes maintained by MAs to avoid repeated encapsulation/decapsulation
 - can optimize with support from CH and MH
- MA as a multi-protocol agent
 - can use optimized protocol for local handoffs
 - Example: multicast in a local environment for efficient low-latency handoff

Overlay Network Issues

- Vertical handoffs may violate locality
 - routes to WaveLAN and Metricom base stations diverge far from the mobile host
 - WaveLAN and IR base stations might be close to each other
- Simultaneous use of multiple overlays
 - Example: CDPD for short, bursty data; cellular modem for bulk data
 - route data to MH via appropriate network based on constraints/preferences
 - demultiplexing at HA, FA, or CH
 - tolerate loss of connectivity on a subset of NIs

Mobility-aware End Hosts


- Desire direct communication between CH and MH
 - efficiency, fault tolerance
- Mobile IP route optimization
 - out-of-band caching scheme
- IPv6 mobility support
 - MH acquires care-of address (auto-configuration)
 - MH sends binding update to CH using destination option
 - CH uses routing header to specify care-of address in source route
 - HA uses encapsulation to route via care-of address
 - overlays not considered

Mobility-aware End Hosts (contd.)

Our approach:

- Decouple transport address from network address
 - Mobility Support Layer (MSL) between TCP/UDP and IP
 - MSL translates between transport and network addresses, perhaps based on port number or flow ID
 - at MH: use appropriate IP source address
 - at CH: use appropriate IP destination address
 - extensions to user API to configure MSL at MH
 - both TCP/UDP and IP are unaware of MSL
- MSL header added to packets when needed to inform peer of change in care-of address or routing constraints

Mobility-aware End Hosts (contd.)

University of California at Berkeley

Open Issues

- Hierarchical mobility agents
 - security for local handoffs
 - MA as a multi-protocol agent
 - translation between Mobile IP and proprietary protocol (Metricom, CDPD, etc.)
- End-host support for mobility
 - clean separation of transport and network layer addressing
 - authentication of routing updates
 - does IP spoofing protection help?