
MASHaBLE: Mobile Applications of Secret Handshakes
over Bluetooth LE

Yan Michalevsky
Stanford University

yanm2@cs.stanford.edu

Suman Nath
Microsoft Research

suman.nath@microsoft.com

Jie Liu
Microsoft Research

jie.liu@microsoft.com

ABSTRACT
We present new applications for cryptographic secret hand-
shakes between mobile devices on top of Bluetooth Low-
Energy (LE). Secret handshakes enable mutual authentica-
tion, with the property that the parties learn nothing about
each other unless they have been both issued credentials by
a group administrator. This property provides strong pri-
vacy guarantees that enable interesting applications. One of
them is proximity-based discovery for private communities.
We introduce MASHaBLE, a mobile application that en-
ables participants to discover and interact with nearby users
if and only if they belong to the same secret community.
We use direct peer-to-peer communication over Bluetooth
LE, rather than relying on a central server. We discuss the
specifics of implementing secret handshakes over Bluetooth
LE and present our prototype implementation.

CCS Concepts
•Security and privacy → Mobile and wireless secu-
rity; Privacy protections;

Keywords
Mobile security; Bluetooth LE; IoT; secret handshakes; mu-
tual authentication.

1. INTRODUCTION
Recent revelations about the extent of surveillance, as well

as rising awareness regarding digital privacy, have increased
the demand for means to communicate privately and prevent
disclosure of user data. Many mobile applications geared to
this purpose have been released in the past two years, in-
cluding Telegram [9], Signal Private Messenger (by Open
Whisper Systems) [7], Yik-Yak [10], After School [1], and
LegaTalk [5]. They aim to provide different privacy guaran-
tees against different adversaries.

Telegram and Signal rely on cryptographic methods for
establishing a shared secret key between two parties. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiCom’16, October 03 - 07, 2016, New York City, NY, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4226-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2973750.2973778

shared key is used for end-to-end encryption of communi-
cation between two users. While messages can be routed
through a central server, no one can decipher the content of
the messages. However, the origin and destination (which
reveal the communicating parties) are known to the server,
and by extension, to any adversary that can obtain control
of it. Yik-Yak and similar apps provide anonymity, to some
extent, as well as message dissemination to nearby peers.
The messages are broadcast through the server to unknown
users, and are therefore not end-to-end encrypted. There-
fore, an adversary that has access to the server can obtain
the content, and also de-anonymize the origin.

These applications have a high demand: as of July 2016,
Telegram messenger for Android has between 100 to 500
million downloads on the Google Play store. Yik-Yak has
between 1 and 5 million downloads, and the After School
app has hundreds of thousands of downloads. These appli-
cations’ iOS versions are also popular, judging by thousands
of reviews in the Apple Store. This confirms a substantial
and growing interest in private/anonymous messaging, and
forming anonymous communities.

Inspired by Yik-Yak and similar applications attempting
to provide anonymity and location-based message propaga-
tion, we propose a mobile application that enables the cre-
ation of secret virtual communities, protects geo-location
privacy and provides anonymity.

More specifically, our application enables mobile users to
enroll in a community and obtain credentials by which they
can present themselves to other members of the secret com-
munity. These credentials allow them to perform a mu-
tual authentication procedure called secret handshake (SH),
which is reminiscent in its properties to a secret handshake
in the physical world.

For instance, imagine a fraternity where membership is
kept secret. Its members want to identify fellow members
as they walk around campus, and to communicate privately
with nearby members without being exposed. In a setting
where one party is willing to disclose its identity first, it
could use a signed certificate to authenticate itself. Unfor-
tunately, in our setting, when two fraternity members en-
counter each other, neither is willing to provide a traditional
signed certificate, as it may expose them to a non-member.

One possible solution is for each member to have a mobile
application that reports GPS coordinates to a server main-
tained by the fraternity. All communication with the server
is encrypted. The server identifies two users in proximity of
one another and notifies them. In addition, the two users
use the server to exchange messages.

http://dx.doi.org/10.1145/2973750.2973778

The above approach has several disadvantages. First, any-
one who can eavesdrop on the mobile communication and is
able to identify the source and origin learns the affiliation
of the user from the fact that it sends encrypted messages
to the organizational server. This could be prevented by
anonymity solutions such as ToR. However, unless there is
a large number of users, a powerful adversary can mount
timing attacks.

Second, interaction involving a central server assumes hav-
ing internet connectivity - an assumption that is often prob-
lematic for mobile devices. It also complicates the setup
and requires securing the server against attackers. In addi-
tion, it requires entrusting location information and message
content to a third party.

Finally, there is the power efficiency consideration. Us-
ing GPS for high-precision localization is energy consuming,
as is using cellular communication for interacting with the
server.

Our proposal aims to eliminate unnecessary interaction
with a third party, leveraging physical proximity and mini-
mizing energy consumption, while providing strong privacy
and anonymity guarantees. To achieve this we use crypto-
graphic secret handshakes over Bluetooth Low Energy (BLE)
protocol.

Modern smartphone devices are equipped with BLE transceivers
that enable transmission and scanning with very low power
cost. These transceivers implement the Bluetooth Smart
standard and enable a device to constantly transmit short
messages, known as advertising, or scan for such advertise-
ments from other devices. One notable example of using
BLE advertisements is iBeacon, standardized and promoted
by Apple [11].

Our basic idea is that each mobile device, affiliated with
the secret community in our example, constantly transmits
and scans for advertisements. The advertisements seem
completely random to any eavesdropper whereas, in fact,
they are attempts to initiate secret handshakes with nearby
devices. Nowadays, we are already surrounded by many de-
vices that use BLE advertisements. It is therefore possible
to go unnoticed as yet another device.

There are more interesting applications to secret hand-
shakes by mobile devices over BLE. One of them is head-
counting of attendants to a secret event. Some commer-
cial products, like Doubledutch.me [4], support headcount-
ing by putting a BLE beacon transmitter at a venue that
asks nearby mobile users to confirm attendance. However,
if we want the event to be private, we need to prevent users
that are not affiliated with the event from identifying that
beacon. We also want to protect the privacy of the atten-
dants by making sure their reply to the broadcast cannot
identify them as attending this event. Once again we can
use a secret handshake between a device transmitting the
event-advertising beacon and nearby mobile users to perform
mutual authentication and enable headcounting, attendance
confirmation or any other private data exchange related to
the event.

Another application is BLE-based car locking and unlock-
ing using a mobile device. Using a BLE beacon, an owner
can unlock the car when in proximity to it. In addition, the
car can transmit a beacon when parked, to make it easier
to find it. The car can also lock automatically once it stops
receiving a beacon from the mobile device, making sure the
car is locked once the driver walks away. Complete Key-

less [2] and Connect2Car [3] are two examples of vendors
addressing this need. However, if the beacons can be as-
sociated with the vehicle or the mobile device, they enable
tracking. An unlinkable secret handshake1 between the two
eliminates this concern.

These examples make a strong case for enabling secret
handshakes over BLE on modern smartphones and mobile
platforms. BLE opens a new venue of possible private com-
munication and IoT applications. However, it also comes
with certain constraints, most importantly the limited amount
of data that can be exchanged over BLE packets. We note
that, for some applications of interest, exchanging small
amounts of data after the handshake is useful, and for others,
like headcounting or car unlocking, the success of a hand-
shake protocol itself may be enough, without any further
data transmission.

This work aims to demonstrate the practicality of fre-
quently performing secret handshakes between mobile de-
vices, using BLE technology. By implementing a library for
secret handshakes we hope to open the door for building
various interesting applications. We determined a suitable
cryptographic scheme for implementing secret handshakes
under the constraints imposed by BLE. We also address the
issue of tracking mobile devices that transmit the same or
linkable beacons over time by discussing ways to support un-
linkability, based on existing cryptographic techniques and
on features supported by BLE.

As a proof of concept we developed MASHaBLE, a mo-
bile application for performing secret handshakes between
Windows Phone devices. As part of its development we
also implemented a .NET wrapper for pairing-based cryp-
tography. This is a useful tool for any pairing-based crypto
applications for the Windows Universal platform, including
mobile and desktop.

While we design a protocol suitable for BLE, and imple-
ment it, we claim no novelty in the underlying cryptography.
We base our protocol on proven cryptographic constructions.

To summarize our main contributions:

• We propose novel applications for mobile devices sup-
porting BLE, based on a scheme for cryptographic se-
cret handshakes that has previously been mostly the-
oretic.

• We provide technical details of and identify constraints
imposed by the BLE stack, and pick a suitable SH
scheme. We also identify computational optimizations
applicable to our setting.

• We provide a prototype implementation of the secret
handshake scheme for Windows Phone devices. We
make our implementation available as an open-source
library that can facilitate development of additional
pairing-based cryptographic applications for Windows
Universal framework, including desktop and Windows
phone devices.

• Evaluate our implementation and show that it is prac-
tical for use on mobile devices in terms of battery con-
sumption and performance.

In the following section we provide some necessary tech-
nical background. We give an introduction to BLE and

1We explain unlinkability in 2.2.3.

explain cryptographic secret handshakes constructed from
pairing-based key agreements. We then discuss the specifics
of implementing the cryptographic scheme over BLE and
our prototype implementation for Windows Phone. Finally,
we discuss related work and possible future directions for
research.

2. BACKGROUND

2.1 Bluetooth Low Energy
Bluetooth Low Energy (BLE) was introduced as part of

the Bluetooth 4.0 specification. This radio standard was
designed to minimize power consumption [44] and be suit-
able for low cost and low bandwidth transmitters. BLE de-
vices can operate for extended periods of time, powered by a
tiny energy source such as a coin cell. BLE chips are nowa-
days present in most modern smartphones, such as Win-
dows phone, Google Nexus, and iPhone. It has been widely
adopted by smartphone manufacturers.

Bluetooth 4.1 is an update to the specification and is the
current reference for developing BLE applications. It is im-
portant to note that BLE is not directly compatible with
classic Bluetooth and these are, despite the similarities, two
different protocols.

Low power consumption by design comes with a cost. The
modulation frequency of 1 Mbps [44] imposes an upper limit
on throughput. The specification states minimal and max-
imal intervals of 7.5 ms and 4 s respectively, before enter-
ing an idle state after a connection (to save power). This
sets up an upper limit for the number of connections per
second. Some implementations, for instance nRF51822 by
Nordic Semiconductor, impose additional restrictions: lim-
ited number of packets can be transmitted per each connec-
tion (6 in the case of nRF51822), and each packet contains
only a small number of bytes (20 bytes for nRF51822). The
latter is an important constraint that influenced our choice
of secret-handshake scheme, among the possible variants.

BLE operates well for short ranges. While it’s possible
to configure devices to operate on a range of tens of meters
(line-of-sight), the typical operation range would be several
meters.

All of these are important considerations to take into ac-
count when designing a protocol to be executed over BLE.

Two modes of communication are available: broadcast and
connected modes. Broadcast mode enables a device to send
data to any other device listening for transmissions. As the
name suggests, this is the way to transmit to multiple de-
vices at once. Sending broadcasts is called advertising and
the broadcast packets advertisements. A device that listens
to advertisements is called a scanner. In our context, using
this mode enables attempting a handshake with all scanners
in proximity of the advertiser. Figure 1 depicts the structure
of a BLE advertisement packet.

If two devices need to exchange data they can use the
connected mode. The broadcast indicates that the device
can be connected to, and the scanner can initiate a connec-
tion following a received broadcast. Once a connection is
established the devices can exchange data.

On Windows Phone, it is possible to do both advertising
and scanning at the same time. We make use of this property
to implement our message exchange.

Figure 1: Structure of a BLE advertisement packet. Total
size of an advertisement packet is 47 bytes.

2.1.1 Tracking prevention
Bluetooth packets include Bluetooth device address fields,

similar to an Ethernet MAC address. It is a 6 byte number
that uniquely identifies a device. Two types of addresses ex-
ist. The public device address is fixed for a device. A random
device address, on the other hand, can be set dynamically
and change across different connections.

If the public device address is used as the source Blue-
tooth device address, it would be possible to track the de-
vice around a certain area by scanning for BLE packets and
examining the source address field.

In order to prevent tracking of a certain device by its
MAC address, BLE supports randomized MAC addresses.
The MAC address in the transmitted packets changes over
time.

2.2 Cryptographic secret handshakes
Cryptographic secret handshakes, introduced by Balfanz

et al. [13], are related to the broader area of Automatic Trust
Negotiation (ATN). Secret handshakes enable two parties to
establish that they are affiliated with a certain group, and to
disclose their respective roles in the group. They guarantee
that this information is disclosed only when the handshake
succeeds, and no information is obtained by either party
when the handshake fails. As such, it is useful when none of
the parties are willing to be the first to reveal its affiliation.
In this sense, the scheme offers properties similar to a phys-
ical secret handshake between two people. However, there
is one caveat. One party learns about the success of the
handshake before the other, and if it chooses to terminate
the communication without responding to the other party’s
challenge, the other party is left uncertain as to the success
of the secret handshake.

2.2.1 Security
The secret handshake has to be secure against the follow-

ing attacks:

1. Group member impersonation - an adversary who is
unaffiliated with the group performs a successful hand-
shake with a group member.

2. Group member detection - an adversary who intercepts
a broadcast from a group member identifies the group
it is associated with.

3. Tracking - an adversary is able to tell that two differ-
ent handshake attempts were made by the same party.
Resiliency to this attack is called unlinkability.

Formal definitions of the security games corresponding to
the above properties can be found in [13, 19, 12].

2.2.2 A concrete SH scheme
The scheme proposed in [13] takes a minimum of 3 commu-

nication rounds. Two messages are exchanged to establish a
shared secret key, after which another is exchanged in order
to enable both parties to confirm that they indeed obtained
the same shared key. The scheme is based on pairings over
elliptic-curves (EC) and its security relies on the Bilinear
Diffie-Hellman assumption (BDH). First, let us briefly ex-
plain the notion of pairings.
A pairing [21] e is a bilinear map G1 ×G2 → Gt such that

e (a · u, b · v) = e (u, v)ab

where G1,G2,Gt are cyclic groups, u ∈ G1, b ∈ G2, a, b ∈ Zn

and (·) is a group operation, e.g. multiplication over an
elliptic-curve. In case G1 and G2 are the same group, the
pairing is called symmetric. Symmetric pairings are, in fact,
slower to compute and we therefore recommend using asym-
metric pairings in the implementation. The most known
examples are the Weil and Tate pairings, which can be effi-
ciently computed using Miller’s algorithm [39].

Using pairings for cryptography has resulted in applica-
tions such as identity-based and attribute-based encryption
[17], 3-party Diffie-Hellman key exchange [31], BLS short
signatures [18], secret handshakes and more.

While other options exist, we use a secret handshake con-
structed from pairing-based key agreements due to Balfanz
et al. [13]. The scheme is simple and elegant, and the ex-
changed credentials are short, making it a suitable candi-
date for integration with BLE (on which we elaborate in
section 3).

Let us sketch the protocol for performing a secret hand-
shake between two parties. We use a hash-function H mod-
eled as a random oracle that maps arbitrary strings to elliptic-
curve points. Zq denotes an integer group of large prime
order q, where q is 512 bits long.

Two parties, Alice and Bob, want to perform a handshake.
First, there is a setup stage involving interaction of both
parties with a credential-authority (CA) service, as depicted
in figure 2a.

The CA possesses a master secret key t ∈ Zq, called “the
group secret”. It issues credentials to Alice in the form of
a pseudonym PA and a secret elliptic-curve point TA, i.e.
(PA, TA) where TA = t · H (PA). Similarly, Bob obtains
(PB , TB) where TB = t ·H (PB). The two parties exchange
their pseudonyms without disclosing their secret points.
Alice generates a session key by computing

KA = e (H (PB) , TA) = e (H (PB) , t ·H (PA))

= e (H (PB) , H (PA))t (1)

where e is a bilinear map, i.e. a pairing operation, and
Bob generates a session key by computing

KB = e (TB , H (PA)) = e (t ·H (PB) , H (PA))

= e (H (PB) , H (PA))t (2)

Due to the properties of pairings the two keys are the
same, i.e. KA = KB . By sending a challenge value and get-
ting a response for it, the two can verify that the handshake
succeeded. Alternatively, one party can send to the other
some content, which will be successfully decrypted if and
only if the handshake succeeded. These steps are illustrated
in figure 2b.

It is important to include a “direction” bit with the re-
sponses to prevent reflection attacks on the challenge–response
protocol. A concrete example can be found in [13] (section
4.2).

Note that since this construction involves hashing an ar-
bitrary string to an element of G2, it is important to choose
a type of pairing that indeed supports this kind of hash-
ing. Galbraith et al. [23] present a taxonomy of pairings
and their respective properties. According to the properties
of the different types of pairings, we need to use Type 1
or Type 3 pairings to enable hashing arbitrary strings onto
elliptic-curve group elements.

Security of this secret handshake scheme against group
member detection and group member impersonation is based
on the assumption that Bilinear Diffie-Hellman problem is
hard for all probabilistic polynomial-time algorithms. De-
tailed theorems and proofs of security can be found in sec-
tion 5.2 of [13]. Security of our protocol implementation
against those attacks stems from the security of this under-
lying cryptographic scheme.

2.2.3 Unlinkable secret handshakes
One problem with the previous scheme is that a power-

ful eavesdropper who monitors all communication in various
locations would be able to track the users. While the eaves-
dropper doesn’t know whether the handshake succeeded or
not, it sees the same pseudonym over and over again. We
would therefore like to have an untraceable, or unlinkable se-
cret handshake scheme, one that guarantees that an eaves-
dropper cannot draw a link between two broadcasts, cor-
rectly associating them with the same identity. Provid-
ing unlinkability addresses the tracking attack, mentioned
in section 2.2.1, on the application level, whereas random-
ized MAC addresses (section 2.1.1) prevent tracking on the
datalink level. A combination of both measures has to be
used to prevent tracking.
Due to the importance of this property we include a detailed
discussion of unlinkability for secret handshakes.

To provide a formal definition of unlinkability, we define
the following security game between a challenger C and an
adversary A.

C
i←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− A

broadcast as user i−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
...

Challenge Phase

broadcast according to b−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

b′←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The adversary is allowed to perform a polynomial num-
ber of broadcast queries to the challenger. It specifies the
identity of the user i for which it requests a broadcast. For
each query, C obtains credentials as described in the secret
handshake scheme and simulates a new user in the system
by sending over a valid advertisement to A. Finally, A per-
forms another query. The challenger picks at random a bit
b ∈ {0, 1}. If b = 0, C responds with a valid broadcast for
one of the previously used identities, and if b = 1, C responds

Master	secret	
) ∈ +,

-. = "p93849", 2.

2. =)3 -. =)3 "p93849"

-9 = "p12465", 29

29 =)3 -9 =)3 "p12465"

(a) Setup: CA issues credentials to both parties. TA and TB

are secret and each party keeps it to itself. Actual pseudonym
values were added for illustration.

-9 = "p12465"

-. = "p93849"

: = :. = ;(3 "p12465" , 2.) : = :9 = ;(29, 3 "p93849")

BCDEF(DℎHII;CJ;.)

K;LMNCL;.,BCDEO DℎHII;CJ;9

K;LMNCL;9

(b) Handshake. Note that we have redundant rounds here:
the challenge message could be sent earlier together with the
pseudonym. We present it as separate messages for clarity.

Figure 2: Secret handshake protocol.

with credentials corresponding to a new identity, previously
unused in the game. Only C knows b. A outputs a guess b′

for the value b picked by C.

Definition 1. A secret handshake scheme is unlinkable
if an efficient adversary A has only negligible advantage in
winning the game over randomly guessing b, i.e.

Adv(A) =

∣∣∣∣Pr(b′ = b)− 1

2

∣∣∣∣ < ε

where ε is negligible in the security parameter.

A straightforward approach is generating many pseudo-
nyms and secret points for each client during the enrollment
phase. When the client performs handshakes, it uses differ-
ent credentials each time, which prevents an eavesdropper,
or an active attacker, from linking those handshakes to each
other, and therefore prevents tracking the client. This naive
approach has obvious drawbacks. It increases the amount
of storage since the user has to store credentials for all fu-
ture executions of the protocol. It also limits the number
of unlinkable handshakes to the number of pairs of creden-
tials issued at the setup. It might be good enough when a
user is unlikely to deplete its pool of credentials, or if it is
occasionally possible to communicate with the group admin-
istrator to obtain fresh credentials. In addition, this method
provides revocation and traitor tracing, which help protect
against an adversary that is capable of corrupting users.

We can also achieve unlinkability by a simple modifica-
tion to the previous scheme, based on an idea introduced by
Huang and Cao [28]2 and later used by Gu and Xue [25]. In-
stead of PA and PB being strings that are visible during the
initial message exchange between the two parties, we denote
by PA and PB random points on the elliptic curve. t is once
again the master secret, and member secrets are computed
as

TA = t · PA TB = t · PB

PA and PB are never sent as is in the clear. Instead, for
each handshake, Alice picks a random r ∈ Zq and sends rPA

2Their particular scheme, however, has a flaw, as pointed
out in [43, 47], due to release of the group public-key. Nev-
ertheless, it doesn’t affect our use of the pseudonym ran-
domization idea.

to Bob. Bob picks a random s ∈ Zq and sends sPB to Alice.
Alice computes

KA = e (sPB , TA)r = e (PB , PA)rst (3)

and Bob computes

KB = e (TB , rPA)s = e (PB , PA)rst (4)

so that KA = KB .
None of the two learns the permanent pseudonym of the

other. An adversary that eavesdrops on the messages can-
not link different handshake attempts by the same mem-
ber. And yet, both parties obtain the same key that can
now be used for encrypting communication between the two.
This scheme provides information theoretic security against
tracking. This has been previously argued in [28, 25], but
due to the simplicity of this randomization technique, we
include a formal claim, and its trivial proof below.

Claim 1. The handshake scheme presented in 2.2.3 is
unlinkable according to Definition 1.

Proof. The unlinkability of this scheme is information
theoretic with a trivial proof. Since each pseudonym picked
by the challenger is multiplied by a uniformly drawn random
element in Zq, each broadcast is indistinguishable from a
random element to A.

It is important to note, that this scheme becomes vulner-
able to member impersonation in case an adversary corrupts
a member of the group, as pointed out by Yoon [46]. Given
a member’s permanent credentials, the adversary can gen-
erate new ephemeral credentials that will pass a handshake.
This, however, poses a problem even for newer SH schemes
such as [12]. It is therefore important to avoid this method
for achieving unlinkability when corruption is likely, and to
examine new schemes that provide revocation and traitor
tracing along with unlinkability. In the meantime, we can
stick to the former simple method of issuing multiple cre-
dentials to each member.

2.2.4 Security parameters
Security is quantified as the number of basic operations

(e.g AES encryptions) needed for recovering the secret key
and breaking the cryptographic scheme.
Breaking a symmetric-key scheme with key size k requires

2k basic operations. Galbraith et al. [23] summarize the
equivalence between given symmetric key sizes and the cor-
responding EC group element sizes, required to provide the
same level of security. To enjoy 128-bit security3 we have
to use EC subgroups having size of at least 256 bits, i.e. 32
bytes. It means that we need 32-byte long pseudonyms (for
unlinkable handshakes). Compromising for 80-bit security,
we can use 160-bit (20 byte) elements4. For string pseudo-
nyms (fist scheme), 20 bytes provide 128-bit security.

3. SECRET HANDSHAKES OVER BLE
In this section we discuss ways to integrate secret hand-

shakes into BLE. Our goal is to reuse, as much as possible,
the existing BLE message exchange. This part examines the
ideal vs. the currently available and practical. We look into
ways to reconcile the requirements of a protocol for secret
handshakes with BLE constraints and with the current state
of supported BLE features on popular mobile devices.

3.1 Challenges
Implementing secret handshakes over BLE poses several

challenges. Addressing those challenges at the design stage
is one of the main contributions of this paper. Some key
issues are the limited amount of data that is possible to
transfer between devices over BLE, the fact that we are
operating within the restrictions of a given standard, and
various constraints imposed by existing BLE implementa-
tions both in hardware and software. In addition, we had to
pick an underlying cryptographic SH scheme that fits those
constraints.

1. Fitting into BLE packet size: The restriction on
the packet sizes influences our choice of the underly-
ing cryptographic scheme. BLE advertisement packets
can fit up to 39 bytes of payload, with further restric-
tion on how many of them we can control (31 bytes on
the platform we ended up using). The messages ex-
changed during a pairing process can fit 16 bytes only.
This requires choosing a scheme in which little data is
exchanged.

2. Avoiding Bluetooth pairing: We do not want the
devices to“know”each other, i.e. be paired prior to the
handshake attempt, as this contradicts our use-cases.
Our proposals for integration avoid this. The first one
is a new pairing mode that replaces the existing BLE
pairing with a secret-handshake. The second uses BLE
advertisements, which do not require prior pairing in
order to be published or processed by a scanning party.

3. Fitting within the standard: BLE communication
is standardized and we want to operate within the ca-
pabilities and restrictions of the standard. While the
proposition we make in section 3.3 considers a modifi-
cation of BLE, we also aim for a prototype that works
given the currently available functionality, which we
present in section 3.4.

4. Low energy consumption: Power consumption be-
comes a major issue since we aim for use-cases where a

3That is the expected level of security nowadays.
4This compromise, if affordable, can simplify the proposed
implementation, as we will see later.

handshake attempt is frequently initiated. While BLE
itself is designed to consume little energy, we also need
to make sure that our protocol doesn’t add an energy
overhead that is not acceptable for a mobile device.

3.2 Choice of the underlying SH scheme
The scheme presented in section 2.2.2 is a good fit for

addressing the small packet size, since the parties only ex-
change a pseudonym in the form of a single string (or sin-
gle group element in the case of the modified unlinkable
scheme). Some other schemes discussed in section 6, such as
[12, 19], require sending more data to initiate a handshake.
Moreover, this scheme is simple to understand, and given a
library for computing pairings5, it also results in a relatively
simple implementation. Finally, it requires a single pairing
computation by each party, compared to [12] which requires
three.
While we presented some considerations, surveying and com-
paring different SH schemes was not the central goal of this
work, as much as demonstrating practicality using an exist-
ing method. A follow-up work on the subject could greatly
benefit from a thorough comparison of the different schemes
available, and in particular, comparing their performance
and bandwidth requirements.

In the following, we present two methods for integrating
the underlying SH scheme into BLE.

3.3 A new pairing mode
Our first proposition for executing the secret handshake

procedure over BLE is to reuse the Bluetooth pairing pro-
cedure6. Pairing, in both classic Bluetooth and BLE, es-
tablishes a short-term shared key that can be used for en-
crypted communication between two Bluetooth devices. It
can be used for a short message exchange or to establish a
long-term key to be used in subsequent sessions.

BLE currently offers several pairing methods:

• Just Works - requires no user interaction7. Does not
protect from man-in-the-middle (MITM) attacks.

• Numeric comparison - a 6-digit number is displayed on
both devices, which confirm the pairing if they both see
the same number. Protects from MITM attacks.

• Passkey entry - one device displays a 6 digit number,
which has to be entered on the other device to confirm
the pairing.

• Out-of-band (OOB) - An external method is used to
provide information to both devices that is used to
complete the pairing. For instance, NFC can be used
to provide each device with an encryption key.

The numeric comparison and passkey entry methods are
not very secure, as shown by Mike Ryan [41]. Rather than
relying on existing pairing methods, we propose the secret

5One of our contributions is providing a library wrapper for
our platform of choice.
6Not to be confused with the mathematical operation over
elliptic curves, mentioned in the explanation of secret hand-
shakes.
7Sometimes the user will be asked to confirm the pairing,
but not to insert a PIN or to compare passkeys.

Master Slave

Selection	of	pairing	method

Pairing	Confirm	 (Mconfirm)	 - -P

Pairing	Confirm	 (Sconfirm)	 - -Q,RℎHII;CJ;Q

Pairing	Random	(Mrand)	 – S;LMNCL;Q , RℎHII;CJ;P

Pairing	Random	(Srand)	S;LMNCL;P

Parties	calculate	shared	key	using	pairings	– serves	as	STK

Figure 3: Secret handshake as a new pairing mode. Pseudo-
nyms, challenges and responses are embedded in already ex-
isting fields of messages exchanged as part of the pairing
procedure.

handshake for establishing trust and obtaining a shared ses-
sion key. Therefore we can simply use Just Works to estab-
lish the Short Term Key (STK), as we do not care about
security at this step. The STK establishment process is
followed by a pairing confirmation, in the form of Pairing
Confirm messages sent by both devices.

We use the Pairing Confirm messages to exchange pseudo-
nyms between Alice and Bob by setting the value of the
Mconfirm field to be the pseudonym. This implies that we
have to use 128-bit pseudonyms. At the next step we use
the Pairing Random message to send an encrypted challenge
from Alice to Bob by setting Mrand to be the challenge. Bob
computes the response and sends it in the Srand field in its
Pairing Random reply message to A, which can now verify
the success of the handshake8. This process is depicted in
figure 3.

However, despite using existing messages, this approach
requires introducing an additional pairing method and ex-
tending the BLE stack with new functionality. And since
the pseudonym sizes are limited by the length of the Mcon-
firm messages, it enables less than 80-bits security, which is
not acceptable in modern cryptographic implementations.
Achieving the desired security levels would require further
modifications to the pairing protocol.

3.4 Advertiser-scanner interaction
As mentioned in section 2, BLE supports broadcasting

advertisements. Clients can scan and filter advertisements
of specific types. An advertisement packet allows only 31
bytes of data to be set. With passive scanning the advertised
data is limited to the contents of one advertisement packet.
With active scanning, the scanner can request more data
and receive another packet from the advertiser in response.

Windows .NET Bluetooth API currently enables control-
ling only the Manufacturer Specific Data (AD type 0xFF),
which is 20 bytes.

This method of performing the handshake doesn’t require
extending the BLE specification. It relies on transmitting
data between an advertiser Alice and a scanner Bob9 in a
way that does not require a Bluetooth pairing.

8Non-resolvable random Bluetooth addresses are used for all
communication mentioned above.
9Here, advertiser and scanner are terms taken directly from
the BLE specification, referring to a party in advertising
state and a party in a scanning state respectively.

The advertiser broadcasts its pseudonym and, if the client
that receives the broadcast in a scanning state is interested
in performing a handshake, it enters the initiating state.
The client that enters the connection state from an initiating
state acts as a Master, while the advertiser that enters it
from the advertising state acts as a Slave. The connection
state serves for verifying the success of the handshake by
exchanging a challenge and a response over the encrypted
link.

In section 2.2.4 we mentioned that 32-byte pseudonyms
are required. Because an advertisement packet cannot con-
tain more than 31 bytes of payload, we have to submit two
packets. By using Active Scanning, the scanner can initiate
a Scan Request once an advertisement packet is received.
The advertiser sends another packet in response, which pro-
vides enough space to serve a 32-byte string.

After exchanging pseudonyms, the parties derive a 128-bit
(16 bytes) long symmetric key. Any subsequent communica-
tion for “challenge-response” can therefore fit in one adver-
tisement packet. As previously mentioned, 80-bit security
requires only 20-byte long pseudonyms, which now can fit in
a single advertisement packet. This size is also enough for
128-bit security with the first (linkable) scheme.

Note that while the scheme in [13] can ultimately require
only 3 messages, it would require packing more data into
each message. We avoid it due to the limited advertisement
length, and instead exchange pseudonyms first, and then
proceed with a challenge and response phase, resulting in 4
messages.

To support simultaneous interaction between many de-
vices, we need to instantiate a separate state machine for
each handshake attempt, and associate it with the Bluetooth
device address of the other party. That way, advertisements
received from different parties do not interfere with each
other while executing the protocol. Of course, when using a
randomized MAC address, we are required to maintain the
same device address across all protocol rounds.

While the pairing mode option (3.3) is appealing, it would
require adopting our proposal and have it integrated into
the BLE standard. Currently, it also restricts us to smaller
security parameters. We chose to implement our prototype
using advertiser-scanner interaction, as suggested in the last
subsection (3.4).

The scanner-advertiser interaction does not require a Blue-
tooth pairing between the devices, and yet enables exchang-
ing small amounts of data by the same method.

4. IMPLEMENTATION
In this section we discuss various practical considerations

that influenced our prototype implementation. We describe
the chosen alternative and walk through the implementa-
tion.

4.1 Implementation Challenges
Two main factors affect the choice of platform:

• Custom control over BLE communication.

• Convenient implementation of pairings over elliptic
curves: pairings are fairly complicated to implement
and we would therefore like to begin with an existing,
tested implementation.

The current state of BLE deployment on mobile platforms
poses challenges to our goals. Only a few smartphone models
can broadcast BLE advertisements. In addition, few fields
within the advertisement packets can be controlled.

iOS is fairly restrictive in terms of an application’s abil-
ity to control the data that is transmitted in advertisement
packets. While iOS provides support for Apple’s own iBea-
con protocol, it does not allow customizing the advertise-
ment data, which precludes using iOS as a prototyping plat-
form for testing our protocol.

The Android framework provides the APIs necessary for
doing BLE advertising and scanning through BluetoothLeAd-
vertiser and BluetoothLeScanner respectively. One particu-
lar appeal of Android is the fact that applications are pro-
grammed in Java, and there exists a Java library, named
JPBC [20], that implements pairing operations over elliptic-
curves. It provides the functionality we need for implement-
ing pairing-based secret handshakes.

Unfortunately, most Android phones do not currently sup-
port Bluetooth advertisement broadcasting in practice, and
we had to defer this option for now. It would be highly
useful to enable this capability in future models.

4.2 Windows Phone
Windows phones, running Windows 10 OS, support pub-

lishing BLE advertisements and scanning. In addition, they
enable advertising and scanning simultaneously. We chose
to prototype the handshake scheme on Windows Phone plat-
form since at the moment it was the only widespread mobile
framework that enables advertising, provides control of the
advertisement packet data, and also enables developing rich
user interface using a high-level language.

First, we needed an implementation of elliptic curve oper-
ations and pairings that would run on the device. Windows
Phone applications are executed on a .NET Runtime and are
usually written in C#. It is also possible to integrate native
compiled code through Windows Runtime Components. One
direction was attempting to port the JPBC library, written
in Java, to C#. While the task can be partially automated
using tools like Sharpen [8], it would still involve a signifi-
cant effort. Most obstacles arise from the fact that not all
Java constructs and syntax are directly translatable to C#.

We adapted the Stanford PBC library [36] to run on ARM
and implemented a .NET wrapper to enable using it for
Windows Universal applications written in C#. Specifically,
we used PBC v0.5.14.

Lynn’s PBC library [36] is a C implementation of pairings
over elliptic curves. It is easily parametrizable in terms of
choosing the algebraic fields to work with, the types of el-
liptic curves to use, and provides useful functions such as
random element generation and hashing arbitrary strings
onto elliptic curves.

Its fastest benchmark indicates that a pairing computa-
tion can be done in 11 ms [35]. This enables performing
about 90 pairing computations per second. Since our hand-
shake protocol requires a single pairing computation (for
each party), this is unlikely to become a bottleneck.

Originally, PBC requires the GNU Multi-Precision library
(GMP) for its big-integer operations. We used the Multiple-
Precision Integers and Rationals library (MPIR) [6], which
is compatible with GMP, since it was already adapted for
building with Visual Studio. We did the necessary porting
to compile it for ARM so that it can be used on a Windows

Phone platform.
We replaced the random data generation function origi-

nally used in PBC with a modified version to support the
new API on Windows 10.
We used CryptographicBuffer::GenerateRandom for gener-
ating random bytes.

The ported PBC library for ARM is provided in form of
a static library that can be linked with a Windows Runtime
Component.

4.2.1 PbcProxy - a .NET wrapper for PBC
In order to integrate the ported PBC library with a .NET

implementation of the protocol logic, we have written Pbc-
Proxy - a Windows Runtime Component that links with the
library and exposes the interfaces needed for implementing
the handshake scheme.

The wrapper is implemented as a Windows Runtime Com-
ponent, a DLL that exposes some of the functionality of the
PBC library by bridging between managed and unmanaged
code. All classes reside in the PbcProxy namespace. The
following interfaces are exposed by the wrapper:

• Element - provides multiplication and power opera-
tions over group elements, and serializes an element
to its byte representation. The serialization is used to
obtain an encryption key.

• Pairing - provides functions for hashing strings to group
elements, obtaining a random element in a given group
and applying pairings to pairs of elements, one in G1

and the other in G2.

• Group - an interface representing an abstract group,
and instantiations for representing G1, G2 and Zn.

To use PbcProxy we have to first initialize it by calling one of
the methods init() or init(seed). The first method sets PBC
to use a random number generation function that uses Cryp-
tographicBuffer::GenerateRandom, while the second sets it
to use a deterministic generator passing it a seed. Initializ-
ing two devices with a common seed is useful for testing by
simulating the common dealer using a local instance. In our
demo application, we simulated two phones getting issued
credentials using the same master secret by independently
setting their random seed to the same value.

We also provide a test method PBC.test() that imple-
ments a simple pairing computation, to test that the PBC
library works correctly on the Windows phone platform.

PbcProxy exports the classes Pairing and Element that
expose group element operations and the pairing applica-
tion. A common interface GroupIface requires implement-
ing an initElement method for each group type we want to
work with. This interface serves for decoupling the specific
groups used from the implementation of the Pairing and
Element classes. We have currently implemented subclasses
for the groups G1,G2 and Zn that allow using Zn elements
and referring to the respective groups used in a pairing. For
example, in the secret handshake scheme, one credential is
an element in G1 and the other is an element in G2.

The dependencies between the different software compo-
nents are summarized in figure 4.

Figure 4: Component dependencies: PbcProxy bridges be-
tween the protocol logic implementation and the library pro-
viding pairing-based crypto, which uses big integer opera-
tions provided by MPIR.

Advertiser

+ start()
+ stop()
- respondToChallenge()

Scanner

+ start()
+ stop()
+ sendChallenge()
+ handleResponse()

HandshakeMember

- secret
- pseudonym
- role
- pairing

+ getPseudonym()
+ getRole()
+ getChallenge()
+ computeSharedKey()
- computeSharedKeyClient()
- computeSharedKeyServer()

HandshakeParty

- handshakeMember
- advertiser
- scanner

+ start()
+ stop()
- startScanning()
- stopScanning()
- startAdvertising()
- stopAdvertising()

HandshakeMaster

- pairing
- masterSecret

+ issueCredentialsForClient()
+ issueCredentialsForServer()
- issueCredentials()
- getRandomString()

MemberCredentials

+ role
+ pseudonym
+ secret

Figure 5: Class diagram of the handshake prototype imple-
mentation. Each party participating in a handshake instan-
tiates both Advertiser and Scanner and alternates between
them to communicate.

4.2.2 Handshake scheme prototype
We provide documentation of our prototype application.

It is structured as follows. A party participating in the
handshake is represented by one of the classes Advertiser or
Scanner. The first, as the name suggests, publishes adver-
tisements and the latter is scanning for advertisement pack-
ets. A mobile application, however, can perform both roles
simultaneously. The two classes inherit common functional-
ity from HandshakeParty. Advertiser and Scanner subclass
HandshakeParty. HandshakeParty implements the commu-
nication protocol, and uses an instance of HandshakeMember
that provides the cryptographic functionality and interacts
with PbcProxy. HandshakeMaster simulates the credentials
dealer, providing an instance of MemberCredentials upon re-
quest. The relationships between the classes are summarized
in the UML diagram in figure 5.

Figure 6 illustrates our realization of the secret handshake
protocol using interaction between an advertiser and a scan-
ner. It uses the fact that Windows Phone enables performing
advertisement and scanning at the same time. Fig. 7 illus-
trates the state transition for the two parties based on the
received broadcast.
The Advertiser starts publishing its pseudonym PA, while
at the same time scanning for a reply from the Scanner. The
Scanner, upon receiving an advertisement packet, pauses
the scanning, interprets the data as a pseudonym and com-

Advertiser Scanner

StartScanning

StartAdvertising

StartScanning

PA

StopScanning

ComputeSharedKey

KS

StartAdvertising

PS , ChallengeS

StopAdvertising

ComputeSharedKey

KA

StartScanning

StartAdvertising

RespA,ChallengeA

StopScanning

StartScanning

StartAdvertising

RespS

Figure 6: Secret handshake on top of Advertiser-Scanner
interaction. The diagram illustrates simultaneous advertise-
ment and scanning by the same party at certain stages, and
switching between advertising and scanning to communi-
cate.

Send PAstart Send RS

done

PS , ChlngS

RespSdelay

(a) Advertiser

Scanstart Await RA

done

PA

RespA,ChlngA
delay

(b) Scanner

Figure 7: State machines for Advertiser and Scanner.

putes a shared key according to one of Eq. 2 or 4, depend-
ing on whether we use linkable or unlinkable handshakes.
It then starts advertising a response packet containing its
own pseudonym PS , and a challenge ChallengeS . The chal-
lenge is AES–encrypted using the computed symmetric key.
Shortly after, it reactivates scanning in order to receive a res-
ponse from the advertiser. There is a small delay between
starting to advertise and reactivating the scanning, in or-
der to avoid receiving an advertisement with a pseudonym,
before the Advertiser had a change to receive the Scanner’s
pseudonym and switch to a new state. Once the Advertiser
receives an advertisement with the scanner’s pseudonym, it
pauses scanning and computes the shared key using one of
Eq. 1 or 3. It then decrypts the challenge, using the com-
puted symmetric key and calculates a response RespA. It
also generates its own challenge ChallengeA and encrypts it
using the same key. It resumes advertising to send the res-
ponse to the Scanner. The Scanner decrypts the advertise-
ment packet using its key, and if it verifies correctly, assumes
that the handshake succeeded. It computes and encrypts
a response RespS to ChallengeA and starts advertising to
send it to the Advertiser. Once the Advertiser receives the
response RespS , it verifies it, and if it passes, assumes that
the handshake succeeded.

The source code of our implementation is available on
https://github.com/ymcrcat/MASHaBLE.

4.3 Evaluation
For evaluating our implementation we created a simple

app that can broadcast, scan, and perform a secret hand-
shake with another phone running the same app.

4.3.1 Functionality testing
Our devices perform simultaneously Bluetooth advertising

and scanning. It is important to verify experimentally that
this unusual practice results in successful execution of the
handshake protocol with high probability. We ran our appli-
cation on two Windows Phone devices, repeatedly perform-
ing handshakes between the two, for 8296 seconds (∼ 2 hours
18 seconds). We performed 1 handshake every 8 seconds, re-
sulting in a total number of 1068 handshake attempts. 1025

attempts resulted in a successful shared key establishment,
and only 43 handshake attempts have failed. The failures
were due to occasional lack of synchronization between the
states of the two devices. Overall, in 96% of the cases the
handshake procedure succeeded. This result suggests that
our protocol is fairly resistant to synchronization failures.

4.3.2 Energy overhead
We measured the energy overhead of our Windows Phone

implementation on a Nokia Lumia 920 phone. In each of
the following scenarios, we started with the phone with its
battery 100% charged, WiFi and location services off, and
screen dimmed to minimum brightness level:

1. Baseline: the phone is not running the app.

2. Advertising: the app is continuously publishing BLE
advertisements of its pseudonym (no response is sent
meaning no actual handshake process is initiated).

3. Scanning: the app is continuously scanning for adver-
tisements (no advertisement is received meaning no ac-
tual handshake process is initiated).

4. Handshake Advertiser: the app, acting as an adver-
tiser, is constantly performing handshakes with an-
other phone acting as a scanner.

5. Handshake Scanner: the app, acting as a scanner, is
constantly performing handshakes with another phone
acting as an advertiser.

We ran the experiment for 3 hours for each one of the
modes, and took note of the battery drain percentage. The
results of the experiment are presented in Fig. 8. It is in-
teresting to notice that scanning actually consumes more
than advertising (despite the fact that advertising involves
transmission). This result was previously confirmed in other
experiments such as [32]. The reason is the design rational
behind BLE modes of operation. Since it is likely that a bea-
con device has to be in advertising mode for a long period
of time, it is designed for maximal energy saving. It trans-
mits a short packet each time and returns to sleep. Scanning
is intended to be initiated less often. While scanning, the
device constantly searches for beacons, performing intense
processing.

https://github.com/ymcrcat/MASHaBLE

0 5 10 15 20

Baseline 2.5%

Advertising 3.3%

Scanning 7.5%

Advertising Handshake 3.9%

Scanning Handshake 8.2%

Battery Drain %

Figure 8: Battery drain in different modes after 3 hours. We
can see that cryptographic operations add little overhead on
top of BLE energy consumption.

The baseline we compare to is battery drain without any
activity, which was measured to be 2.5% per hour. Advertis-
ing resulted in additional 0.8% per hour. Scanning consumes
5% per hour on top of the baseline, which is non-negligible,
but nevertheless still enables almost 13 hours of operation.
Advertising followed by handshake operations resulted in a
battery drain of 3.9% per hour, which enables approximately
26 hours of operation. Finally, scanning followed by hand-
shakes resulted in a drain of 8.2% per hour, which enables
12 hours of operation. Overall, these results are encourag-
ing in the sense that they enable operation times that are
on the order of what is required to be able to normally use
a smartphone before recharging.

By subtracting the results when handshakes are not per-
formed from the results when they are, we get the percentage
that the handshake logic adds on top of the power consump-
tion due to BLE scanning or advertising. In the case of
advertising, handshakes added 0.6% per hour on top of ad-
vertising without proceeding further with the protocol. In
the case of scanning, proceeding with a handshake added
0.7% on top of scanning only.

4.3.3 Communication overhead
Each advertisement packet consists of 47 bytes10. The

handshake initiator (Alice) sends 1 packets to scanner (Bob)
containing a pseudonym. Bob sends back 1 packet with
his pseudonym and a challenge. Alice replies with 1 packet
containing her response to Bob’s challenge and a challenge
of her own, and finally, Bob responds to Alice’s challenge
with 1 packet. Alice sends 47× 2 = 94 bytes total, and Bob
sends 47× 2 = 94 bytes. Overall we have 4 communication
rounds with 4 packets, which results in 188 bytes.

Depending on Alice and Bob’s decision whether to use
the established encrypted channel for further communica-
tion, e.g. exchanging messages, more data can be transmit-
ted. However, for all further communication, the overhead
will stem solely from the Bluetooth packet structure, since
they use the computed symmetric key for encryption, which
results in the same length as the plaintext.

5. FURTHER IMPROVEMENTS
We propose possible enhancements to the current imple-

mentation. Some of them are immediately applicable, and

10In our case we use the maximum available size for adver-
tisement packets.

some are subject to further research.

5.1 Speeding up computation
Chapter 6.11 of Lynn’s thesis [37] covers several possible

opportunities for precomputation that can speed up sub-
sequent computation of pairings. Those opportunities arise
from the fact that some of the computation steps depend en-
tirely on only one of the two inputs to the pairing. For each
handshake initiated using the same credentials, the pairing
G1 input is the same. Therefore, Lynn’s proposals can be
applied. Moreover, preprocessing is supported by the PBC
library and is part of its API. It would be beneficial to ex-
tend PbcProxy to support preprocessed pairings.

5.2 Using BLE identifiers as pseudonyms
As already mentioned, BLE supports using a randomized

device address instead of the permanent public address. If
we could set the source device address we would be able
to use it as a pseudonym, instead of setting it in the ad-
vertisement data. We saw that having 128-bit security for
the unlinkable scheme requires broadcasting two subsequent
advertisement packets in order to transmit the pseudonym.
Having additional space in the form of the Bluetooth device
address field enables to transmit 32-byte long credentials in
a single packet.

5.3 Organizational role authentication
The secret handshake scheme described in 2.2 supports,

with a slight modification, establishing the corresponding
roles of the parties within the organization, in addition to
proving affiliation. We do not provide the details here, but
it is described in [13]. We note, however, that the method
in [13] assumes using pseudonyms which are public strings,
to which the other party can attach an additional string
indicating the role. That doesn’t settle with the unlinkable
handshake scheme in 2.2.3, proposed as a countermeasure
against tracking, because it involves transmitting encodings
of elliptic curve elements that mask the pseudonym.

5.4 Additional applications of PbcProxy and
ported PBC library

PbcProxy, the glue between the .NET framework and a
C implementation of pairings compiled for the ARM proces-
sor, is an opening for many other Windows Phone applica-
tions that rely on pairing-based cryptography. One promi-
nent application is Identity-based Encryption [17, 15, 16]. It
enables encrypting sending encrypted messages to another
party solely based on its publicly known identifier such as
an email or a phone number. For instance, a company or
organization’s employees have each other’s contacts. Us-
ing identity-based encryption they can securely communi-
cate with each other without the need to exchange public
keys directly. While the concept itself is not new, and even
commercialized by Voltage, the software libraries we provide
enable easy development of this application for the Windows
Phone platform.

5.5 Usability
While we discuss the technical aspects of secret hand-

shakes between mobile devices, usability issues were left out-
side the scope of this work. For successful adoption of our,
or any other library and protocol, there has to be a good
understanding of how vendors and users would use this ca-

pability in practice. We suggested several use cases in the
introduction. It would be beneficial to validate them by
surveying vendors and users, as well as to find additional
use-case scenarios.

6. RELATED WORK
We survey related work in the relevant domains, focusing

on theoretic work applicable to our setting, and on systems
projects with similar goals.

Hiding the Rumor Source by Fanti et al. [22] provides mes-
sage source obfuscation by using adaptive diffusion spread-
ing. They operate under a model that assumes an adversary
that has access to metadata, and and also to some corrupted
nodes. Their method can be complementary to ours. If our
application uses the established shared key to diffuse mes-
sages among society members, we can apply their scheme to
dictate the message diffusion policies, so that an adversary
that colludes with corrupted members of the secret group,
would not be able to identify the message source.

RevCast by Schulman et al. [42] is related to our proposal
in the sense that it disseminates messages over a radio chan-
nel11. Thus the message transfer is independent of a central
server. It also aims to facilitate clients’ privacy by obviating
requests to a server, an act that discloses a client’s interest
in particular data.

Since the scheme we have chosen [13] was proposed, there
have been more works on the subject of secret handshakes.
Some of them provide alternatives to pairing-based crypto
[19, 45], while others address unlinkability and more flexible
policies [12, 29, 34]. We discuss some of them below.

In [19] the authors propose a scheme for secret handshakes
based on CA-Oblivious encryption. CA-Oblivious encryp-
tion relies on providing a certificate to the user from which
one cannot learn about the signing authority. Its security
proof relies on the Computational Diffie-Hellman assump-
tion (CDH). This scheme avoids using pairing-based cryp-
tography and can be built based on more standard PKI. This
can be useful on platforms on which it is currently difficult
to run one of the existing libraries for pairing-based cryp-
tography, such as PBC or JPBC. While this scheme doesn’t
require pairings, more data has to be sent by the handshake
initiating party than in the scheme based on pairings that
only requires sending a short pseudonym. Considering the
very constrained amount of data we are allowed to send in an
advertisement packet, the pairing-based scheme seems more
suitable for our task. Additionally, their scheme doesn’t
provide unlinkability that is not based on issuing multiple
credentials, while the scheme of Balfanz et al. [13] is con-
veniently transformed into an unlinkable SH scheme with
reusable credentials.

Secret handshakes with dynamic and fuzzy matching, by
Ateniese et al. [12], adds the ability to specify a set of at-
tributes, required from the other party, in order for the
handshake to succeed. It is essentially an attribute-based
secret handshake scheme which also provides unlinkability
and supports roles. The authors integrated the scheme into
the IPSec protocol, by extending the Internet Key Exchange
protocol [26]. While the scheme we chose is not the state
of the art, as of today, it is simpler to understand, and re-
quires sending less data upon handshake initiation. The

11They use FM radio broadcasts to spread certificate revo-
cation updates.

applications we proposed so far can do without the addi-
tional features provided by the dynamic or fuzzy handshake
schemes. In addition, our protocol requires performing a
single bilinear pairing computation, while that scheme re-
quires performing three pairings. However, providing addi-
tional functionality by using more novel schemes would be a
desirable follow-up work, as well as identifying how mobile
applications can benefit from fuzzy attribute-based secret
handshakes.

Hidden Credentials by Holt et al. [27] proposes a method
for Bob to send a message to Alice depending only on Alice’s
credentials, without having any credentials of his own. It is
based on Boneh-Franklin IBE [17] which is in turn based on
the Weil pairing. The notion of hidden credentials could be
useful in case there is a messenger, who is an outsider to
the organization, but wants to send an encrypted message
to any member that has a certain role or clearance in the
organization.

[33] is an example of incorporating custom identifiers in
the BLE MAC address, as we suggested in 5.2. While that
work also pertains to protecting user’s privacy, the guaran-
tees provided by their Incognito system are different and are
useful under different assumptions.

Prior work also investigated techniques for preserving pri-
vacy of end-users by changes of IP and MAC addresses [40,
38], identifier-free link layer protocol [14, 24] and short-lived
credentials or pseudonyms [30]. However, all these tech-
niques aim to ensure unlinkability only.

[32] is a useful reference for understanding the intricacies
of BLE scanning and advertisement. The power consump-
tion model and design guidelines in that work can be useful
for optimizing future versions of our protocol.

7. CONCLUSION
We propose a mobile application that enables members

of a secret community to discover other affiliates that are
in proximity to their mobile device. It enables the creation
of an authenticated and encrypted communication channel
over which the two members can communicate. We pro-
vide the background needed to understand our scheme and a
novel analysis of the technicalities related to implementing it
on top of a Bluetooth LE stack on a mobile device. Current
state of BLE support poses many challenges which we exam-
ine. We discuss the design considerations and alternatives
and describe our prototype implementation of the secret
handshake scheme. The experimental evaluation of our im-
plementation suggests that cryptographic secret handshakes
for mobile devices are highly practical. In particular, we
show that our protocol plays well with Bluetooth LE, and
its energy overhead is acceptable for mobile devices. Fi-
nally, we propose several ideas for further enhancement and
research.

Acknowledgments
We would like to thank Dan Boneh from Stanford Univer-
sity for advice on pairing-based cryptography, identity-based
encryption and related works. We would like to thank mem-
bers of the Sensing and Energy Research Group at Microsoft
Research: Bodhi Priyantha, for advising on Bluetooth LE
and Di Wang for helping with the mobile setup used in our
experiments. Finally, we thank the anonymous reviewers
and the MobiCom 2016 TPC for their valuable comments.

8. REFERENCES
[1] Afterschool, http://afterschoolapp.com/app.

[2] Complete keyless, www.completekeyless.com.

[3] Connect2car, www.connect2car.com.

[4] Dubbledutch.me,
http://doubledutch.me/attendance-tracking.html.

[5] Legatalk, http://legatalk.com.

[6] Multiple precision integers and rationals library,
mpir.org.

[7] Open whisper systems, https://whispersystems.org.

[8] Sharpen - Automated Java to C# coversion.

[9] Telegram messenger, https://telegram.org.

[10] Yik yak, https://www.yikyak.com/home.

[11] ”iBeacon” technology that will make possible Internet
of Things. pages 159–165. Institution of Engineering
and Technology, 2014.

[12] Giuseppe Ateniese, Marina Blanton, and Jonathan
Kirsch. Secret handshakes with dynamic and fuzzy
matching. In Network and Distributed System Security
Symposium, pages 159–177, 2007.

[13] D. Balfanz, G. Durfee, N. Shankar, D. Smetters,
J. Staddon, and Hao-Chi Wong. Secret handshakes
from pairing-based key agreements. 2003 Symposium
on Security and Privacy, 2003., 2003.

[14] Kevin Bauer, Damon McCoy, Ben Greenstein, Dirk
Grunwald, and Douglas Sicker. Physical layer attacks
on unlinkability in wireless lans. In International
Symposium on Privacy Enhancing Technologies
Symposium, pages 108–127. Springer, 2009.

[15] Dan Boneh and Xavier Boyen. Secure identity based
encryption without random oracles. In Advances in
Cryptology–Crypto 2004, pages 443–459. Springer,
2004.

[16] Dan Boneh, Xavier Boyen, and Eu-Jin Goh.
Hierarchical identity based encryption with constant
size ciphertext. In Advances in
Cryptology–EUROCRYPT 2005, pages 440–456.
Springer, 2005.

[17] Dan Boneh and Matt Franklin. Identity-based
encryption from the weil pairing. Advances in
Cryptology - CRYPTO 2001, 2001.

[18] Dan Boneh, Ben Lynn, and Hovav Shacham. Short
signatures from the weil pairing. Advances in
Cryptology - ASIACRYPT 2001, 2001.

[19] Claude Castelluccia, Stanislaw Jarecki, and Gene
Tsudik. Secret Handshakes from CA-Oblivious
Encryption. In Advances in Cryptology - ASIACRYPT
2004, 10th International Conference on the Theory
and Application of Cryptology and Information
Security, Jeju Island, Korea, December 5-9, 2004,
Proceedings, volume 3329, pages 293–307, 2004.

[20] Angelo De Caro and Vincenzo Iovino. jpbc: Java
pairing based cryptography. In Proceedings of the 16th
IEEE Symposium on Computers and Communications,
ISCC 2011, pages 850–855. IEEE, 2011.

[21] Andreas Enge. Bilinear pairings on elliptic curves,
2013.

[22] Giulia Fanti, Peter Kairouz, Sewoong Oh, Kannan
Ramchandran, and Pramod Viswanath. Hiding the
rumor source. arXiv preprint arXiv:1509.02849, 2015.

[23] Steven D. Galbraith, Kenneth G. Paterson, and
Nigel P. Smart. Pairings for cryptographers, 2008.

[24] Ben Greenstein, Damon McCoy, Jeffrey Pang,
Tadayoshi Kohno, Srinivasan Seshan, and David
Wetherall. Improving wireless privacy with an
identifier-free link layer protocol. In Proceedings of the
6th international conference on Mobile systems,
applications, and services, pages 40–53. ACM, 2008.

[25] Jie Gu and Zhi Xue. An Improved Efficient Secret
Handshakes Scheme with Unlinkability. IEEE
Communications Letters, 15(2):259–261, feb 2011.

[26] Dan Harkins and Dave Carrel. Rfc 2409: The internet
key exchange (ike), november 1998. Status: Proposed
Standard.

[27] Jason E. Holt, Robert W. Bradshaw, Kent E.
Seamons, and Hilarie Orman. Hidden Credentials.
Proceeding of the ACM workshop on Privacy in the
electronic society - WPES ’03, page 1, 2003.

[28] Hai Huang and Zhenfu Cao. A Novel and Efficient
Unlinkable Secret Handshakes Scheme. Ieee
Communications Letters, 13(5):363–365 ST – A Novel
and Efficient Unlinkable Sec, 2009.

[29] Stanislaw Jarecki and Xiaomin Liu. Unlinkable Secret
Handshakes and Key-Private Group Key Management
Schemes. In Applied Cryptography and Network
Security, volume 4521, pages 270–287. 2007.

[30] Qi Jiang, Jianfeng Ma, Guangsong Li, and Li Yang.
An efficient ticket based authentication protocol with
unlinkability for wireless access networks. Wireless
personal communications, 77(2):1489–1506, 2014.

[31] Antoine Joux. A one round protocol for tripartite
diffie–hellman. In Algorithmic number theory, pages
385–393. Springer, 2000.

[32] Philipp Kindt, Daniel Yunge, Robert Diemer, and
Samarjit Chakraborty. Precise Energy Modeling for
the Bluetooth Low Energy Protocol. mar 2014.

[33] Robin Kravets, Güliz Seray Tuncay, and Hari
Sundaram. For your eyes only. In Proceedings of the
6th International Workshop on Mobile Cloud
Computing and Services, pages 28–35. ACM, 2015.

[34] Preeti Kulshrestha and Arun Kumar. A New
Unlinkable Secret Handshakes Scheme based on ZSS.

[35] Ben Lynn. Pbc benchmarks,
https://crypto.stanford.edu/pbc/times.html.

[36] Ben Lynn. Pbc library,
https://crypto.stanford.edu/pbc.

[37] Ben Lynn. On the Implementation of Pairing-Based
Cryptosystems. PhD thesis, 2007.

[38] Shrirang Mare, Jacob Sorber, Minho Shin, Cory
Cornelius, and David Kotz. Hide-n-sense: preserving
privacy efficiently in wireless mhealth. Mobile
Networks and Applications, 19(3):331–344, 2014.

[39] Victor S Miller. The weil pairing, and its efficient
calculation. Journal of Cryptology, 17(4):235–261,
2004.

[40] Barath Raghavan, Tadayoshi Kohno, Alex C Snoeren,
and David Wetherall. Enlisting isps to improve online
privacy: Ip address mixing by default. In International
Symposium on Privacy Enhancing Technologies
Symposium, pages 143–163. Springer, 2009.

[41] Mike Ryan. Bluetooth: With Low Energy Comes Low
Security. In Proceedings of the 7th USENIX
Conference on Offensive Technologies, page 4, 2013.

[42] Aaron Schulman, Dave Levin, and Neil Spring.
Revcast: Fast, private certificate revocation over fm
radio. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications
Security, pages 799–810. ACM, 2014.

[43] Renwang Su. On the security of a novel and efficient
unlinkable secret handshakes scheme. IEEE
Communications Letters, 13(9):712–713, sep 2009.

[44] Kevin Townsend, Carles Cufi, and Robert Davison.

Getting Started with Bluetooth Low Energy, 2014.

[45] Damien Vergnaud. RSA-Based Secret Handshakes.
pages 252–274. 2006.

[46] Eun-Jun Yoon. Cryptanalysis of an Efficient Secret
Handshakes Scheme with Unlinkability. Procedia
Engineering, 24:128–132, 2011.

[47] Taek-Young Youn and Young-Ho Park. Security
analysis of an unlinkable secret handshakes scheme.
IEEE Communications Letters, 14(1):4–5, jan 2010.

	Introduction
	Background
	Bluetooth Low Energy
	Tracking prevention

	Cryptographic secret handshakes
	Security
	A concrete SH scheme
	Unlinkable secret handshakes
	Security parameters

	Secret handshakes over BLE
	Challenges
	Choice of the underlying SH scheme
	A new pairing mode
	Advertiser-scanner interaction

	Implementation
	Implementation Challenges
	Windows Phone
	PbcProxy - a .NET wrapper for PBC
	Handshake scheme prototype

	Evaluation
	Functionality testing
	Energy overhead
	Communication overhead

	Further improvements
	Speeding up computation
	Using BLE identifiers as pseudonyms
	Organizational role authentication
	Additional applications of PbcProxy and ported PBC library
	Usability

	Related work
	Conclusion
	References

