

Reasoning about concurrency:
interference requires permission

Aaron Turon, Mitchell Wand

Challenges

Process A

Process Bbal

Shared state

We want to state and check policies

e.g. if messages along channel 1 come in sorted order
then messages along channel 3 leave in sorted order

This calls for a temporal logic where formulas
are policies and models are processes.

A system is made up of many processes, so the
logic should be compositional:

if P ⊨ φ and Q ⊨ ψ then P|Q ⊨ φ⊗ψ

Goals

Figure 2: Message-passing concurrencyFigure 1: Shared-state concurrency

tmp := bal
bal := tmp ­100

Process A

Process B

Process C

Channel 1

Channel 2

Channel 3

Send x on
channel 1

Send y on
channel 1

Receive on
channel 1

Process C

tmp := bal
bal := tmp + 25

tmp := bal
bal := tmp * 2

What makes concurrency useful also makes it hard:
the ability of one process to influence computation in another.

Influence is sometimes good (communication),
sometimes bad (interference).

What makes concurrency useful also makes it hard:
the ability of one process to influence computation in another.

To manage interference, we introduce
permissions into the logic:

● each process has send, receive permission on its channels
● permission is in [0, 1]

● 0 means can't send/receive
● 1 means no other process can send/receive on channel
● otherwise, can send/receive, but so can other processes

● permissions for a channel must globally add up to 1
● processes exchange permissions as they communicate

By owning all the permission for a channel, a
process can ensure no interference is possible.

Idea

Important questions:
● How can you distinguish communication from interference?
● Does the mechanism (shared-state, message-passing) matter?
● How do you give a specification for a program if you don't know its environment?
● How can you show, modularly, that a concurrent system satisfies its specification?

Our logic allows local reasoning about processes, regardless of their eventual environment:
● based on principles from separation logic
● new application of fractional permissions – mobile, message-passing programs
● fully compositional – prove system correct by proving its components correct

We are close to proving the logic sound for the π-calculus.
We hope to apply it to the join-calculus/Microsoft's Polyphonic C#.

Conclusions & Status

	Slide 1

