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Abstract
We propose a regularized sequence-level (SEQ) deep neural
network (DNN) model adaptation methodology as an extension
of the previous KL-divergence regularized cross-entropy (CE)
adaptation [1]. In this approach, the negative KL-divergence
between the baseline and the adapted model is added to the
maximum mutual information (MMI) as regularization in the
sequence-level adaptation.

We compared eight different adaptation setups specified
by the baseline training criterion, the adaptation criterion, and
the regularization methodology. We found that the proposed
sequence-level adaptation consistently outperforms the cross-
entropy adaptation. For both of them, regularization is critical.
We further introduced a unified formulation in which the regu-
larized CE and SEQ adaptation are the special cases.

We applied the proposed approach to speaker adaptation
and accent adaptation in a mobile short message dictation task.
For the speaker adaptation, with 25 or 100 utterances, the pro-
posed approach yields 13.72% or 23.18% WER reduction when
adapting from the CE baseline, comparing to 11.87% or 20.18%
for the CE adaptation. For the accent adaptation, with 1K utter-
ances, the proposed approach yields 18.74% or 19.50% WER
reduction when adapting from the CE-DNN or the SEQ-DNN.
The WER reduction using the regularized CE adaptation is
15.98% and 15.69%, respectively.
Index Terms: deep neural network model adaptation, regular-
ization, sequence training

1. Introduction
While recent advances in acoustic modeling using deep neu-
ral networks (DNN) have led to significant accuracy improve-
ment [2, 3, 4, 5, 6], diverse acoustic environments, distinct
channels, and various speaking styles remain as the main chal-
lenges [7]. Model adaptation refers to a class of techniques that
can “move” the model towards a specified target using moderate
amount of adaptation data and achieve improved accuracy.

One key challenge in the deep neural network model adap-
tation is the robust parameter estimation given the large num-
ber of parameters in the DNN and the usually limited amount
of adaptation data. Catastrophic forgetting described in [18] is
a typical form of overfitting in the neural network adaptation.
Consequently, a certain form of regularization is typically ap-
plied in the deep neural network model adaptation.

The transform-based adaptation [9, 10, 11, 12] only adapt
the partial network while keeping the large body of the neural
network unchanged. This can be viewed as applying the reg-
ularization at the topological-level. The regularization-based
adaptation [1, 16, 17, 18] operates in the full model parame-
ter space with regularization. The combination of these two
approaches can lead to more effective adaptation with small
amount of adaptation data [19, 20]. In the third category, the

adaptation context is represented in a certain form and input to
the neural network for adaptation [13, 14, 15].

In this paper, we propose a regularized sequence-level
(SEQ) deep neural network model adaptation methodology as
an extension of the previous KL-divergence regularized cross-
entropy (CE) model adaptation [1]. In this approach, a frame-
level regularization, defined as the negative KL-divergence be-
tween the baseline and the adapted model, is added to the
sequence-level maximum mutual information (MMI) objective
to avoid overfitting during the sequence-level model adaptation.

We compared the convergence pattern and the adaptation
performance of different adaptation setups specified by the
baseline training criterion, the model adaptation criterion, and
the regularization methodology. We found that the sequence-
level adaptation outperforms the cross-entropy adaptation when
adapting from either a cross-entropy DNN or a sequence DNN.
In both cases, regularization is critical to the best adaptation per-
formance. Under certain circumstances, such as conducting the
cross-entropy or the sequence-level adaptation from a baseline
DNN trained using the sequence-level criterion, without apply-
ing the regularization, the adaptation exhibits severe overfitting
with large performance degradation. We further introduced a
unified formulation in which the regularized CE and SEQ adap-
tation are the special cases.

We applied the proposed regularized sequence-level DNN
adaptation methodology to speaker adaptation and accent adap-
tation in a mobile short message dictation task (SMD). For the
speaker adaptation, with 25 or 100 adaptation utterances, the
proposed regularized sequence-level adaptation yields 13.72%
or 23.18% WER reduction when adapting from the CE-DNN.
Correspondingly, the cross-entropy adaptation yields 11.87% or
20.18% WER reduction. For the accent adaptation, with 1K
adaptation utterances, the proposed approach yields 18.74% or
19.50% WER reduction when adapting from the CE-DNN or
the SEQ-DNN. In comparison, the WER reduction using the
regularized cross-entropy adaptation is 15.98% and 15.69%, re-
spectively.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews the cross-entropy DNN and the KLD-regularized
cross-entropy DNN adaptation; Section 3 introduces the regu-
larized sequence-level DNN adaptation methodology; Section 4
presents the experimental results on speaker adaptation and ac-
cent adaptation tasks; Section 5 concludes this study.

2. Review of CE-DNN and
KLD-regularized CE-DNN

A deep neural network is a stack of log-linear models parame-
terized by the layer-wise weight matrix, bias, and partition func-
tion. For a given objective function, the gradient of the top-level
error signal can be back propagated for the full network opti-
mization through the error back-propagation (BP).



2.1. Cross-Entropy DNN

The cross-entropy objective (FCE) is defined as the total nega-
tive log-posterior of the senone state (s) given the acoustic ob-
servation (o) accumulated on all frames (t) of all utterances (u):

FCE = −
∑
u,t,s

pT (s|out) log p(s|out), (1)

where pT (s|out) is the state-level target, defined as the Kro-
necker delta function (δs;sut ) based on the senone-state align-
ment; p(s|out) is the posterior probability obtained by passing
the output layer neuron activation (aut(s)) through a softmax:

p(s|out) =
expaut(s)∑

s′
expaut(s′)

. (2)

The corresponding gradient at the output layer is:

∂FCE
∂aut(s)

= p(s|out)− δs;sut . (3)

Minimizing FCE is equivalent to maximize the mutual infor-
mation between p(s|out) and δs;sut .

2.2. KLD-regularized Cross-Entropy Adaptation

The KLD-regularized cross-entropy model adaptation was pro-
posed in [1]. In this methodology, the KL-divergence between
the baseline and the adapted model is added to the standard
cross-entropy objective. The new regularized cross-entropy ob-
jective (F̂CE) can be written as:

F̂CE = (1− ρ)FCE + [−ρ
∑
u,t,s

pSI(s|out) log p(s|out)]

= −
∑
u,t,s

p̂(s|out) log p(s|out),

(4)
where p̂(s|out) , (1 − ρ)δs;sut + ρpSI(s|out), ρ is the regu-
larization weight, pSI(s|out) is the adaptation baseline model.

The corresponding gradient at the output layer is:

∂F̂CE
∂aut(s)

= p(s|out)− p̂(s|out). (5)

Comparing to Eq. (3), δs;sut is replaced by p̂(s|out), i.e. a soft
target defined as the linear combination of the true label and the
posterior estimated from the adaptation baseline model.

3. Regularized Sequence-Level Adaptation
The sequence-level objective seeks to maximize the posterior
of the correct utterance given the model. It takes into account
of the language model, lexical, and HMM constraints. Signifi-
cant accuracy improvement has been reported in applying the
sequence-level deep neural network acoustic model for large
vocabulary speech recognition tasks [22, 23, 24].

In this paper, we focus on the Maximum Mutual Informa-
tion (MMI) criterion [21] for the DNN model adaptation.

3.1. Sequence-Level MMI Objective

The MMI objective (FMMI ) can be written as [21]:

FMMI =
∑
u

log pk(Ou|Su)p(Wu)∑
W
pk(Ou|S)p(W )

, (6)

whereOu is the acoustic observation sequence for the utterance
u; Su andWu are the corresponding senone-state sequence and
word sequence; k is the acoustic model scaling factor.

The gradient at the output layer is:
∂FMMI
∂aut(s)

= k(δs;su,t − γDENut (s)), (7)

where γDENut (s)) is the posterior probability of being in state s
at time t computed over the lattices.

Maximizing FMMI is equivalent to maximizing the mu-
tual information between δs;su,t and γDENut (s). Comparing to
Eq. (3), p(s|out) is replaced by γDENut (s), a state occupancy
stats calculated from the denominator lattices.

3.2. Regularized MMI Adaptation

In the regularized MMI adaptation, we propose to add a frame-
level regularization term to the standard MMI.

The frame-level regularization is defined as the negative
KL-divergence between the base model and the adapted model
with respect to the frame-level senone posterior estimation. The
regularized MMI objective (F̂MMI ) can be written as:

F̂MMI = (1− ρ)FMMI + ρ
∑
u,t,s

pSI(s|out) log p(s|out),

(8)
where FMMI is the standard MMI defined as Eq. (6), ρ is the
regularization weight.

The corresponding gradient at the output layer is:

∂F̂MMI
∂aut(s)

= (1− ρ)k[δs;su,t − γDENut (s)] + ρpSIdet(s)

= (1− ρ)k{δs;su,t − [γDENut (s)− ρ
(1−ρ)kp

SI
det(s)]},

(9)
where pSIdet(s) , p(sSI |out)− p(s|out).

Comparing to Eq. (7), γDENut (s) is replaced by γDENut (s)−
ρ

(1−ρ)kp
SI
det(s).

3.3. Regularized MMI Adaptation with F-smoothing

The frame-level negative cross-entropy was used as a regular-
ization to prevent the model from “running away” in the MMI
sequence DNN implementation in [22]. It was referred to as
F-smoothing.

The MMI objective with F-smoothing (F (f)
MMI ) is:

F (f)
MMI = (1− ρF )FMMI + (−ρFFCE), (10)

where ρF is the weight of F-smoothing.
The objective of the regularized MMI adaptation with F-

smoothing (F̂ (f)
MMI ) can be written as:

F̂ (f)
MMI = (1− ρ)F (f)

MMI + ρ
∑
u,t,s

pSI(s|out) log p(s|out)

= (1− ρ)(1− ρF )FMMI − (1− ρ)ρFFCE
+ρ

∑
u,t,s

pSI(s|out) log p(s|out).

(11)
The regularized MMI with F-smoothing is a generalized

formulation. When ρF = 1, it becomes the KL-regularized
cross-entropy objective (F̂CE); when ρF = 0, it becomes the
KL-regularized sequence-level MMI objective (F̂MMI ).

The gradient of the regularized MMI objective with F-
smoothing is:

∂F̂(f)
MMI

∂aut(s)
= {(1− ρ)[(1− ρF )k + ρF ]δs;su,t + ρp(sSI |out)}

−{(1− ρ)(1− ρF )kγDENut (s) + [(1− ρ)ρF + ρ]p(s|out)}.
(12)

It degenerates to the gradient of F̂CE or F̂MMI as in Eq. (5)
and Eq. (9) respectively, when ρF = 1 or ρF = 0.



3.4. Special Treatment

In MMI, the language model and the HMM constraints are usu-
ally estimated from the training set. The estimation of these
parameters from limited amount of adaptation data is usually
unreliable. As a special treatment, we simply use the baseline
training set to estimate these parameters. For a complete regu-
larized approach, we could use the regularized estimation from
the baseline training and the adaptation data. It was not adopted
since empirically we found no performance difference.

To conclude Section 3, we point out that the optimization
of the regularized sequence-level MMI adaptation proposed in
this paper can proceed using the standard BP with no need to
change the learning procedure. The proposed methodology can
be applied to the full network as well as the partial network.

4. Experiments and Results
In this section, we present our experimental results in applying
the regularized sequence-level DNN model adaptation on the
mobile short message dictation task.

4.1. Baseline

We use a pair of mobile short message dictation DNN models
trained using the cross-entropy or the sequence-level MMI cri-
terion as the baseline models throughout this paper.

The baseline DNNs have 5-hidden layers. Each hidden
layer has 2048 hidden units. The input consists of a 726-dim
feature vector formed by a 66-dim log filter bank feature (LFB)
with a context window of 11 frames. The output layer has
5980 senone states. The training data consists of 400 hr mobile
speech data which are aligned at the senone-state level. For this
task, each utterance consists of 1.5 second speech in average.

4.2. Convergence Pattern and Adaptation performance

We studied the convergence pattern and the model adapta-
tion performance of different adaptation methodologies using
a channel adaptation task. In this task, we adapt the mobile
speech DNN to a lecture room close-talk speech task with dis-
tinct channel mismatch and other scenario differences.

Specifically, we compared eight adaptation setups, speci-
fied by the baseline training criterion, the adaptation criterion,
and the regularization methodology.

The baseline models are the mobile speech models as de-
scribed in Section 4.1. The adaptation data consists of 1K lec-
ture room close-talk speech utterances. The resulting models
are evaluated using a lecture room close-talk test set consisting
of 3K utterances. For the sequence-level adaptation, we adopted
the regularized sequence-level adaptation with F-smoothing as
formulated in Section 3.3. ρF and ρ were set to 0.095 and 0.5
respectively througout this paper without further tuning.

Figure 1 illustrates the adaptation convergence pattern and
the accuracy results. “CE-DNN” and “SE-DNN” refer to adapt-
ing from the cross-entropy or the sequence-level baseline; “CE-
Adapt” and “SE-Adapt” refer to applying the cross-entropy or
the sequence-level adaptation criterion; “-Reg” refers to adap-
tation with the KL-divergence based regularization.

• Starting from the CE-DNN, the cross-entropy adaptation
yields accuracy gains with/without regularization. The
regularized CE adaptation achieves better performance
improvement. This observation is consistent with [1].

• Starting from the SEQ-DNN, without applying the regu-
larization, the cross-entropy adaptation quickly exhibits
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Figure 1: Convergence pattern and model adaptation per-
formance comparison of eight different adaptation setups.
“CE-DNN” and “SE-DNN” refer to the cross-entropy or the
sequence-level baseline models; “CE-Adapt” and “SE-Adapt”
refer to the cross-entropy or the sequence-level adaptation; “-
Reg” refers to adaptation with regularization.

overfitting. The learned sequence-level pattern in the
baseline may experience “catastrophic forgetting”. After
applying the regularization, the convergence is signifi-
cantly improved and finally results in a better accuracy.

• When conducting the sequence-level adaptation from the
CE-DNN, we can observe accuracy gains with/without
regularization. These gains are primarily due to the new
sequence-level pattern learned through the model adap-
tation. With the regularization, the adaptation converged
to a better model with the overfitting significantly de-
layed.

• When conducting the sequence-level adaptation from
the SEQ-DNN, without applying the regularization, the
model quickly “runs away”. After applying the regular-
ization, the adaptation exhibits a well-behaved conver-
gence pattern and results in a better performed model.

In summary, the sequence-level MMI adaptation consis-
tently outperforms the frame-level cross-entropy adaptation
when adapting from a cross-entropy DNN or a sequence DNN.
In both cases, regularization is critical. Under certain circum-
stances, such as applying the cross-entropy or the sequence-
level adaptation to a sequence baseline, without applying the
regularization, the adaptation exhibits severe overfitting.

We note that the convergence pattern and the adaptation
performance also depend on the amount of adaptation data and
the specific adaptation task. Typically heavier regularization is
needed for adaptation with smaller amount of adaptation data.

4.3. Regularized MMI adaptation for Speaker Adaptation

We applied the proposed regularized sequence adaptation
methodology to the speaker adaptation for the SMD task.

The baseline models are as described in Section 4.1. The
speaker adaptation data is collected from actual life service, col-
lected over long period of time, representing real mobile speech
application scenario. The speaker adaptation data set consists
of 4 speakers, each speaker with 100 utterances for the model
adaptation and 400∼500 utterances for the model evaluation.

We conducted the speaker adaptation experiments using
25 or 100 adaptation utterances. For the SEQ adaptation,
we adopted the regularized sequence-level adaptation with F-
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Figure 2: Speaker adaptation performance of the regularized
cross-entropy and the sequence-level adaptation with 25 or 100
adaptation utterances. The baseline is the CE-DNN.
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Figure 3: Speaker adaptation performance of the regularized
cross-entropy and the sequence-level adaptation with 25 or 100
adaptation utterances. The baseline is the SEQ-DNN.

smoothing with the same parameter setup as before. The exper-
imental results are depicted in Figure 2 and Figure 3:

• With 25 speaker adaptation utterances, when adapting
from the cross-entropy DNN, the regularized sequence
adaptation yields 13.72% WER reduction as opposed to
11.87% for the regularized CE adaptation. When adapt-
ing from the sequence DNN, the regularized sequence
adaptation yields 4.84% WER reduction comparing to
4.24% for the regularized CE adaptation.

• With 100 speaker adaptation utterances, the regularized
sequence adaptation yields 23.18% WER reduction as
opposed to 20.18% for the regularized CE adaptation
when adapting from the CE baseline model. When
adapting from the sequence DNN, the regularized SEQ
adaptation yields 19.92% WER reduction comparing to
17.37% when using the regularized CE adaptation.

The regularized sequence adaptation consistently outper-
forms the regularized cross-entropy adaptation. Nevertheless,
when only a small number of adaptation utterances is available,
the benefit of the sequence adaptation is small. Regularization
is critical for both the cross-entropy and the sequence adapta-
tion. Without regularization, they both exhibit sever overfitting
and result in degraded performance.

4.4. Regularized MMI adaptation for Accent Adaptation

We also conducted experiments on the accent adaptation for the
mobile short message dictation task.

The baseline models are as described in Section 4.1. The
training data consists of 1K accent adaptation utterances for rea-

sonable accent phonetic coverage. The resulting models were
evaluated using an accent test set consisting of 5K utterances.

As before, we adopted the regularized sequence adaptation
with F-smoothing with similar parameter setup. The accent
adaptation experimental results are summarized in Table 1:

• Starting from the CE-DNN, the regularized sequence
adaptation yields 18.74% WER reduction comparing
to 11.98% for the regularized cross-entropy adaptation.
Without the regularization, the WER reduction drops to
5.03% and 3.72% for the sequence adaptation and the
cross-entropy adaptation, respectively.

• Starting from the SEQ-DNN, the regularized sequence
adaptation yields 18.23% WER reduction as opposing
to 15.69% for the regularized cross-entropy adaptation.
Without the regularization, large performance degrada-
tion was observed due to overfitting.

With more adaptation data, we observe larger adaptation
performance gain from the regularized sequence adaptation.
This is due to the fact that more sequence-level patterns can
be learned when more adaptation data is available. When the
adaptation data increases to certain amount, the regularization
may no longer be necessary and a simple model update with the
sequence-level objective would be sufficient.

Table 1: Accent adaptation performance of the regularized
cross-entropy and the sequence adaptation with 1K accent
adaptation utterances.

Model WER WERR
Baseline (CE-DNN) 27.95 NA
CE-Adapt 27.95 3.72
CE-Adapt-Reg 24.39 15.98
SE-Adapt 27.57 5.03
SE-Adapt-Reg 23.59 18.74
Baseline (SEQ-DNN) 23.64 NA
CE-Adapt 27.01 -14.26
CE-Adapt-Reg 19.93 15.69
SE-Adapt 24.16 -2.20
SE-Adapt-Reg 19.03 19.50

5. Conclusion
In this paper, we proposed a regularized sequence-level deep
neural network model adaptation methodology. In this ap-
proach, a frame-level regularization is added to the sequence-
level maximum mutual information objective to avoid overfit-
ting in the sequence-level model adaptation.

We studied eight different adaptation setups specified by the
baseline training criterion, the adaptation criterion, the regular-
ization methodology. We found that the sequence-level adap-
tation outperforms the cross-entropy adaptation. In both cases,
regularization is critical for the best adaptation performance.

We applied the proposed regularized sequence-level DNN
adaptation methodology to speaker adaptation and accent adap-
tation in a mobile short message dictation task. In all cases,
the proposed regularized sequence-level adaptation yields bet-
ter adaptation performance than the cross-entropy adaptation.
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