
1

A Comparison of Mechanisms for Improving TCP Performance over
Wireless Links

Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan and Randy H. Katz1

{hari,padmanab,ss,randy}@cs.berkeley.edu
Computer Science Division, University of California at Berkeley

Abstract

Reliable transport protocols such as TCP are tuned to per-
form well in traditional networks where packet losses occur
mostly because of congestion. However, networks with
wireless and other lossy links also suffer from significant
non-congestion-related losses due to reasons such as bit
errors and handoffs. TCP responds to all losses by invoking
congestion control and avoidance algorithms, resulting in
degraded end-to-end performance in wireless and lossy sys-
tems. In this paper, we compare several schemes designed
to improve the performance of TCP in such networks. These
schemes are classified into three broad categories: end-to-
end protocols, where the sender is aware of the wireless
link; link-layer protocols, that provide local reliability; and
split-connection protocols, that break the end-to-end con-
nection into two parts at the base station. We present the
results of several experiments performed in both LAN and
WAN environments, using throughput and goodput as the
metrics for comparison.

Our results show that a reliable link-layer protocol with
some knowledge of TCP provides very good performance.
Furthermore, it is possible to achieve good performance
without splitting the end-to-end connection at the base sta-
tion. We also demonstrate that selective acknowledgments
and explicit loss notifications result in significant perfor-
mance improvements.

1. Introduction

The increasing popularity of wireless networks indicates
that wireless links will play an important role in future inter-
networks. Reliable transport protocols such as TCP [18, 19]
have been tuned for traditional networks comprising wired

1. Web page URL http://daedalus.cs.berkeley.edu.
Srinivasan Seshan is now at IBM T.J. Watson Research Center,
Hawthorne, NY (srini@watson.ibm.com).

This work was supported by DARPA Contract DAAB07-C-D154.

links and stationary hosts. These protocols assume conges-
tion in the network to be the primary cause for packet losses
and unusual delays. TCP performs well over such networks
by adapting to end-to-end delays and packet losses caused
by congestion. The TCP sender uses the cumulative
acknowledgments it receives to determine which packets
have reached the receiver, and provides reliability by
retransmitting lost packets. For this purpose, it maintains a
running average of the estimated round-trip delay and the
mean linear deviation from it. The sender identifies the loss
of a packet either by the arrival of several duplicate cumula-
tive acknowledgments or the absence of an acknowledg-
ment for the packet within a timeout interval equal to the
sum of the smoothed round-trip delay and four times its
mean deviation. TCP reacts to any packet losses by drop-
ping its transmission (congestion) window size before
retransmitting packets, initiating congestion control or
avoidance mechanisms (e.g., slow start [8]) and backing off
its retransmission timer (Karn’s Algorithm [11]). These
measures result in a reduction in the load on the intermedi-
ate links, thereby controlling the congestion in the network.

Unfortunately, when packets are lost in networks for rea-
sons other than congestion, these measures result in an
unnecessary reduction in end-to-end throughput and sub-
optimal performance. Communication over wireless links is
often characterized by sporadic high bit-error rates, and
intermittent connectivity due to handoffs. TCP performance
in such networks suffers from significant throughput degra-
dation and very high interactive delays [5].

Recently, several schemes have been proposed to the allevi-
ate the effects of non-congestion-related losses on TCP per-
formance over networks that have wireless or similar high-
loss links [2, 3, 21]. These schemes choose from a variety of
mechanisms, such as local retransmissions, split-TCP con-
nections, and forward error correction, to improve end-to-
end throughput. However, it is unclear to what extent each
of the mechanisms contributes to the improvement in per-
formance. In this paper, we examine and compare the effec-
t iveness of these schemes and their variants, and
experimentally analyze the individual mechanisms and the
degree of performance improvement due to each.

There are two fundamentally different approaches to
improving TCP performance in such lossy systems. The
first approach hides any non-congestion-related losses from

To appear, Proc. ACM SIGCOMM ’96, Stanford, CA, August 1996.

2

the TCP sender and therefore requires no changes to exist-
ing sender implementations. The intuition behind this
approach is that since the problem is local, it should be
solved locally, and that the transport layer need not be aware
of the characteristics of the individual links. Protocols that
adopt this approach attempt to make the lossy link appear as
a higher quality link with a reduced effective bandwidth. As
a result, most of the losses seen by the TCP sender are
caused by congestion. Examples of this approach include
wireless links with reliable link layer protocols such as
AIRMAIL [1], split connection approaches such as Indirect-
TCP [2], and TCP-aware link-layer schemes such as the
snoop protocol [3]. The second class of techniques attempts
to make the sender aware of the existence of wireless hops
and realize that some packet losses are not due to conges-
tion. The sender can then avoid invoking congestion control
algorithms when non-congestion-related losses occur — we
describe some of these techniques in Section 3. Finally, it is
possible for a wireless-aware transport protocol to coexist
with link-layer schemes to achieve good performance.

We classify the many schemes into three basic groups,
based on their fundamental philosophy: end-to-end propos-
als, split-connection proposals and link-layer proposals. The
end-to-end protocols attempt to make the TCP sender han-
dle losses through the use of two techniques. First, they use
some form of selective acknowledgments (SACKs) to allow
the sender to recover from multiple packet losses in a win-
dow without resorting to a coarse timeout. Second, they
attempt to have the sender distinguish between congestion
and other forms of losses using an Explicit Loss Notifica-
tion (ELN) mechanism. At the other end of the solution
spectrum, split-connection approaches completely hide the
wireless link from the sender by terminating the TCP con-
nection at the base station. Such schemes use a separate reli-
able connection between the base station and the destination
host. The second connection can use techniques such as
negative or selective acknowledgments, rather than just reg-
ular TCP, to perform well over the wireless link. The third
class of protocols, link-layer solutions, lie between the other
two classes. These protocols attempt to hide link-related
losses from the TCP sender by using local retransmissions
and perhaps forward error correction [e.g., 13] over the
wireless link. The local retransmissions use techniques that
are tuned to the characteristics of the wireless link to pro-
vide a significant increase in performance. Since the end-to-
end TCP connection passes through the lossy link, the TCP
sender may not be fully shielded from wireless losses. This
can happen either because of timer interactions between the
two layers [5], or more likely because of TCP’s duplicate
acknowledgments causing sender fast retransmissions even
for segments that are locally retransmitted. As a result, some
proposals to improve TCP performance use mechanisms
based on the knowledge of TCP messaging to shield the
TCP sender more effectively and avoid competing and
redundant retransmissions [3].

In this paper, we evaluate the performance of several end-to-
end, split-connection and link-layer protocols using end-to-
end throughput and goodput as performance metrics, in both
LAN and WAN configurations. In particular, we seek to
answer the following specific questions:

1. What combination of mechanisms results in best per-
formance for each of the protocol classes?

2. How important is it for link-layer schemes to be aware
of TCP algorithms to achieve high end-to-end through-
put?

3. How useful are selective acknowledgments in dealing
with lossy links, especially in the presence of burst
losses?

4. Is it important for the end-to-end connection to be split
in order to effectively shield the sender from wireless
losses and obtain the best performance?

We answer these questions by implementing and testing the
various protocols in a wireless testbed consisting of Pentium
PC base stations and IBM ThinkPad mobile hosts communi-
cating over a 915 MHz AT&T Wavelan, all running BSD/
OS 2.0. For each protocol, we measure the end-to-end
throughput, and goodputs for the wired and (one-hop) wire-
less paths. For any path (or link), goodput is defined as the
ratio of the actual transfer size to the total number of bytes
transmitted over that path. In general, the wired and wireless
goodputs differ because of wireless losses, local retransmis-
sions and congestion losses in the wired network. These
metrics allow us to determine the end-to-end performance
as well as the transmission efficiency across the network.
While we used a wireless hop as the lossy link in our exper-
iments, we believe our results are applicable in a wider con-
text to links where significant losses occur for reasons other
than congestion.

We show that a reliable link-layer protocol with some
knowledge of TCP results in very good performance. Our
experiments indicate that shielding the TCP sender from
duplicate acknowledgments caused by wireless losses
improves throughput by 10-30%. Furthermore, it is possible
to achieve good performance without splitting the end-to-
end connection at the base station. We also demonstrate that
selective acknowledgments and explicit loss notifications
result in significant performance improvements. For
instance, the simple ELN scheme we evaluated improved
the end-to-end throughput by a factor of more than two
compared to TCP Reno, with comparable goodput values.

The rest of this paper is organized as follows. Section 2
briefly describes some proposed solutions to the problem of
reliable transport protocols over wireless links. Section 3
describes the implementation details of the different proto-
cols in our wireless testbed, and Section 4 presents the
results and analysis of several experiments. We present our

3

conclusions in Section 5, and mention some future work in
Section 6.

2. Related Work

In this section, we summarize some protocols that have
been proposed to improve the performance of TCP over
wireless links. We also briefly describe some proposed
methods to add SACKs to TCP.

• Link-layer protocols: There have been several propos-
als for reliable link-layer protocols. The two main
classes of techniques employed by these protocols are:
error correction (using techniques such as forward error
correction (FEC)), and retransmission of lost packets in
response to automatic repeat request (ARQ) messages.
The link-layer protocols for the digital cellular systems
in the U.S. — both CDMA [10] and TDMA [17] — pri-
marily use ARQ techniques. While the TDMA protocol
guarantees reliable, in-order delivery of link-layer
frames, the CDMA protocol only makes a limited
attempt and leaves it to the (reliable) transport layer to
recover from errors in the worst case. The AIRMAIL
protocol [1] employs a combination of FEC and ARQ
techniques for loss recovery.

The main advantage of employing a link-layer protocol
for loss recovery is that it fits naturally into the layered
structure of network protocols. The link-layer protocol
operates independently of higher-layer protocols (which
makes it applicable to a wide range of scenarios), and
consequently, does not maintain any per-connection
state. The main concern about link-layer protocols is the
possibility of adverse effect on certain transport-layer
protocols such as TCP. We investigate this in detail in
our experiments.

• Indirect-TCP (I-TCP) protocol [2]: This was one of
the early protocols to use the split-connection approach.
It involves splitting each TCP connection between a
sender and receiver into two separate connections at the
base station — one TCP connection between the sender
and the base station, and the other between the base sta-
tion and the receiver. In our classification of protocols, I-
TCP is a split-connection solution that uses regular TCP
for its connection over wireless link.

I-TCP, like other split-connection proposals, attempts to
separate loss recovery over the wireless link from that
across the wireline network, thereby shielding the origi-
nal TCP sender from the wireless link. However, as our
experiments indicate, the choice of TCP over the wire-
less link results in several performance problems. Since
TCP is not well-tuned for the lossy link, the TCP sender
of the wireless connection often times out, causing the
original sender to stall. In addition, every packet incurs
the overhead of going through TCP protocol processing

twice at the base station (as compared to zero times for a
non-split-connection approach), although extra copies
are avoided by an efficient kernel implementation.
Another disadvantage of this approach is that the end-to-
end semantics of TCP acknowledgments is violated,
since acknowledgments to packets can now reach the
source even before the packets actually reach the mobile
host. Also, since this protocol maintains a significant
amount of state at the base station per TCP connection,
handoff procedures tend to be complicated and slow.

• The Snoop Protocol [3]: The snoop protocol introduces
a module, called the snoop agent, at the base station. The
agent monitors every packet that passes through the TCP
connection in both directions and maintains a cache of
TCP segments sent across the link that have not yet been
acknowledged by the receiver. A packet loss is detected
by the arrival of a small number of duplicate acknowl-
edgments from the receiver or by a local timeout. The
snoop agent retransmits the lost packet if it has it cached
and suppresses the duplicate acknowledgments. In our
classification of the protocols, the snoop protocol is a
link-layer protocol that takes advantage of the knowl-
edge of the higher-layer transport protocol (TCP).

The main advantage of this approach is that it suppresses
duplicate acknowledgments for TCP segments lost and
retransmitted locally, thereby avoiding unnecessary fast
retransmissions and congestion control invocations by
the sender. The per-connection state maintained by the
snoop agent at the base station is soft, and is not essential
for correctness. Like other link-layer solutions, the
snoop approach could also suffer from not being able to
completely shield the sender from wireless losses.

• Selective Acknowledgments: Since standard TCP uses
a cumulative acknowledgment scheme, it often does not
provide the sender with sufficient information to recover
quickly from multiple packet losses within a single
transmission window. Several studies [e.g., 6] have
shown that TCP enhanced with selective acknowledg-
ments performs better than standard TCP in such situa-
tions. SACKs were added as an option to TCP by RFC
1072 [9]. However, disagreements over the use of
SACKs prevented the specification from being adopted,
and the SACK option was removed from later TCP
RFCs. Recently, there has been renewed interest in add-
ing SACKs to TCP. Two of the more interesting propos-
als are the TCP SACKs Internet Draft [14] and the
SMART scheme [12].

The Internet Draft proposes that each acknowledgment
contain information about up to three non-contiguous
blocks of data that have been received successfully. Each
block of data is described by its starting and ending
sequence number. Due to the limited number of blocks,

4

it is best to inform the sender about the most recent
blocks received.

An alternate proposal, SMART, uses acknowledgments
that contain the cumulative acknowledgment and the
sequence number of the packet that caused the receiver
to generate the acknowledgment (this information is a
subset of the three-blocks scheme proposed in the Inter-
net Draft). The sender uses these SACKs to create a bit-
mask of packets that have been successfully received.
This scheme trades off some resilience to reordering and
lost acknowledgments in exchange for a reduction in
overhead to generate and transmit acknowledgments.

3. Implementation Details

This section describes the protocols we have implemented
and evaluated. Table 1 summarizes the key ideas in each
scheme and the main differences. Figure 1 shows a typical
loss situation over the last link. Here, the TCP sender is in
the middle of a transfer across a two-hop network to a
mobile host. At the depicted time, the sender’s congestion
window consists of 5 packets. Of the five packets in the net-

work, the first two packets are lost on the wireless link. For
each protocol, we show the messages generated by the
receiver and the response from the base station and source
nodes in Figures 2 through 9.

3.1 End-To-End Schemes

Although a wide variety of TCP versions are used on the
Internet, the current de facto standard for TCP implementa-
tions is TCP-Reno [19]. We call this the E2E protocol, and
use it as the standard basis for performance comparison
(Figure 2).

The E2E-NEWRENO protocol improves the performance
of TCP-Reno after multiple packet losses in a window by
remaining in fast recovery mode if the first new acknowl-
edgment received after a fast retransmission is “partial”, i.e,
is less than the value of the last byte transmitted when the
fast retransmission was done. This method enables the con-
nection to make progress at the rate of one segment per
round trip time, rather than stall until a coarse timeout [6, 7].

Name Category Special Mechanisms

E2E end-to-end standard TCP-Reno

E2E-NEWRENO end-to-end TCP-NewReno

E2E-SACK end-to-end selective acks (SACKs)

E2E-ELN end-to-end explicit loss notification (ELN)

E2E-ELN-RXMT end-to-end ELN with retransmit on first dupack

LL link-layer none

LL-TCP-AWARE link-layer duplicate ack suppression

LL-SACK link-layer SACKs

LL-OPT link-layer SACKs and duplicate ack suppression

SPLIT split-connection none

SPLIT-SACK split-connection SACK-based wireless connection

Table 1. Summary of Protocols

1 2 3 4

4 3

2

1

5

5

congestion window = 5

Figure 1. A typical loss situation

TCP Source

Router

TCP Receiver
Lossy Link

Packets Stored
at Sender

Packets in Flight

Acknowledgments Returning

5

The E2E+SACK protocol (Figure 3) adds selective
acknowledgments to the standard TCP Reno stack. This
allows the sender to handle multiple losses within a window
of outstanding data more efficiently. However, the sender
still assumes that losses are a result of congestion and
invokes congestion control procedures, such as shrinking its
congestion window size. This allows us to identify what
percentage of the end-to-end performance degradation is
associated with standard TCP’s handling of error detection
and retransmission. We base our selective acknowledgment
scheme on the SMART approach [12]. This scheme is well-
suited to situations where there is little reordering of pack-
ets, which is true for one-hop wireless systems such as ours.
Unlike the scheme proposed in [12], we do not use any spe-
cial techniques to detect the loss of a retransmission. The
sender retransmits a packet when it receives a SMART
acknowledgment only if the same packet was not retrans-
mitted within the last round-trip time. If no further SMART
acknowledgments arrive, the sender falls back to the coarse
timeout mechanism to recover from the loss.

The E2E+ELN protocol (Figure 4) adds an Explicit Loss
Notification (ELN) option to TCP acknowledgments. When
a packet is dropped on the wireless link, future cumulative

acknowledgments corresponding to the lost packet are
marked to identify that a non-congestion related loss has
occurred. Upon receiving this information with duplicate
acknowledgments, the sender may perform retransmissions
without invoking the associated congestion-control proce-
dures. This option allows us to identify what percentage of
the end-to-end performance degradation is associated with
TCP’s incorrect invocation of congestion control algorithms
when it does a fast retransmission of a packet lost on the
wireless hop. The E2E+ELN+RXMT protocol is an
enhancement of the previous one, where the sender retrans-
mits the packet on receiving the first duplicate ack with the
ELN option set, in addition to not shrinking its window size
in response to wireless losses.

In practice, it might be difficult to identify which packets
are lost due to errors on a lossy link. However, in our exper-
iments we assume perfect knowledge about wireless losses
to generate ELN information.

3.2 Link-Layer Schemes

Unlike TCP for the transport layer, there is no de facto stan-
dard for link-layer protocols. Existing link-layer protocols
choose from techniques such as Stop-and-Wait, Go-Back-N,

Figure 2. Normal TCP

0

congestion window = 5

00

1 2 3 4 5

congestion window = 2

1

1 2 3 4 5

Standard cumulative ACKs generated
by TCP-Reno receiver.

Fast-retransmit from sender.

congestion window = 5

0

1 2 3 4 5

congestion window = 2

1

1 2 3 4 5

Figure 3. TCP with SACK

3 0 4

0 5 2

Selective ACKs generated by
SMART receiver.

SACK response from sender.

congestion window = 5

0

1 2 3 4 5
congestion window = 5

1

1 2 3 4 5

Figure 4. TCP with ELN

L 0 L

0 L

Fast-retransmit from sender.Cumulative ACKs w/ ELN option
generated by receiver.

6

Selective Repeat and Forward Error Correction to provide
reliability. Our base link-layer algorithm, called LL
(Figure 5), uses cumulative acknowledgments to determine
lost packets that are retransmitted locally from the base sta-
tion to the mobile host. To minimize overhead, our imple-
men ta t i on o f LL l eve r ages o ff ex i s t i ng TCP
acknowledgments instead of generating its own. Timeout-
based retransmissions are done by maintaining a smoothed
round-trip time estimate, with a minimum timeout granular-
ity of 200 ms to limit the overhead of processing timer
events. This still allows the LL scheme to retransmit packets
several times before a TCP-Reno transmitter would time
out. LL is equivalent to the snoop agent that does not sup-
press any duplicate acknowledgments, so it does not attempt
in-order delivery of packets across the link (unlike protocols
proposed in [10], [17]).

We also investigate a more sophisticated link-layer protocol
(LL-SACK) that uses selective retransmission to improve
performance. The LL-SACK protocol (Figure 6) performs
this by applying a SMART-based acknowledgment scheme

to the link layer. Like the LL protocol, LL-SACK uses TCP
acknowledgments instead of generating its own and limits
its minimum timeout to 200 ms. LL-SACK is equivalent to
the snoop agent performing retransmissions based on
SACKs and not suppressing duplicate acknowledgments
from the TCP source.

We added TCP awareness to both the LL and LL-SACK
protocols, resulting in the LL-TCP-AWARE and LL-OPT
schemes. The LL-TCP-AWARE protocol is identical to the
snoop protocol, while the LL-OPT protocol (Figure 7) uses
SMART-based techniques for further optimization using
selective repeat. LL-OPT is the optimal link-layer protocol
in our experiments in that it performs local retransmissions
based on selective acknowledgments and shields the sender
from duplicate acknowledgments caused by wireless losses.

3.3 Split-Connection Schemes

Like I-TCP, our SPLIT scheme (Figure 8) uses an interme-
diate host to divide a TCP connection into two separate TCP
connections. The implementation avoids data copying in the

congestion window = 5
1 2 3 4 5

congestion window = 2
1 2 3 4 5

Figure 5. Link-Layer

00

0

1

1

Local retransmit from router.
Sender also performs fast-retransmit.

Standard cumulative ACKs generated
by TCP-Reno receiver.

congestion window = 5
1 2 3 4 5

congestion window = 2
1 2 3 4 5

Figure 6. Link-Layer with SACK

30 0

2

1

40

50

1

SACKs generated by receiver.
Router strips SACK info and passes
cumulative ACK onward.

Local SACK-based retransmit from router.
Sender also performs fast-retransmit.

0

SACKs generated by receiver.
Router strips SACK info and suppresses
any duplicate ACKs.

Local SACK-based retransmit from router.
Sender sees no duplicate ACKs.

congestion window = 5
1 2 3 4 5

congestion window = 5
1 2 3 4 5

Figure 7. Link-Layer with SACK and TCP awareness

30

2

40

50

1

0

7

intermediate host by passing the pointers to the same buffer
between the two TCP connections. The variations on the
SPLIT approach investigate the use of more sophisticated
protocols for the connection over the lossy link. The SPLIT-
SACK protocol (Figure 9) uses a selective acknowledgment
scheme on the wireless connection to perform selective
retransmissions. As before, the selective acknowledgments
are based on the SMART scheme. There is little chance of
reordering of packets over the wireless connection since the
intermediate host is close to the final destination.

4. Experimental Results

In this section, we describe the experiments we performed
and the results we obtained, including detailed explanations
for observed performance. We start by describing the exper-
imental testbed and methodology. We then describe the per-
formance of the various link-layer, end-to-end and split-
connection schemes.

4.1 Experimental Methodology

We performed several experiments to determine the perfor-
mance and efficiency of each of the protocols. The protocols
were implemented as a set of modifications to the BSD/OS
TCP/IP (Reno) network stack. To ensure a fair basis for
comparison, none of the protocols implementations intro-
duce any additional data copying at intermediate points
from sender to receiver.

Our experimental testbed consists of IBM ThinkPad laptops
and Pentium-based personal computers running BSD/OS
2.0 from BSDI. The machines are interconnected using a 10
Mbps Ethernet and 915 MHz AT&T WaveLANs [20], a
shared-medium wireless LAN with a raw signalling band-
width of 2 Mbps. The network topology for our experiments
is shown in Figure 10. The peak throughput for TCP bulk
transfers is 1.5 Mbps in the local area testbed and 1.35
Mbps in the wide area testbed in the absence of congestion
or wireless losses. These testbed topologies represent typi-

congestion window = 5
1 2 3 4 5

congestion window = 5

1 2 3 4 5

Figure 8. Split-Connection

21
0

0

1

3 4 5 1 2 3 4 5

0

Router stores packets and generates
cumulative ACKs.
Receiver generates cumulative ACKs also.

Fast-retransmit from router.
Sender frees packets from TCP stack.

congestion window = 5
1 2 3 4 5

congestion window = 5

1 2 3 4 5

Figure 9. Split-Connection with SACKs

21

2

40
50

1

3 4 5 1 2 3 4 5
30

SACK-based retransmit from router.
Sender frees packets from TCP stack.

Router stores packets and generates
cumulative ACKs.
Receiver generates SACKs.

TCP Source

10 Mbps Ethernet

TCP Receiver

2 Mbps WaveLAN
(lossy link)(Pentium-based PC

running BSD/OS)

Base Station
(Pentium-based PC
running BSD/OS)

(486-based laptops
running BSD/OS)

Figure 10. Experimental topology. There were an additional 16 Internet hops between the source and base station dur-
ing the wide area experiments.

8

cal scenarios of wireless links and mobile hosts, such as cel-
lular wireless networks. In addition, our experiments focus
on data transfer to the mobile host, which is the common
case for mobile applications (e.g., Web accesses).

In order to measure the performance of the protocols under
controlled conditions, we generate errors on the lossy link
using a Poisson-distributed bit-error model. The receiving
entity on the lossy link generates a Poisson distribution for
each bit-error rate and changes the TCP checksum of the
packet if the error generator determines that the packet
should be dropped. Losses are generated in both directions
of the wireless channel, so TCP acknowledgments are
dropped too, albeit at a lower per-packet rate. For most of
the experiments, the TCP data packet size is 1400 bytes and
the average error rate is one every 64 KBytes (this corre-
sponds to a bit-error rate of about 1.9x10-6). Note that since
a Poisson distribution has variance equal to its mean, there
are several occasions when multiple packets are lost in each
window. We also report the results of some burst error situa-
tions (Section 4.5), to compare the performance of the dif-
ferent mechanisms in response to burst losses. The choice of
the Poisson-distributed error model is motivated by our
desire to understand the precise dynamics of each protocol
in response to a wireless loss, and is not an attempt to
empirically model a wireless channel. While the actual per-
formance numbers will be a strong function of the exact
error model, the relative performance is dependent on how
the protocol behaves after one or more losses in a single
TCP window. Thus, we expect our overall conclusions to be
applicable under other patterns of wireless loss as well.
Finally, we believe that though wireless errors are generated
artificially in our experiments, the use of a real testbed is
still valuable in that it introduces realistic effects such as
wireless bandwidth limitation, protocol processing delays,
and so on.

In our experiments, we attempt to ensure that losses are only
due to wireless errors (and not congestion). This allows us

to focus on the effectiveness of the mechanisms in handling
such losses. The WAN experiments are performed across 16
Internet hops with minimal congestion2 in order to study the
impact of large delay-bandwidth products.

Each run in the experiment consists of an 8 MByte transfer
from the source to receiver across the wired net and the
WaveLAN link. During each run (repeated multiple times
for consistency), we measure the throughput at the receiver
in Mbps, and the wired and wireless goodputs as percent-
ages. In addition, all packet transmissions on the Ethernet
and WaveLan are recorded for analysis using tcpdump [15],
and the sender’s TCP code instrumented to record events
such as coarse timeouts, retransmission times, duplicate
acknowledgment arrivals, congestion window size changes,
etc. The rest of this section presents and discusses the
results of these experiments.

4.2 Link-Layer Protocols

Traditional link-layer protocols operate independently of
the higher-layer protocol, and consequently, do not neces-
sarily shield the sender from the lossy link. This could
adversely impact TCP performance for two reasons: (i)
competing retransmissions caused by an incompatible set-
ting of timers at the two layers, and (ii) the effect of the link
layer protocol on the TCP fast retransmission mechanism.
In [5], the effects of the first situation are simulated and ana-
lyzed for a TCP-like transport protocol (that closely tracks
the round-trip time to set its retransmission timeout) and a
reliable link layer protocol. The conclusion was that unless
the packet loss rate is high (more than about 10%), compet-
ing retransmissions by the link and transport layers often
lead to significant performance degradation. However, this
is not the dominating effect when link layer schemes, such

2. WAN experiments were performed between 10 pm and 4 am,
PST.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

LL LL-TCP-AWARE(Snoop) LL-SACK LL-OPT

T
hr

ou
gh

pu
t

(M
bi

t/
se

c)

95.5
97.9

95.6
97.9

95.5
98.4

97.6
100.0 95.5

98.3
96.1
98.9

95.3
99.4

97.6
100.0 97.6

100.0

97.7
100.0

97.6
100.0

97.6
100.0

Local Area, 32 KB socket buffers
Local Area, 8 KB socket buffers
Wide Area, 32KB socket buffers

Wireless Goodput
Wired Goodput

Figure 11. Performance of link-layer protocols: bit-error rate = 1.9x10-6 (1 error/65536 bytes).

1.20 1.20

0.82

1.36
1.29

1.19
1.29

0.93

1.39 1.37

1.22

Throughput

1.29

9

as LL, are used with TCP Reno and its variants. These TCP
implementations have coarse retransmission timeout granu-
larities that are typically multiples of 500 ms, while link-
layer protocols typically have much finer timeout granulari-
ties. The real problem is that when packets are lost, link-
layer protocols that do not attempt in-order delivery across
the link (e.g., LL) cause packets to reach the TCP receiver
out-of-order. This leads to the generation of duplicate
acknowledgments by the TCP receiver, which causes the
sender to invoke fast retransmission and recovery, and can
potentially cause degraded throughput and goodput, espe-
cially when the delay-bandwidth product is large.

Our results substantiate this claim, as can be seen by com-
paring the LL and LL-TCP-AWARE results. For a packet
size of 1400 bytes and a bit error rate of 1.9x10-6 (1/65536
bytes), the packet error rate is about 2.3%. Therefore, an
optimal link-layer protocol that recovers from errors locally
and does not compete with TCP retransmissions should
have a wireless goodput of 97.7% and a wired goodput of
100% in the absence of congestion. In the LAN experi-
ments, the throughput difference between LL and LL-TCP-
AWARE is about 10%. However, the LL wireless goodput is
only 95.5%, significantly less than LL-TCP-AWARE’s
wireless goodput of 97.6%, which is close to the maximum
achievable goodput. When a loss occurs, the LL protocol

performs a local retransmission relatively quickly. However,
enough packets are typically in transit to create more than 3
duplicate acknowledgments. These duplicates eventually
propagate to the sender and trigger a fast retransmission and
the associated congestion control mechanisms. These fast-
retransmissions result in reduced goodput; about 90% of the
lost packets are retransmitted by both the source (due to fast
retransmissions) and the base station.

The effects of this interaction are much more pronounced in
the wide area experiments — the throughput difference is
about 30% in this case. The cause for the more pronounced
deterioration in performance is the higher bandwidth-delay
product of the wide-area connection. The LL scheme causes
the sender to invoke congestion control procedures often
due to duplicate acknowledgments and causes the average
window size of the transmitter to be lower than for LL-TCP-
AWARE. This is shown in Figure 12, which compares the
congestion window size of LL and LL-TCP-AWARE as a
function of time. Note that the number of outstanding data
bytes in the network is the minimum of the congestion win-
dow and the receiver advertised window. This is upper
bounded by the receiver’s socket buffer size. In the conges-
tion window graphs for each protocol, the receiver socket
buffer is 32KB.

LL-TCP-AWARE

Figure 12. Congestion window size for link-layer protocols in wide area tests.

LL

0
8192

16384
24576
32768
40960
49152
57344
65536

0 10 20 30 40 50 60 70 80C
on

ge
st

io
n

W
in

do
w

 (
by

te
s)

Time (sec)

0
8192

16384
24576
32768
40960
49152
57344
65536

0 10 20 30 40 50 60 70 80C
on

ge
st

io
n

W
in

do
w

 (
by

te
s)

Time (sec)

Figure 13. Packet sequence traces for LL-TCP-AWARE and LL. No coarse timeouts occur in either case. For LL-TCP-
AWARE, the horizontal row of dots shows the times of wireless link retransmissions. For LL, the top row shows sender

fast retransmission times and the bottom row shows both local wireless and sender retransmissions.

Wired retransmissions

Wireless retransmissions
Wireless retransmissions

LL-TCP-AWARE LL

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

0 10 20 30 40 50 60 70 80

Se
qu

en
ce

 N
um

be
r

(b
yt

es
)

Time (sec)

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

Se
qu

en
ce

 N
um

be
r

(b
yt

es
)

0 10 20 30 40 50 60 70 80
Time (sec)

10

In the wide area, the bandwidth-delay product is about
17000 bytes (1.35 Mbps * 100 ms), and the congestion win-
dow drops below this value several times during each TCP
transfer. On the other hand, the LAN experiments do not
suffer from such a large throughput degradation because
LL’s lower congestion-window size is usually still larger
than the delay-bandwidth product of about 1900 bytes (1.5
Mbps * 10 ms). Therefore, the LL scheme can maintain a
nearly full “data pipe” between the sender and receiver in
the local connection but not in the wide area one. The 10%
LAN degradation is almost entirely due to the excessive
retransmissions over the wireless link and to the smaller
average congestion window size compared to LL-TCP-
AWARE. Another important point to note is that LL suc-
cessfully prevents coarse timeouts from happening at the
source, as shown in Figure 13 (there are no points corre-
sponding to coarse timeouts in the figure)

In summary, our results indicate that a simple link-layer
retransmission scheme could adversely impact TCP perfor-
mance. An enhanced link-layer scheme, that uses knowl-
edge o f TCP seman t i c s t o p r even t dup l i c a t e

acknowledgments caused by wireless losses from reaching
the sender, achieves significantly better performance.

4.3 End-To-End Protocols

The performance of the various end-to-end protocols is
summarized in Figure 14. The performance of unmodified
TCP Reno, the baseline E2E protocol, highlights the prob-
lems with TCP over lossy links. With a 2.3% packet loss
rate (as explained in Section 4.2), the E2E protocol utilizes
less than 50% of the available bandwidth in the local area
and less than 25% of the available bandwidth in the wide
area experiments. However, all the end-to-end protocols
achieve goodputs close to the optimal value of 97.7%. The
primary cause for the low bandwidth is the large number of
timeout-based retransmissions that occur during the transfer
(Figure 15), and the small average window size during the
transfer that prevents the “data pipe” from being kept full
and reduces the effectiveness of the fast retransmission
mechanism (Figure 16).

The modified end-to-end protocols improve throughput by
retransmitting packets known to have been lost on the wire-

T
hr

ou
gh

pu
t

(M
bi

t/
se

c)

97.7
97.3

97.3
97.3

97.0
96.0

97.5
97.597.3

97.3

97.5
97.5

97.2
97.2 97.6

97.6
97.5
97.5

97.3
97.2 97.6

97.6

Local Area, 32 KB socket buffers
Local Area, 8 KB socket buffers
Wide Area, 32KB socket buffers

Wireless Goodput

Wired Goodput

0.89

0.31

0.55

0.76

1.25

1.12

0.66
0.70

0.93

0.69
0.64

Throughput

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

E2E E2E-NEW E2E-SACK E2E-ELN E2E-ELNRXMT

97.5
97.5
0.95

97.4
97.3
0.86

97.4
97.4
0.72

Figure 14. Performance of end-to-end protocols: bit error rate = 1.9x10-6 (1 error/65536 bytes).

Figure 15. Packet sequence traces for E2E (TCP Reno) and E2E-ELN. The top row of horizontal dots shows the times
when fast retransmissions occur; the bottom row shows the coarse timeouts.

0
1e+06
2e+06
3e+06
4e+06
5e+06
6e+06
7e+06
8e+06
9e+06

0 50 100 150 200 250

Se
qu

en
ce

 N
um

be
r

(b
yt

es
)

Time (sec)

0
1e+06
2e+06
3e+06
4e+06
5e+06
6e+06
7e+06
8e+06
9e+06

0 50 100 150 200 250

Se
qu

en
ce

 N
um

be
r

(b
yt

es
)

Time (sec)

E2E E2E-ELN

Fast retransmissions

Coarse timeouts

Fast retransmissions

Coarse timeouts

11

less hop earlier than they would have been by the baseline
E2E protocol, and by reducing the fluctuations in window
size. The E2E-NEWRENO, E2E-ELN and E2E-SACK each
use new TCP options and more sophisticated acknowledg-
ment processing techniques to improve the speed and accu-
racy of identifying and retransmitting lost packets. E2E-
NEWRENO, which uses partial acknowledgment informa-
tion to recover from multiple losses in a window at the rate
of one packet per round-trip time, performs between 10 and
25% better than E2E over a LAN and about 2.3 times better
than E2E in the WAN experiments. The performance
improvement is a function of the socket buffer size; the
larger the buffer size, the better the relative performance.
This is because the probability that E2E will suffer a coarse
timeout for a loss, but E2E-NEWRENO will not, increases
with the number of outstanding packets in the network.

One way of eliminating long delays caused by coarse time-
outs is to maintain as large a window size as possible. E2E-
NEWRENO remains in fast recovery if the new acknowl-
edgment is only partial, but reduces the window size to half
its original value upon the arrival of the first new acknowl-
edgment. The E2E-ELN and E2E-ELN-RXMT protocols
use ELN information (Section 3.1) to prevent the sender
from reducing the size of the congestion window in
response to a wireless loss. Both these schemes perform bet-
ter than E2E-NEWRENO, and over two times better than
E2E. This is a result of the sender’s explicit awareness of
the wireless link which reduces the number of coarse time-
outs (Figure 15), and rapid window size fluctuations
(Figure 16). The E2E-ELN-RXMIT protocol performs only
slightly better than E2E-ELN when the socket buffer size is
32 KB. This is because there is usually enough data in the
pipe to trigger a fast retransmission for E2E-ELN. The per-
formance benefits of E2E-ELN-RXMT are more pro-
nounced when the socket buffer size is smaller, as the
numbers for the 8 KB socket buffer size indicate.

Finally, we also experimented with a simple SACK scheme
based on a subset of the SMART proposal in the local area.
This protocol was the best of the end-to-end protocols in
this situation, achieving a throughput of 1.25 Mbps (in con-

trast, the best local scheme, LL-OPT, obtained a throughput
of 1.40 Mbps). Our current implementation of the SACK
option based on SMART is not particularly well-suited for
the wide area; we are currently in the process of tuning the
implementation for this environment. We are also experi-
menting with the SACK option as defined in the recent
IETF Draft over such networks.

In summary, E2E-NEWRENO is better than E2E, especially
for large socket buffer sizes. Adding ELN to TCP improves
throughput significantly by successfully preventing unnec-
essary fluctuations in the transmission window. Finally,
SACKs provide significant improvement over TCP Reno,
but perform about 10-15% worse than the best local
schemes in the LAN tests.

4.4 Split-Connection Protocols

The main advantage of the split-connection approaches is
that they isolate the TCP source from wireless losses. The
TCP sender of the second, wireless connection performs all
the retransmissions in response to wireless losses.

Figure 17 shows the throughput and goodput for the split
connection approach in the LAN and WAN environments.
We report the results for two cases: when the wireless con-
nection uses regular TCP Reno (labeled SPLIT) and when it
uses the SMART-based selective acknowledgment scheme
described earlier (labeled SPLIT-SACK). We see that the
throughput achieved by the SPLIT approach (0.6 Mbps) is
quite low, about the same as that for end-to-end TCP Reno
(labeled E2E in Figure 14). The reason for this is apparent
from Figures 18 and 21, which show the progress of the data
transfer and the size of the congestion window for the wired
and wireless connections. We see that the wired connection
neither has any retransmissions nor any timeouts, resulting
in a wired goodput of 100%. However, it (eventually) stalls
whenever the sender of the wireless connection experiences
a timeout, since the amount of buffer space at the base sta-
tion (64 KB in our experiments) is bounded. In the WAN
case, the throughput of the SPLIT approach is about 0.58
Mbps which is significantly better than the 0.31 Mbps that
the E2E approach achieves (Figure 14), but not as good as

Figure 16. Congestion window size as a function of time for E2E (TCP Reno) and E2E-ELN. This figure clearly shows
the utility of ELN preventing rapid fluctuations in the congestion window.

0
8192

16384
24576
32768
40960
49152
57344
65536

0 50 100 150 200 250

C
on

ge
st

io
n

W
in

do
w

 (
by

te
s)

Time (sec)

0
8192

16384
24576
32768
40960
49152
57344
65536

0 50 100 150 200 250

C
on

ge
st

io
n

W
in

do
w

 (
by

te
s)

Time (sec)

E2E E2E-ELN

12

several other protocols described earlier. The large conges-
tion window size of the wired sender in SPLIT enables a
higher bandwidth utilization over the wired network, com-
pared to an end-to-end TCP connection where the conges-
tion window size fluctuates rapidly.

As expected, throughput for the SPLIT-SACK scheme is
much higher. It is about 1.3 Mbps in the LAN case and
about 1.1 Mbps in the WAN case. The SMART-based selec-
tive acknowledgment scheme operating over the wireless
link performs very well, especially since no reordering of
packets occurs over this hop. However, there are a few times

when both the original transmission and the first retransmis-
sion of a packet get lost, which sometimes results in a
coarse timeouts (as described in Section 3.1). This explains
the difference in throughput between the SPLIT-SACK
scheme and the LL-OPT scheme (Figure 11).

In summary, while the split-connection approach results in
good throughput if the wireless connection uses some spe-
cial mechanisms, the performance does not exceed that of a
well-tuned, TCP-aware link-layer protocol (LL-OPT).
Moreover, the link-layer protocol preserves the end-to-end
semantics of TCP acknowledgments, unlike the split-con-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

SPLIT SPLIT-SACK

97.2
99.9

Local Area, 32 KB socket buffers
Local Area, 8 KB socket buffers
Wide Area, 32KB socket buffers

Wireless Goodput
Wired Goodput

0.58

Throughput

97.2
100.0
1.30

T
hr

ou
gh

pu
t

(M
bi

t/
se

c)

Figure 17. Performance of split-connection protocols: bit error rate = 1.9x10-6 (1 error/65536 bytes).

97.3
100.0

0.60
97.4

100.0
0.54

97.6
99.8
1.10

97.6
100.0
1.30

Figure 18. Packet sequence trace for the wired and wireless parts of the SPLIT protocol. The wireless part has two
rows of horizontal dots: the top one shows the times of fast retransmissions and the bottom one the times of the time-

out-based ones.

0
1e+06
2e+06
3e+06
4e+06
5e+06
6e+06
7e+06
8e+06
9e+06

0 20 40 60 80 100 120

Se
qu

en
ce

 N
um

be
r

(b
yt

es
)

Time (sec)

0
1e+06
2e+06
3e+06
4e+06
5e+06
6e+06
7e+06
8e+06
9e+06

0 20 40 60 80 100 120

Se
qu

en
ce

 N
um

be
r

(b
yt

es
)

Time (sec)

Wired Wireless

Fast retransmissions

Coarse timeouts

Figure 19. Congestion window sizes as a function of time for the wired and wireless parts of the split TCP connection.
The wired sender never sees any losses and maintains a 64 KB congestion window. However, the wireless TCP connec-

tion’s congestion window fluctuates rapidly.

0
8192

16384
24576
32768
40960
49152
57344
65536

0 20 40 60 80 100 120C
on

ge
st

io
n

W
in

do
w

 (
by

te
s)

Time (sec)
0

8192
16384
24576
32768
40960
49152
57344
65536

0 20 40 60 80 100 120C
on

ge
st

io
n

W
in

do
w

 (
by

te
s)

Time (sec)

Wired Wireless

13

nection approach. This demonstrates that the end-to-end
connection need not be split at the base station in order to
achieve good performance.

4.5 Reaction to Burst Errors

In this section, we report the results of some experiments
that illustrate the benefit of selective acknowledgments in
handling burst losses. We consider two of the best perform-
ing local protocols: LL-TCP-AWARE (Snoop) and LL-OPT
(Snoop with SACKs). LL-TCP-AWARE recovers from a
single loss by retransmitting the lost packet when two dupli-
cate acknowledgments arrive for it. It also keeps track of the
number of expected duplicate acknowledgments and the
next expected new acknowledgment after this local retrans-
mission. If this loss is part of a burst, the first new acknowl-
edgment to arrive after the duplicates will be less than the
next expected new one; this causes an immediate retrans-
mission of the lost segment. This is similar to the mecha-
nism used by E2E-NEWRENO (Section 3.1). LL-OPT uses
the additional useful information provided by the SMART
scheme — the sequence number of the segment that caused
the duplicate acknowledgment — to accurately determine
losses and recover from them.

Table 2 shows the performance of the two protocols for
bursts of lengths 2, 4, and 6 packets. These errors are gener-
ated once every 64 KBytes of data, and 2, 4, or 6 packets are
destroyed in each case. SACKs improve the performance of
LL-OPT over LL-TCP-AWARE by up to 30% in the pres-
ence of burst errors.

5. Conclusions

In this paper, we have presented a comparative analysis of
several techniques to improve the end-to-end performance
of TCP over lossy, wireless hops. We categorize these tech-
niques as end-to-end, link-layer or split-connection based.
We use the end-to-end throughput, and the wired and wire-
less goodputs as metrics for comparison.

Our results lead to the following conclusions:

1. A reliable link-layer protocol that uses knowledge of TCP
(LL-TCP-AWARE) to shield the sender from duplicate
acknowledgments arising from wireless losses gives a 10-

30% higher throughput than one (LL) that operates indepen-
dently of TCP and does not attempt in-order delivery of
packets. Also, the former avoids redundant retransmissions
by both the sender and the base station, resulting in a higher
goodput. Of the schemes we investigated, the TCP-aware
link-layer protocol performs the best.

2. The split-connection approach, with regular TCP used for
the wireless hop, shields the sender from wireless losses.
However, the sender often stalls due to timeouts on the wire-
less connection, resulting in poor end-to-end throughput.
Using a SMART-based selective acknowledgment mecha-
nism for the wireless hop yields good throughput. However,
the throughput is still slightly less than that for a well-tuned
link-layer scheme that does not split the connection. This
demonstrates that splitting the end-to-end connection is not
a requirement for good performance.

3. The SMART-based selective acknowledgment scheme we
used is quite effective in dealing with a high packet loss rate
when employed over the wireless hop or by a sender in a
LAN environment. We are in the process of tuning this
scheme for use in a WAN environment. From our results we
conclude that selective acknowledgment schemes are very
useful in the presence of lossy links, especially when losses
occur in bursts.

4. End-to-end schemes, while not as effective as local tech-
niques in handling wireless losses, are promising since sig-
nificant performance gains can be achieved without any
support from intermediate nodes in the network. The
explicit loss notification scheme we evaluated resulted in a
throughput improvement of more than a factor of two over
TCP-Reno, with comparable goodput values.

6. Future Work

Our experiments with simple, SMART-based selective
acknowledgments demonstrate the significant benefits of
such schemes. We have also implemented the SACK
scheme proposed in the Internet Draft in the BSD TCP stack
and have configured the sender to react to both SACKs and
ELN. We are in the process of evaluating the protocol in the
presence of congestion as well as wireless losses.

We are investigating the impact of large variations in con-
nection round-trip times on performance. Such variation is
common in networks like the Metricom Ricochet wireless
network [16], especially in the presence of bidirectional
traffic. We are also investigating the performance of more
sophisticated link-layer protocols that attempt in-order
delivery of packets to a limited extent.

Burst
Length

LL-TCP-AWARE
(Mbps)

LL-OPT
(Mbps)

2 1.25 1.28

4 1.02 1.20

6 0.84 1.10

Table 2. Throughputs of LL-TCP-AWARE and
LL-OPT at different burst lengths. This illustrates

the benefits of SACKs, even for a high-
performance, TCP-aware link protocol.

14

7. Acknowledgments

We are grateful to Steven McCanne and the anonymous
SIGCOMM reviewers for several comments and sugges-
tions that helped improve the quality of this paper.

8. References

[1] E. Ayanoglu, S. Paul, T. F. LaPorta, K. K. Sabnani,
and R. D. Gitlin. AIRMAIL: A Link-Layer Proto-
col for Wireless Networks. ACM Wireless Net-
works, 1:47–60, February 1995.

[2] A. Bakre and B. R. Badrinath. I-TCP: Indirect TCP
for Mobile Hosts. In Proc. 15th International Conf.
on Distributed Computing Systems (ICDCS), May
1995.

[3] H. Balakrishnan, S. Seshan, and R.H. Katz.
Improving Reliable Transport and Handoff Perfor-
mance in Cellular Wireless Networks. ACM Wire-
less Networks, 1(4), December 1995.

[4] R. Caceres and L. Iftode. Improving the Perfor-
mance of Reliable Transport Protocols in Mobile
Computing Environments. IEEE Journal on
Selected Areas in Communications, 13(5), June
1995.

[5] A. DeSimone, M. C. Chuah, and O. C. Yue.
Throughput Performance of Transport-Layer Pro-
tocols over Wireless LANs. In Proc. Globecom
’93, December 1993.

[6] K. Fall and S. Floyd. Comparisons of Tahoe, Reno,
and Sack TCP. ftp://ftp.ee.lbl.gov/papers/
sacks.ps.Z, December 1995.

[7] J. C. Hoe. Start-up Dynamics of TCP’s Congestion
Control and Avoidance Schemes. Master’s thesis,
Massachusetts Institute of Technology, 1995.

[8] V. Jacobson. Congestion Avoidance and Control.
In Proc. ACM SIGCOMM 88, August 1988.

[9] V. Jacobson and R. T. Braden. TCP Extensions for
Long Delay Paths. RFC, Oct 1988. RFC 1072.

[10] P. Karn. The Qualcomm CDMA Digital Cellular
System. In Proc. 1993 USENIX Symp. on Mobile

and Location-Independent Computing, pages 35–
40, August 1993.

[11] P. Karn and C. Partridge. Improving Round-Trip
Time Estimates in Reliable Transport Protocols.
ACM Transactions on Computer Systems,
9(4):364–373, November 1991.

[12] S. Keshav and S. Morgan. Smart retransmission:
Performance with Overload and Random Losses.
http://www.cs.att.com/netlib/att/cs/home/keshav/
papers/ smart.ps.Z, 1996. Preprint.

[13] S. Lin and D. J. Costello. Error Control Coding:
Fundamentals and Applications. Prentice-Hall,
Inc., 1983.

[14] M. Mathis, J. Mahdavi, S. Floyd, and
A. Romanow. TCP Selective Acknowledgments
Options. Internet draft, Draft-ietf-tcplw-sack-
00.txt, January 1996. Expires July 1996.

[15] S. McCanne and V. Jacobson. The BSD Packet Fil-
ter: A New Architecture for User-Level Packet
Capture. In Proc. Winter ’93 USENIX Conference,
San Diego, CA, January 1993.

[16] Metricom, Inc. http://www.metricom.com, 1996.

[17] S. Nanda, R. Ejzak, and B. T. Doshi. A Retrans-
mission Scheme for Circuit-Mode Data on Wire-
less Links. IEEE Journal on Selected Areas in
Communications, 12(8), October 1994.

[18] J. B. Postel. Transmission Control Protocol. RFC,
Information Sciences Institute, Marina del Rey,
CA, September 1981. RFC 793.

[19] W. R. Stevens. TCP/IP Illustrated, Volume 1. Add-
ison-Wesley, Reading, MA, Nov 1994.

[20] WaveLAN: PC/AT Card Installation and Opera-
tion, 1994.

[21] R. Yavatkar and N. Bhagwat. Improving End-to-
End Performance of TCP over Mobile Internet-
works. In Mobile 94 Workshop on Mobile Comput-
ing Systems and Applications, December 1994.

