
Wireless Protocol Validation Under Uncertainty

Jinghao Shi1, Shuvendu K. Lahiri2, Ranveer Chandra2, and Geoffrey Challen1

1 University at Buffalo, Buffalo, NY 14120, USA
{jinghaos, challen}@buffalo.edu

2 Microsoft Research, Redmond, WA 98052, USA
{shuvendu, ranveer}@microsoft.com

Abstract. Runtime validation of wireless protocol implementations can-
not always employ direct instrumentation of the device under test (DUT).
The DUT may not implement the required instrumentation, or the in-
strumentation may alter the DUT’s behavior when enabled. Wireless
sniffers can monitor the DUT’s behavior without instrumentation, but
they introduce new validation challenges. Losses caused by wireless prop-
agation prevent sniffers from perfectly reconstructing the actual DUT
packet trace. As a result, accurate validation requires distinguishing be-
tween specification deviations that represent implementation errors and
those caused by sniffer uncertainty.
We present a new approach enabling sniffer-based validation of wireless
protocol implementations. Beginning with the original protocol monitor
state machine, we automatically and completely encode sniffer uncer-
tainty by selectively adding non-deterministic transitions. We charac-
terize the NP-completeness of the resulting decision problem and pro-
vide an exhaustive algorithm for searching over all mutated traces. We
also present practical protocol-oblivious heuristics for searching over the
most likely mutated traces. We have implemented our framework and
show that it can accurately identify implementation errors in the face of
uncertainty.

1 Introduction

Custom wireless protocols are often designed and deployed to meet the specific
performance and power needs of special-purpose wireless devices. Examples in-
clude Google Iris contact lenses [14], Xbox One wireless controllers [27], and
Google Chromecast [26]. Validating that device implementations work correctly
is critical to achieve the design goals of the wireless protocol and also prevent
bugs in shipped products [7,12,9].

Runtime validation of the protocol implementations on such devices is chal-
lenging because collecting traces from the device under test (DUT) is often in-
feasible. The resource limitations of embedded or battery-powered devices may
cause them to not provide trace collecting capabilities. DUT may contain propri-
etary hardware or firmware that hides the implementation details and prevents
testers from collecting traces through source code instrumentation. Even when
collecting trace directly from the DUT is possible, the overhead it causes may

alter the behavior of the DUT due to the observer effect [22], threatening the
validation results.

An attractive alternative is to use wireless sniffers to record traffic generated
by the DUT during testing. Sniffers do not require direct access to the DUT or
the need to alter its behavior. However, due to the fundamentally unpredictable
nature of wireless communications, the packets captured by the sniffer will not
exactly match those received by the DUT. The sniffer may miss packets that
the DUT received, or receive packets that the DUT missed. This is true even
when using multiple sniffers [6,20,3], a sniffer with multiple antennas [24], or in
isolated wireless environments.

Since the sniffer trace may not perfectly match the actual trace, uncertainty
arises during protocol implementation validation. For example, if the DUT fails
to respond correctly to a packet in the sniffer trace, it may either because the
DUT’s implementation is incorrect, or the DUT did not actually receive the
packet, or the DUT’s response was missed by the sniffer. Whenever the DUT’s
behavior does not match the specification, there are now two potential explana-
tions: either the DUT’s implementation is wrong, or the sniffer trace is inaccu-
rate. Accurate validation requires distinguishing between these two causes.

We present a new technique than enables validation of protocol implemen-
tations using wireless sniffers. Given a monitor state machine representing the
protocol being validated, we describe a systematic transformation that adds
non-deterministic transitions to incorporate uncertainty introduced by the snif-
fer. This augmented validation state machine implicitly defines a set of mutated
traces, each satisfying the original state machine with a specific likelihood. If the
set is empty, the implementation definitely violates the protocol. Searching over
all the mutated traces is NP-complete, but the approach can be made practical
by applying protocol-oblivious heuristics that limit the search to likely mutated
traces.

Our paper makes the following contributions:

1. To the best of our knowledge, we are the first to identify the uncertainty
problem caused by sniffers in validating wireless protocol implementations.

2. We formalize the problem using a nondeterministic state machine that sys-
tematically and completely encodes the uncertainty of the sniffer trace.

3. We characterize the NP-completeness of the validation problem, and present
two protocol-oblivious heuristics to prune the search space and make valida-
tion possible in practice.

4. We implement the validation framework and evaluate it using the NS-3 net-
work simulator [23]. Our framework accurately identifies both synthetic and
previously unknown violations in NS-3’s implementations of the 802.11 and
ARF protocols.

2 Background and Motivating Example

We encountered the uncertainty problem while testing the protocol implemen-
tation of a popular wireless game controller. A custom wireless communication

protocol was designed to meet the low latency and low power consumption goals.
As is common industry practice, the protocol specification was then handed over
to wireless chipset vendors for implementation. However, neither implementation
details nor trace collection capabilities are provided in the shipped firmware due
to intellectual property constraints and device resource limitation. Hence using
sniffers to validate the protocol implementation is the only option.

We initially developed a tool to validate certain protocol properties over the
sniffer trace, yet often found unacceptable amount of false alarms due to the
incompleteness of the sniffer traces, making the tool virtually useless. It was
clear that we needed to account for sniffer uncertainty.

To better understand the incompleteness of sniffer trace, consider the IEEE
802.11 (also known as Wi-Fi) transmitter (DUT) state machine shown in Fig. 1.
After the DUT sends DATAi—a data packet with sequence number i (s0 → s1),
it starts a timer and waits for the acknowledgment packet—Ack. The DUT either
receives Ack within time To (s1 → s0), or it sends DATA′i—retransmission
of DATAi (s1 → s2). Similarly, the DUT either receives the Ack within To
(s2 → s0) or aborts transmission and moves on to next packet3 (s2 → s1).

i :=0
s1

DATA i

c :=0

i :=(i+1)%N

DATA 'i ;T o<c≤Tm

c :=0

Ack ;c≤T o

DATA(i+1)%N ;c>T o

s2s0

i :=(i+1)%N

init

Fig. 1: Monitor State Machine for 802.11 Transmitter.

Given a complete log of DUT’s packet transmission and reception events,
it is trivial to feed such a log into the state machine in Fig. 1 and validate the
correctness of DUT’s protocol implementation. However, due to DUT limitations
we have described earlier, this complete log is not available. As a result, we seek
to validate the DUT implementation using sniffers.

There are two fundamental properties in wireless communication that bring
uncertainty to sniffer’s observation: packet loss and physical diversity. The sniffer
could either miss packets sent from or to the DUT due to packet loss, or overhear
packets that are sent to but missed by the DUT due to physical diversity.

3 To represent the state machine succinctly, our example assumes that the DUT retries
at most once.

Time

DATA0 DATA '0 AckTrDUT

Tr1

DATA0 DATA '0 AckAck

DATA0 DATA '0 AckAck

TrOTA

Tr2 AckDATA0

Fig. 2: Uncertainty of Sniffer Observations. TrOTA is the chronological se-
quence of packets sent by the DUT and the receiver. TrDUT is DUT’s internal
events. Tr1 and Tr2 are two examples of many possible sniffer traces.

Consider a correct packet exchange sequence shown in Fig. 2. The DUT
first sends DATA0. Suppose the receiver receives DATA0 and sends the Ack
which the DUT does not receive. Eventually the DUT’s timer fires and it sends
DATA′0. This time the DATA′0 reaches receiver and the DUT also receives the
Ack.

Now consider two possible traces that could have been overheard by a sniffer
shown in Fig. 2. In first sniffer trace Tr1 where the sniffer overhears the first
Ack packet, a validation uncertainty arises when the sniffer sees the DATA′0:
was the previous Ack missed by the DUT or is there a bug in DUT which causes
it to retransmit even after receiving the Ack?

Similarly, consider the second possible sniffer trace Tr2 where both the
DATA′0 and Ack packets were missed by the sniffer. During this period of time,
it appears the DUT neither receives Ack for DATA0 nor sends DATA′0. Again,
without any additional information it is impossible to disambiguate between the
sniffer missing certain packets and a bug in DUT’s retransmission logic.

Informally, the question we set out to answer in this paper is: given the proto-
col monitor state machine and the sniffer’s observation with inherent uncertainty,
how to accurately validate that the DUT behaves as specified?

3 Prerequisites and Problem Statement

3.1 Packet, Trace and Monitor State Machine

The alphabet of the monitor state machine is the finite set of all valid packets de-
fined by the protocol, denoted as P. A packet is a binary string of a finite number
of bits, encoding interesting protocol attributes such as src, dest, type, flags,
and physical layer information, such as channel, modulation, etc. The input of
the state machine then corresponds to a time-ordered sequence of packets.

Definition 1. A packet trace is a finite sequence of (timestamp, packet) tuple:
[(t1, p1), (t2, p2), . . . , (tn, pn)] where ti ∈ Z+ is the discrete timestamp and pi
is the packet observed at time ti. The timestamps are strictly monotonically
increasing: ti < ti+1 for 1 ≤ i < n.

In addition to timestamp monotonicity, we also require that adjacent packets
do not overlap in time, ti+1 − ti > airtime(pi) for 1 ≤ i < n, where airtime()

calculates the time taken to transmit a packet. The timestamp represents the
observer’s local clock ticks, and need not to be synchronized among devices.

We use timed automata [1] to model the expected behaviors of the DUT. A
timed automata is a finite state machine with timing constraints on the transi-
tions: each transition can optionally start one or more timers, which can later be
used to assert certain events should be seen before or after the time out event.
We refer the readers to [1] for more details about timed automata.

Definition 2. A protocol monitor state machine S is a 7-tuple
{Σ,S,X, s0, C,E,G}, where:

– Σ = P is the finite input alphabet.
– S is a non-empty, finite set of states. s0 ∈ S is the initial state.
– X is the set of boolean variables. We use v = {x ← true/false | x ∈ X} to

denote an assignment of the variables. Let V be the set of such values v.
– C is the set of clock variables. A clock variable can be reset along any state

transitions. At any instant, reading a clock variable returns the time elapsed
since last time it was reset.

– G is the set of guard conditions defined inductively by

g := true | c ≤ T | c ≥ T | x | ¬g | g1 ∧ g2

where c ∈ C is a clock variable, T is a constant, and x is a variable in X. A
transition can choose not to use guard conditions by setting g to be true.

– E ⊆ S× V× S× V×Σ ×G×P(C) gives the set of transitions.
〈si, vi, sj , vj , p, g, C ′〉 ∈ E represents that if the monitor is in state si with
variable assignments vi, given the input tuple (t, p) such that the guard g is
satisfied, the monitor can transition to a state sj with variable assignments
vj, and reset the clocks in C ′ to 0.

A tuple (ti, pi) in the packet trace means the packet pi is presented to the
state machine at time ti. The monitor rejects a trace Tr if there exists a prefix
of Tr such that all states reachable after consuming the prefix have no valid
transitions for the next (t, p) input.

As an example, the monitor state machine illustrated in Fig. 1 can be formally
defined as follows:

– Σ = {DATAi, DATA
′
i, Ack | 0 ≤ i < N}.

– Clock variables C = {c}. The only clock variable c is used for acknowledgment
time out.

– X = {i}, as a variable with log(N) + 1 bits to count from 0 to N .
– Guard constraints G = {c ≤ To, c > To, To < c ≤ Tm}. To is the acknowledg-

ment time out value, and Tm > To is the maximum delay allowed before the
retransmission packet gets sent. To can be arbitrary large but not infinity in
order to check the liveness of the DUT.

The monitor state machine defines a timed language L which consists of all
valid packet traces that can be observed by the DUT. We now give the definition
of protocol compliance and violation.

Definition 3. Suppose T is the set of all possible packet traces collected from
DUT, and S is the state machine specified by the protocol. The DUT violates the
protocol specification if there exists an packet trace Tr ∈ T such that S rejects
Tr. Otherwise, the DUT is compliant with the specification.

The focus of this paper is to determine whether a given Tr is evidence of a
violation.

3.2 Mutation Trace

As shown in the motivation example in Fig. 2, a sniffer trace may either miss
packets that are present in DUT trace, or contain extra packets that are missing
in DUT trace. Note that in the latter case, those extra packets must be all sent
to the DUT. This is because it is impossible for the sniffer to overhear packets
sent from the DUT that were not actually sent by the DUT.

We formally capture this relationship with the definition of mutation trace.

Definition 4. A packet trace Tr′ is a mutation of sniffer trace Tr w.r.t a DUT
if for all (t, p) ∈ Tr \ Tr′, p.dest = DUT , where p.dest is the destination of
packet p.

By definition, either Tr′ ⊇ Tr (hence Tr \ Tr′ = ∅), or those extra packets
in Tr but not in Tr′ are all sent to the DUT. Note that Tr′ may contain extra
packets that are either sent to or received by the DUT.

A mutation trace Tr′ represents a guess of the corresponding DUT packet
trace given sniffer trace Tr. In fact, the DUT packet trace must be one of the
mutation traces of the sniffer trace Tr.

Lemma 1. Let TrDUT and Tr be the DUT and sniffer packet trace captured
during the same protocol operation session, and M(Tr) be the set of mutation
traces of Tr with respect to DUT, then TrDUT ∈M(Tr).

Proof. Let∆ = Tr\TrDUT be the set of packets that are in Tr but not in TrDUT .
Recall that it is not possible for the sniffer to observe packets sent from the DUT
that the DUT did not send. Therefore, all packets in ∆ are sent to the DUT.
That is, for all (t, p) ∈ ∆, p.dest = DUT . By Definition 4, TrDUT ∈M(Tr).

3.3 Problem Statement

Lemma 1 shows that M(Tr) is a complete set of guesses of the DUT packet
trace. Therefore, the problem of validating DUT implementation given a sniffer
trace can be formally defined as follows:

Problem 1. VALIDATION
instance A protocol monitor state machine S and a sniffer trace Tr.
question Does there exist a mutation trace Tr′ of Tr that satisfies S?

If the answer is no, a definite violation of the DUT implementation can be
claimed. Nevertheless, if the answer is yes, S may still reject TrDUT . In other
words, the conclusion of the validation can either be definitely wrong or probably
correct, but not definitely correct. This is the fundamental limitation caused by
the uncertainty of sniffer traces.

4 Validation Framework

4.1 Augmented State Machine

To deal with the inherent uncertainty of sniffer traces, we propose to systemat-
ically augment the original monitor state machine with non-deterministic tran-
sitions to account for the difference between the sniffer and DUT traces.

i :=0
s1

DATAi

c :=0

i :=(i+1)%N

DATA' i ;T o<c≤T m

c :=0

Ack ;c≤T o

DATA
(i+1)%N ; c>T o

s2s0

i :=(i+1)%N Ack ; c≤T o Ack ; c≤T o

init

Fig. 3: Augmented Monitor State Machine. Augmented transitions are
highlighted in bold face. Pkt means either ε or Pkt.

Before formally defining the augmented state machine, we first use an exam-
ple to illustrate the basic idea. Fig. 3 shows the augmented state machine for
802.11 transmitter state machine shown in Fig. 1. For each existing transition
(e.g., s0 → s1), we add an empty transition with same clock guards and resetting
clocks. This accounts for the possibility when such packet was observed by the
DUT but missed by the sniffer. Additionally, for each transition triggered by a
receiving packet (i.e., p.dest = DUT), such as s1 → s0 and s2 → s0, we add
a self transition with the same trigger packet and clock guards, but an empty
set of resetting clocks and no assignments to variables. This allows the state
machine to make progress when the sniffer missed such packets.

There are two things to note. First, self transitions are added only for packets
sent to the DUT, since the sniffer will not overhear packets from the DUT if
they were not sent by the DUT. Second, no augmented transitions are added
for the packets that are sent to DUT yet are missed by both the DUT and the
sniffer, since such packets do not cause difference between the DUT and sniffer
traces.

The augmented state machine in Fig. 3 will accept the sniffer packet traces
Tr1 and Tr2 shown in Fig. 2. For instance, one accepting transition sequence

Algorithm 1 Obtain Augmented Transitions E+ from E

1: function augment(E)
2: E+ := ∅
3: for all 〈si, vi, sj , vj , p, g, C′〉 ∈ E do
4: E+ := E+ ∪ {〈si, vi, sj , vj , p, g, C′〉} . Type-0
5: E+ := E+ ∪ {〈si, vi, sj , vj , ε, g, C′〉} . Type-1
6: if p.dest = DUT then
7: E+ := E+ ∪ {〈si, vi, si,vi, p, g,∅〉} . Type-2

8: return E+

on sniffer trace Tr1 is s0 → s1 →s s1 → s2 → s0, and the sequence for Tr2 is
s0 → s1 →e s2 → s0, where → is the transition from the original state machine,
→e and →s are the augmented empty and self transitions respectively.

We now formally define the augmented state machine.

Definition 5. An augmented state machine S+ for a monitor state machine
S is a 7-tuple {Σ+,S,X, s0, C,E+, G}, where S,X, s0, C,G are the same as S.
Σ+ = {ε} ∪ Σ is the augmented input alphabet with the empty symbol, and
E+ ⊃ E is the set of transitions, which includes:

– E: existing transitions (Type-0) in S.
– E+

1 : empty transitions (Type-1) for transitions in E.
– E+

2 : self transitions (Type-2) for transitions triggered by receiving packets.

Algorithm 1 describes the process of transforming E into E+. In particular,
Line 4 adds existing transitions in E to E+, while line 5 and 7 add Type-1 and
Type-2 transitions to E+ respectively. We have highlighted the elements of the
tuple that differ from the underlying Type-0 transition. Note that in Type-2
transitions, both the state and the variables stay the same after the transition.

With augmented state machine S+, we can use Type-1 transitions to non-
deterministically infer packets missed by the sniffer, and use Type-2 transitions
to consume extra packets captured by the sniffer but missed by the DUT.

A accepting run of S+ on sniffer trace Tr yields a mutation trace Tr′ which
represents one possibility of the DUT trace. Specifically, Tr′ can be obtained
by adding missing packets indicated by Type-1 transitions to Tr, and removing
extra packets indicated by Type-2 transitions from Tr

We show that the VALIDATION problem is equivalent to the satisfiability
problem of Tr on S+.

Theorem 1. There exists a mutation trace Tr′ ∈M(Tr) that satisfies S if and
only if Tr satisfies S+.

Proof. Assume Tr satisfies S+, and P is a sequence of accepting transitions, we
construct a mutation trace Tr′ using P and show that Tr′ satisfies S.

Initially, let Tr′ = Tr, then for each augmented transition
〈si, vi, sj , vj , σ, g, C ′〉 ∈ P :

– If this is a Type-1 transition, add (t, p) to Tr′, where t is a timestamp that
satisfies g and p is the missing packet.

– If this is a Type-2 transition, remove corresponding (t, p) from Tr′.

It is obvious that Tr′ is a mutation trace of Tr, since only receiving packets are
removed in the process.

Now we show that there exists a accepting transition sequence P ′ of S+ on
input Tr′ that does not contain augmented transitions. In particular, P ′ can
be obtained by substituting all Type-1 transitions with corresponding original
transitions, and removing all Type-2 transition. Since P ′ does not contain aug-
mented transitions, it is also an accepting transition sequence of S on input Tr′,
hence Tr′ satisfies S.

On the other hand, assume Tr′ ∈ M(Tr) and Tr′ satisfies S. Suppose P ′ is
the accepting transition sequences of S on input Tr′. We first note that P ′ is
also the accepting transitions of S+ on input Tr′, since E ⊂ E+.

We construct a accepting transition sequence P of S+ on input Tr as follows.

– For each packet p ∈ Tr′ \ Tr, substitute the transition 〈si, vi, sj , vj , p, g, C ′〉
with the corresponding Type-1 transition 〈si, vi, sj , vj , ε, g, C ′〉.

– For each transition 〈si, vi, sj , vj , σ, g, C ′〉 followed by packet p ∈ Tr \ Tr′, add
a Type-2 self transition 〈sj , vj , sj , vj , p, g, ∅〉. This is possible since Tr′ is a
mutation trace of Tr, thus for all p ∈ Tr′ \ Tr, p.src 6= DUT .

Therefore, Tr satisfies S+.

By Theorem 1, the inherent uncertainty of the sniffer traces is explicitly
represented by the augmented transitions, and can be systematically explored
using the well established theory of state machine.

4.2 Problem Hardness

In this section, we show that the VALIDATION problem is NP-complete. In
fact, the problem is still NP-complete even with only one type of augmented
transitions.

Recall that Type-1 transitions are added because the sniffer may miss pack-
ets. Suppose an imaginary sniffer that is able to capture every packet ever trans-
mitted, then only Type-2 transitions are needed since the sniffer may still over-
hear packets sent to the DUT. Similarly, suppose another special sniffer that
would not overhear any packets sent to the DUT, then only Type-1 transitions
are needed to infer missing packets.

We refer the augmented state machine that only has Type-0 and Type-1
transitions as S+

1 , and the augmented state machine that only has Type-0 and
Type-2 transitions as S+

2 . And we show that each subproblem of determining
trace satisfiability is NP-complete.

Problem 2. VALIDATION-1
Given that Tr \ TrDUT = ∅ (sniffer does not overhear packets).
instance Checker state machine S and sniffer trace Tr.
question Does S+

1 accept Tr?

Problem 3. VALIDATION-2
Given that TrDUT ⊆ Tr (sniffer does not missing packets).
instance Checker state machine S and sniffer trace Tr.
question Does S+

2 accept Tr?

Lemma 2. Both VALIDATION-1 and VALIDATION-2 are NP-complete.

Proof. First, note that the length of mutation trace Tr′ is polynomial to the
length of Tr because of the discrete time stamp and non-overlapping packets
assumption. Therefore, given a state transition sequence as witness, it can be
verified in polynomial time whether or not it is an accepting transition sequence,
hence both VALIDATION-1 and VALIDATION-2 are in NP.

Next, we show how the SAT problem can be reduced to either one of the
two problems. Consider an instance of SAT problem of a propositional formula
F with n variables x0, x1, . . . , xn−1, we construct a corresponding protocol and
its monitor state machine as follows.

The protocol involves two devices: the DUT (transmitter) and the endpoint
(receiver). The DUT shall send a series of packets, pkt0, pkt1, . . . , pktn−1. For
each pkti, if the DUT receives the acknowledgment packet acki from the end-
point, it sets boolean variable xi to be true. Otherwise xi remains to be false.
After n rounds, the DUT evaluate the formula F using the assignments and
sends a special packet, pkttrue, if F is true. One round of the protocol operation
can be completed in polynomial time since any witness of F can be evaluated in
polynomial time.

s0 s1
i<n∧pkti ;c=0

ack i;c=1
c :=0, xi :=true , i :=i+1

i :=0,c :=0
x j:=false

 for 0≤ j<n

init

i<n−1∧pkt i+1 ;c=1

c :=0, i :=i+1

s2

i=n∧F∧pkt true ;c=0

i=n−1∧F∧pkt true ;c=1

Fig. 4: Monitor State Machine for SAT Problem.

The protocol monitor state machine S is shown in Fig. 4. Initially, all xi
is set to false. At state s0, the DUT shall transmit pkti within a unit time,
transit to s1 and reset the clock along the transition. At state s1, either the DUT
receives the acki packet and set xi to be true (s1 → s0), or the DUT continues
to transmit the next packet pkti+1. After n rounds, the state machine is s0 or s1
depending on whether ackn−1 is received by the DUT. In either case, the DUT
shall evaluate F and transmit pkttrue if F is true.

Consider a sniffer trace Tr1 = {(0, pkt0), (2, pkt1), (4, pkt2), . . . , (2(n −
1), pktn−1), (2n, pkttrue)}. That is, the sniffer only captures all pkti plus the
final pkttrue, but none of acki. It is easy to see that F is satisfiable if S+

1 accepts

Tr1. In particular, a successful run of S+
1 on Tr1 would have to guess, for each

pkti, whether the Type-1 empty transitions should be used to infer the missing
acki packet, such that F is true at the end. Note that for Tr1, no Type-2 self
transitions can be used since all packets in Tr1 are sent from the DUT. There-
fore, the SAT problem of F can be reduced to the VALIDATION-1 problem of
S+
1 on sniffer trace Tr1.

On the other hand, consider another sniffer trace Tr2 =
{(0, pkt0), (1, ack0), (2, pkt1), (3, ack1), . . . , (2n − 2, pktn−1), (2n −
1, ackn−1), (2n, pkttrue}. That is, the sniffer captures all n pair of pkti
and acki packets and the final pkttrue packet. Similar to Tr1, F is satisfiable if
S+
2 accepts Tr2. A successful transition sequence of S+

2 on Tr2 must decide for
each acki packet, whether Type-2 self transitions should be used, so that F can
be evaluated as true at the end. Therefore, the SAT problem of F can also be
reduced to the VALIDATION-2 problem of S+

2 on sniffer trace Tr2.
Since SAT is known to be NP-complete, both the VALIDATION-1 and the

VALIDATION-2 problem are also NP-complete.

The hardness statement of the general VALIDATION problem naturally fol-
lows Lemma 2.

Theorem 2. VALIDATION is NP-complete.

4.3 Searching Strategies

In this section, we present an exhaustive search algorithm of the accepting tran-
sition sequence of S+ on sniffer trace Tr. It is guaranteed to yield an accepting
sequence if there exists one, thus is exhaustive. In the next sections, we present
heuristics to limit the search to accepting sequences of S+ that require relatively
fewer transitions from E+

1 ∪ E
+
2 . Due to the NP-completeness of the problem,

this also makes the algorithm meaningful in practice.
The main routines of the algorithm are shown in Algorithm 2. In the top level

SEARCH routine, we first obtain the augmented state machine S+, and then call
the recursive EXTEND function with an empty prefix, the sniffer trace, and the
S+’s initial state. In the EXTEND function, we try to consume the first packet in
the remaining trace using either Type-0, Type-1 or Type-2 transition. Note that
we always try to use Type-0 transitions before other two augmented transitions
(line 6). This ensures the first found mutation trace will have the most number
of Type-0 transitions among all possible mutation traces. Intuitively, this means
the search algorithm tries to utilize the sniffer’s observation as much as possible
before being forced to make assumptions.

Each of the extend functions either returns the mutation trace Tr′, or nil
if the search fails. In both EXTEND-0 and EXTEND-2 function, if there is a valid
transition, we try to consume the next packet either by appending it to the prefix
(line 13) or dropping it (line 26). While in EXTEND-1, we guess a missing packet
without consuming the next real packet (line 20). Note that since only Type-0
and Type-2 consume packets, the recursion terminates if there is a valid Type-0
or Type-2 transition for the last packet (line 12 and line 25).

Algorithm 2 Exhaustive search algorithm of S+ on Tr.

1: function search(S, Tr)
2: S+ := augment(S)
3: return extend([], Tr, S+.s0)

4: function extend(prefix, p::suffix, s)
5: if not likely(prefix) then return nila

6: for i ∈ [0, 1, 2] do
7: mutation := EXTEND-i(prefix, p::suffix, s)
8: if mutation 6= nil then return mutation

9: return nil
10: function extend-0(prefix, p::suffix, s)
11: for 〈s, s′, p〉b ∈ E do
12: if suffix = nil then return prefix@p

13: mutation := extend(prefix@p, suffix, s′)
14: if mutation 6= nil then return mutation

15: return nil
16: function extend-1(prefix, p::suffix, s)
17: for all 〈s, s′, q〉 ∈ E+

1 do
18: if q.time > p.time then
19: continue
20: mutation := extend(prefix@q, p::suffix, s′)
21: if mutation 6= nil then return mutation

22: return nil
23: function extend-2(prefix, p::suffix, s)
24: for all 〈s, s, p〉 ∈ E+

2 do
25: if suffix = nil then return prefix

26: mutation := extend(prefix, suffix, s)
27: if mutation 6= nil then return mutation

28: return nil

a This check should be ignored in the exhaustive algorithm.
b 〈s, s′, p〉 is short for 〈s, ∗, s′, ∗, p, ∗, ∗〉

It is not hard to see that Algorithm 2 terminates on any sniffer traces. Each
node in the transition tree only has finite number of possible next steps, and
the depth of Type-1 transitions is limited by the time available before the next
packet (line 18).

4.4 Pruning Heuristics

In the face of uncertainty between a possible protocol violation and sniffer im-
perfection, augmented transitions provide the ability to blame the latter. The
exhaustive nature of Algorithm 2 means that it always tries to blame sniffer
imperfection whenever possible, making it reluctant to report true violations.

Inspired by the directed model checking [10] technique which is to mitigate
the state explosion problem, we propose to enforce extra constraints on the
mutation trace to restrict the search to only mutation traces with high likelihood.
The modified EXTEND function checks certain likelihood constraints on the prefix
of the mutation trace before continuing (line 5), and stops the current search
branch immediately if the prefix seems unlikely. Because of the recursive nature
of the algorithm, other branches which may have a higher likelihood can then
be explored.

The strictness of the likelihood constraint represents a trade-off between pre-
cision and recall of validation. The more strict the constraints are, the more false
positive violations will potentially be reported, hence the lower the precision yet
higher recall. On the contrary, the more tractable the constraints are, the more
tolerant the search is to sniffer imperfection, hence the more likely that it will
report true violations, thus higher precision but lower recall.

The exact forms of the constraints may depend on many factors, such as the
nature of the protocol, properties of the sniffer, or domain knowledge. Next, we
propose two protocol oblivious heuristics based on the sniffer loss probabilities
and general protocol operations. Both heuristic contains parameters that can be
fine tuned in practice.

NumMissing(d, l, k) This heuristic states that the number of missing packets
from device d in any sub mutation traces of length l shall not exceed k (k ≤ l).
The sliding window of size l serves two purposes. First, l should be large enough
for the calculated packet loss ratio to be statistically meaningful. Second, it
ensures that the packet losses are evenly distributed among the entire packet
trace.

The intuition behind this heuristic is that the sniffer’s empirical packet loss
probability can usually be measured before validation. Therefore, the likelihood
that the sniffer misses more packets than prior measured loss ratio is quite low.
The value of l and k can then be configured such that k/l is marginally larger
than the measured ratio.

GoBack(k) This heuristic states that the search should only backtrack at most
k steps when the search gets stuck using only E. The motivation is that many
protocols operate as a sequence of independent transactions, and the uncertainty
of previous transactions often do not affect the next transaction. For instance,
in 802.11 packet transmission protocol, each packet exchange, include the origi-
nal, retransmission and acknowledgment packets, constitute a transaction. And
the retransmission status of previous packets has no effect on the packets with
subsequent sequence numbers, hence need not be explored when resolving the
uncertainty of the packets with new sequence numbers. Note that we do not
require the protocol to specify an exact transaction boundary, but only need k
to be sufficiently large to cover a transaction.

5 Case Studies

We present case studies on applying our validation framework on two protocols
implemented in the NS-3 network simulator: 802.11 data transmission and ARF
rate control algorithm. The goal is to demonstrate how our framework can avoid
false alarms and report true violations on incomplete sniffer traces and report
true violations.

5.1 802.11 Data Transmission

In this section, we first show that our framework can improve validation pre-
cision by inferring the missing or extra packets using the augmented transition
framework. We then demonstrate the ability of our framework to detect true
violations by manually introducing bugs in the NS-3 implementation and show
the precision and recall of validation results.

Experimental Setup We set up two Wi-Fi devices acting as the transmitter
(DUT) and receiver respectively. Another Wi-Fi device is configured in monitor
mode and acts as the sniffer. During the experiments,we collect both the DUT
packet trace (the ground truth) and the sniffer trace.

Verifying Unmodified Implementation In the original monitor state ma-
chine shown in Fig. 1, we set acknowledgment timeout To = 334µs, maximum
retransmission delay Tm = 15ms according to the protocol. We also adapt the
state machine to include multiple retransmissions4 instead of one.

Let Prds, Pres and Pred be the packet loss probability between the DUT
and sniffer, endpoint and sniffer, endpoint and DUT respectively. Pred represents
the characteristics of the system being tested, while Prds and Pres represent the
sniffer’s quality in capturing packets.

We vary each of the three probabilities, Prds, Pres and Pred, from 0 to
0.5 (both inclusive) with 0.05 step. For each loss ratio combination, we ran the
experiment 5 times, and each run lasted 30 seconds. In total, 6655 (113×5) pairs
of DUT and sniffer packet traces were collected.

To establish the ground truth of violations, we first verify the DUT packet
traces using the original state machine S. This can be achieved by disabling
augmented transitions in our framework. As expected, no violation is detected
in any DUT packet traces.

We then verify the sniffer traces using the augmented state machine S+.
For the GoBack(k) heuristic, we set k = 7, which is the maximum number of
transmissions of a single packet. For the NumMissing(d, l, k) heuristic, we set
the sliding window size l = 100, and k = 80 such that no violation is reported.
The relationship of k and validation precision is studied in next section.

Next, we present detailed analysis of the augmented transitions on the sniffer
traces. The goal is to study for a given system packet loss probability Pred, how

4 The exact number of retransmissions is not part of the protocol, and NS-3 imple-
mentation set this to be 7.

Pds 0.00.10.20.30.40.5

Pes
0.0

0.1
0.2

0.3
0.4

0.5
0.0

0.1

0.2

0.3

(a) 0.05 ≤ Pred ≤ 0.15

Pds 0.00.10.20.30.40.5

Pes
0.0

0.1
0.2

0.3
0.4

0.5
0.0

0.1

0.2

0.3

(b) 0.2 ≤ Pred ≤ 0.35

Pds 0.00.10.20.30.40.5

Pes
0.0

0.1
0.2

0.3
0.4

0.5
0.0

0.1

0.2

0.3

(c) 0.4 ≤ Pred ≤ 0.5

Fig. 5: Jaccard Distance Between Mutation and DUT Traces. For each
data point, the mean of the 5 runs is used.

the sniffer packet loss properties (Prds and Pres) affect the difference between
the DUT trace and the mutation trace, which represents a guess of the DUT
trace by the augmented state machine based on the sniffer trace.

For all following analysis, we divide the traces into three groups according
to Pred: low (0 ≤ Pred ≤ 0.15), medium (0.20 ≤ Pred ≤ 0.35) and high (0.40 ≤
Pred ≤ 0.50).

The different between two packet traces can be quantified by the Jaccard
distance metric.

Jaccard(Tr1, T r2) =
|Tr1 	 Tr2|
|Tr1 ∪ Tr2|

(1)

where 	 is the symmetric difference operator. The distance is 0 if the two traces
are identical, and is 1 when the two traces are completely different. The smaller
the distance is, the more similar the two traces are.

Fig. 5 shows the Jaccard Distance between mutation and its corresponding
DUT trace. We make the following observations. First, for a given system loss
probability Pred (each sub-figure), the lower the sniffer packet loss probability
(Prds and Pres), the smaller Jaccard distance between the DUT and mutation
trace. Intuitively, this means a sniffer that misses less packets can enable our
framework to better reconstruct the DUT trace.

Second, we observe a protocol-specific trend that Prds is more dominant
than Pres. This is because retransmission packets of the same sequence num-
ber are identical, hence when the sniffer misses multiple retransmission packets,
our framework only needs to infer one retransmission packet to continue state
machine execution.

Finally, as the system loss probability Pred increases, the Jaccard distance
increases more rapidly as Prds increases. This is because the ratio of retrans-
mission packet increases along with Pred.

Introducing Bugs We have demonstrated that our framework can tolerate
sniffer imperfections and avoid raising false alarms. The next question is, can
it detect true violations? To answer this question, we manually introduce sev-
eral bugs in NS-3 implementation that concerns various aspects of 802.11 data
transmission protocol. More specifically, the bugs are:

0.5 0.6 0.7 0.8 0.9 1.0
Precision

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

k = 10
k = 15
k = 20
k = 25
k = 30

0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

k = 10
k = 15
k = 20
k = 25
k = 30

Fig. 6: Precision and Recall of Validation Results.

– Sequence Number: the DUT does not assign sequence number correctly. For
example, it may increase sequence by 2 instead of 1, or it does not increase
sequence number after certain packet, etc. We choose one type of such bugs
in each run.

– Semantic: the DUT may retransmit even after receiving Ack, or does not
retransmit when not receiving Ack.

We instrument the NS-3 implementation to embed instances of bugs in each
category. At each experiment run, we randomly decide whether and which bug
to introduce for each category. We fix Prds = Pres = 0.1 and vary Pred from
0.0 to 0.5 with 0.01 step. For each Pred value, we ran the experiment 100 times,
of which roughly 75 experiments contained bugs. In total, 5100 pairs of DUT
and sniffer traces were collected.

We use the DUT packet traces as ground truth of whether or not each ex-
periment run contains bugs. For each Pred value, we calculate the precision and
recall of violation detection using the sniffer traces.

Precision =
|{Reported Bugs} ∩ {True Bugs}|

|{Reported Bugs}|
(2)

Recall =
|{Reported Bugs} ∩ {True Bugs}|

|{True Bugs}|
(3)

The precision metric quantifies how useful the validation results are , while the
recall metric measures how complete the validation results are.

Fig. 6 shows the CDF of precision and recall of the 51 experiments for various
k values. For precision, as expected, the more tolerant the search to sniffer losses
(larger k), the more tolerant the framework is to sniffer losses, and the more
precise the violation detection. In particular, when k = 30, the precisions are
100% for all Pred values. Second, the recall is less sensitive to the choice of k.
Except for the extreme case when k = 30, all other thresholds can report almost
all the violations.

5.2 ARF Rate Control Algorithm

Automatic Rate Fallback (ARF) [16] is the first rate control algorithm in litera-
ture. In ARF, the sender increases the bit rate after Th1 number of consecutive
successes or Th2 number of packets with at most one retransmission. The sender
decreases bit rate after two consecutive packet failures or if the first packet sent
after rate increase (commonly referred as probing packet) fails.

Fig. 7 shows the state machine S for the packet trace collected at sender
(DUT), where DATAr

i denotes a data packet with sequence number i and
bit rate r, DATAr′

i is a retransmission packet and Ack is the acknowledgment
packet. The pkg succ function is shown in Algorithm 3.

s0 s1

s4

DATA i
r DATA i

r '∧¬probe
s2

DATA i
r '

DATAr−1 '∧probe
DATA i

r '

Ack

Ack

init

i :=0, r :=0
succ:=0
count :=0
probe:=false

pkt_succ ()

pkt_succ () r :=r−1

succ:=0
count :=count+1

s3

DATA i
r−1 '

r :=r−1
count :=0

Fig. 7: Monitor State Machine for ARF Rate Control Algorithm. Timing
constraints are omitted for succinctness.

The succ variable is used to track the number of consecutive packet successes.
It is increased after each packet success , and is reset to 0 after a rate increase
or upon a packet failure (s1 → s2). Similarly, count is to track the number of
packets with at most one retransmission, and is increased after packet success,
or for the first packet retransmission (s1 → s2). It is reset when there are two
consecutive packet failures (s2 → s3). Finally, the probe flag is set upon rate
increases to indicate the probing packet, and is cleared upon packet success. The
variable r is the current bit rate, which is decreased if the probing packet fails
(s1 → s4), or every two consecutive failures (s2 → s3). If r is not the highest
rate, it is increased when either of the two thresholds are reached.

In particular, the bug we found lies in the implementation’s pkt succ func-
tion in line 6. Instead of checking count ≥ Th 2, the implementation checks
count == Th 2. This bug also exists in the NS-3 implementation of Adaptive
ARF (AARF) algorithm [17] and the pseudo code implementation of AARF
in [18].

Note that the count variable is incremented twice if a packet succeed after
one retransmission: once in s1 → s2, once in the pkt succ function for the
retransmission packet. Therefore, if the value of count is Th2 − 1 and the next
packet succeed after one retransmission, the value of count will be Th2 + 1,
which would fail the implementation’s test of count == Th 2.

Algorithm 3 pkt succ function

1: function pkt succ
2: i := (i+1)%N
3: succ := succ + 1
4: count := count + 1
5: probe := false
6: if r < R and (succ ≥ Th1 or count ≥ Th2) then
7: r := r+1
8: succ := 0
9: count := 0

10: probe := true

We report a bug found in NS-3 ARF [16] implementation which causes the
sender to get stuck at a lower rate even after enough number of consecutive
successes. The bug was detected using sniffer traces and confirmed by both the
DUT trace and source code inspection.

6 Related Work

Hidden Markov Model (HMM) Approach. When considering the whole
system under test (both DUT and endpoint), the sniffer only captures a subset
of the all the packets (events). This is similar to the event sampling problem
in runtime verification [5,15,2,11,4]. Stoller et al [25] used HMM-based state
estimation techniques to calculate the confidence that the temporal property is
satisfied in the presence of gaps in observation.

While it seems possible to adapt the method in [25] to our problem, we
note several advantages of our approach. First, the automatically augmented
state machine precisely encodes the protocol specification and the uncertainty.
This is intuitive to design and natural for reporting the evidence for a trace
being successful. We do not require a user to specify the number of states of
the underlying HMM, or accurately provide underlying probabilities. Second,
we use timed automata to monitor the timing constraints which are common
in wireless protocols. It may be non-trivial to encode such timing information
in HMM. Finally, we can exploit domain knowledge to devise effective pruning
heuristics to rule out unlikely sequences during the exhaustive search.

Network Protocol Validation. Lee et al [19] studied the problem of pas-
sive network testing of network management. The system input/output behavior
is only partially observable. However, the uncertainty only lies in missing events
in the observation, while in the context of wireless protocol verification, the
uncertainty could also be caused by extra events not observed by the tested
system. Additionally, they do not provide any formal guarantees even for cases
when we report a definite bug. Software model checking techniques [21,13] have
also been used to verify network protocols. Our problem is unique because of
the observation uncertainty caused by sniffers. Our framework shares similarity

with angelic verification [8] where the program verifier reports a warning only
when no acceptable specification exists on unknowns.

7 Conclusions

We formally define the uncertainty problem in validating wireless protocol im-
plementations using sniffers. We describe a systematic augmentation of the pro-
tocol state machine to explicitly encode the uncertainty of sniffer traces. We
characterize the NP-completeness of the problem and propose both an exhaus-
tive search algorithm and heuristics to restrict the search to more likely traces.
We present two case studies using NS-3 network simulator to demonstrate how
our framework can improve validation precision and detect real bugs.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer science,
126(2):183–235, 1994.

2. M. Arnold, M. Vechev, and E. Yahav. Qvm: an efficient runtime for detecting
defects in deployed systems. In ACM Sigplan Notices, volume 43, pages 143–162.
ACM, 2008.

3. P. Bahl, R. Chandra, J. Padhye, L. Ravindranath, M. Singh, A. Wolman, and
B. Zill. Enhancing the security of corporate Wi-Fi networks using DAIR. In
Proceedings of the 4th international conference on Mobile systems, applications
and services, pages 1–14. ACM, 2006.

4. D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu. Monitoring compliance poli-
cies over incomplete and disagreeing logs. In International Conference on Runtime
Verification, pages 151–167. Springer, 2012.

5. B. Bonakdarpour, S. Navabpour, and S. Fischmeister. Sampling-based runtime
verification. In FM 2011: Formal Methods, pages 88–102. Springer, 2011.

6. Y.-C. Cheng, J. Bellardo, P. Benkö, A. C. Snoeren, G. M. Voelker, and S. Savage.
Jigsaw: solving the puzzle of enterprise 802.11 analysis, volume 36. ACM, 2006.

7. M. Ciabarra. WiFried: iOS 8 WiFi Issue. https://goo.gl/KtRDqk.

8. A. Das, S. K. Lahiri, A. Lal, and Y. Li. Angelic verification: Precise verification
modulo unknowns. In Computer Aided Verification - 27th International Confer-
ence, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I,
pages 324–342, 2015.

9. digitalmediaphile. Windows 10 wifi issues with surface pro 3 and surface 3. http:
//goo.gl/vBqiEo.

10. S. Edelkamp, V. Schuppan, D. Bošnački, A. Wijs, A. Fehnker, and H. Aljazzar.
Survey on directed model checking. In International Workshop on Model Checking
and Artificial Intelligence, pages 65–89. Springer, 2008.

11. L. Fei and S. P. Midkiff. Artemis: Practical runtime monitoring of applications for
execution anomalies. In ACM SIGPLAN Notices, volume 41, pages 84–95. ACM,
2006.

12. Gizmodo. The worst bugs in android 5.0 lollipop and how to fix them. http:

//goo.gl/akDcvA.

13. P. Godefroid. Model checking for programming languages using verisoft. In Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 174–186. ACM, 1997.

14. Google. Google contact lens. https://en.wikipedia.org/wiki/Google_Contact_
Lens.

15. M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak detection using
adaptive statistical profiling. In Acm Sigplan Notices, volume 39, pages 156–164.
ACM, 2004.

16. A. Kamerman and L. Monteban. Wavelan R©-ii: a high-performance wireless lan
for the unlicensed band. Bell Labs technical journal, 2(3):118–133, 1997.

17. M. Lacage, M. H. Manshaei, and T. Turletti. IEEE 802.11 rate adaptation: a
practical approach. In Proceedings of the 7th ACM international symposium on
Modeling, analysis and simulation of wireless and mobile systems, pages 126–134.
ACM, 2004.

18. M. Lacage, M. H. Manshaei, and T. Turletti. IEEE 802.11 rate adaptation: a
practical approach. [Research Report] RR-5208, (¡inria-00070784¿):25, 2004.

https://goo.gl/KtRDqk
http://goo.gl/vBqiEo
http://goo.gl/vBqiEo
http://goo.gl/akDcvA
http://goo.gl/akDcvA
https://en.wikipedia.org/wiki/Google_Contact_Lens
https://en.wikipedia.org/wiki/Google_Contact_Lens

19. D. Lee, A. N. Netravali, K. K. Sabnani, B. Sugla, and A. John. Passive testing and
applications to network management. In Network Protocols, 1997. Proceedings.,
1997 International Conference on, pages 113–122. IEEE, 1997.

20. R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Analyzing the mac-level
behavior of wireless networks in the wild. In ACM SIGCOMM Computer Com-
munication Review, volume 36, pages 75–86. ACM, 2006.

21. M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC: A
pragmatic approach to model checking real code. ACM SIGOPS Operating Systems
Review, 36(SI):75–88, 2002.

22. T. Mytkowicz, P. F. Sweeney, M. Hauswirth, and A. Diwan. Observer effect and
measurement bias in performance analysis. 2008.

23. G. F. Riley and T. R. Henderson. The ns-3 network simulator. In Modeling and
Tools for Network Simulation, pages 15–34. Springer, 2010.

24. Savvius Inc. Savvius Wi-Fi adapters. https://goo.gl/l3VXSx.
25. S. D. Stoller, E. Bartocci, J. Seyster, R. Grosu, K. Havelund, S. A. Smolka, and

E. Zadok. Runtime verification with state estimation. In Runtime Verification,
pages 193–207. Springer, 2011.

26. Wikipedia. Chromecast. https://en.wikipedia.org/wiki/Chromecast.
27. Wikipedia. Xbox One controller. https://en.wikipedia.org/wiki/Xbox_One_

Controller.

https://goo.gl/l3VXSx
https://en.wikipedia.org/wiki/Chromecast
https://en.wikipedia.org/wiki/Xbox_One_Controller
https://en.wikipedia.org/wiki/Xbox_One_Controller

	Wireless Protocol Validation Under Uncertainty

