

Large-scale Histopathology Image Analysis for Colon Cancer on Azure

Yan Xu^{1, 2} Tao Mo² Teng Gao² Maode Lai⁴ Zhuowen Tu^{2,3} Eric I-Chao Chang²

¹Beihang University; ²Microsoft Research Asia; ³UCSD; ⁴Zhejiang University

Motivation

- Histopathology assessment the gold standard for cancer detection
- Shortage of trained pathologists

Motivation

Introduction

diagnosing the presence of cancer (classification)

segmenting cancer cells (segmentation)

clustering the tissue cells into various sub-classes

	ATTA .		
Unsupervised image	Most existing supervised	Weakly supervised methods use	A ROOM
segmentation methods may not work well	approaches for tissue cell segmentation	coarse-grained labeling to aid	(a) cancer image
due to their complicated	require detailed manual	exploration of fine grained	
		Information	(b) non-cancer image

Multiple Instance Learning

Weakly labeled training data

(Maron 1997, Viola 2005)

Multiple Instance Learning

(b) non-cancer image

Weakly labeled training data

Parallel Multiple Instance Learning

- A standard histopathology slice Resolution: 200,000 x 200,000
- Most existing medical imaging tools infeasible
- A single machine with limited memory and disk space

7.5

2.5

Introduction

The origin of parallel multiple instance learning (PMIL)

MIL: previous MIL-based work performed classification but not segmentation (Liang 2007, Liu 2010, Dundar 2010)

MCIL: adopts the clustering concept into MIL but takes the assumption of independent instances (Xu 2012)

PMIL: emphasizes the parallel concepts and max-margin concept among different clusters, demonstrating the efficiency and effectiveness

Experiment Setting

- Microsoft Windows HPC Cluster
- 128 compute nodes
 - 2 quad-core Xeon 2.43-GHz processors
 - 16GB RAM
 - 1Gbit Ethernet adapters
 - 1.7TB local disk storage

Experimental Setting

Datasets

- 1,118 images at a resolution of 10 billion pixels, subsampled 22,484 pieces (10,000 X 10,000), 6.135 trillion byte colon cancer images
- Obtained from the Department of Pathology of Zhejiang University using Hamamatsu Nano Zoomer 2.0HT digital slice scanner (40 X)
- Each image is labeled by two pathologists, the third pathologist moderates their discussion

MTA—Moderately or well differentiated tubular adenocarcinoma PTA—Poorly differentiated tubular adenocarcinoma MA—Mucinous adenocarcinoma SRC—Signet-ring carcinoma

Experimental Setting

Experiment settings

Preprocessing	Down-sample patch extraction (patch size: 640*640), overlap step 100
Parameters	r=20, K=5, T=1000 set the prior weight for each bag as the same value
Features	Common computer vision features are used: L*a*b* Color Histogram, LBP, SIFT, HOG, and GLCM
Others	6-fold cross validation Use Gaussian function as weak classifier

生物与医学工程学院 BUAA SCHOOL OF BIOLOGICAL SCIENCE AND MEDICAL ENGINEERING

Three methods are compared in this experiment with the same features and parameters Trained using million instances and 215 features in 128 compute nodes (1024 CPU cores) for 25.1 hours

Results

• Results:

Compared with other *weakly supervised methods*

- 64 nodes to generate patch feature vector (D = 215) of 200 million extracted patches (30 hours)
- 128 nodes to train MIL, MCIL and P-MIL models on the training data (T = 1000), it takes 3.2, 24.8 and 25.1 hours respectively

PMIL significantly improves results by competition between clusters.

number of cores (logscale)

• Results: Scalability

50 iterations		Cores	NC[s]	C [s]	Overall[s]	Speedup	
Non-com putation	Non-computation (NC) makes up of communication and synchronization between compute nodes	128 256	330 408	32781 16413	33111 16821	1.000 1.968	
		512	482	8025	8507	3.892	
Comput ation Computation (C) time is the sum of time except non-computation time			1024 515 4128 4643 7.131 The speedups (referenced to 128 cores) for PMIL training ***********************************				
Data distribution	The data distribution stage is excluded because this data I/O heavily depends on bandwidth of disk and network	d S	(e) (e) (f) (f) (f) (f) (f) (f) (f) (f		896 11724		

On Microsoft Azure

On Microsoft Azure

Conclusion

Parallel Multiple Instance Learning

By introducing the parallel multiple instance learning framework using MPI/multithreading hybrid programming model on Windows HPC cluster We choose HPC as parallel computing platform is that **Microsoft Azure** added support for HPC and MPI, which enables our algorithm to scale up to cloud with minor porting effort

Thanks!

xuyan@buaa.edu.cn