
Research Group

Context-based Systems

End-User Debugging in

Distributed Environments

In a Nutshell
“Millions for compilers but hardly a penny for understanding

human programming language use. Now, programming

languages are obviously symmetrical, the computer on one

side, the programmer on the other. I an appropriate science

of computer languages, one would expect that half of the

effort would be on the computer side, understanding how to

design languages that are easy or productive to use… The

human and computer parts of programming languages

have developed in radical asymmetry.”

Allen Newell and Stuart Card, 1985

Institute of Parallel and

Distributed Systems (IPVS)

University of Stuttgart

Germany

Software Crafting
Not aware of software engineering techniques and

debugging strategies, end-users need a new set of

techniques and tools, being the counterpart of software

engineering and debugging for end-users

Typical software engineering

techniques (e.g., design pattern)

are not accessible for end users

Challenge
Designing testing and debugging

strategies for distributed systems

Common debugging strategies fail

in distributed systems

(breakpoints, step-through, test-

first…)

Reproduction of faults in real world

pervasive systems

70-80% Testing

and

Debugging

Achievements:

Prototype for evaluating and simulating different approaches in

debugging distributed systems. Allows to trace and evaluate the

control flow and the system's state

Dipl.-Inform. Andreas Heil

Supervised by Dr. Torben Weis (University of Stuttgart) and Dr. Alexander Brändle (Microsoft Research Cambridge)

Definition*

End-User Programmer

People who write programs, but not as their primary job

function, but to achieve their main goals which are usually

something complete different

Professional Programmer

Someone whose primary job function is to write or maintain

software. Typically having significant training in

programming (e.g., BS in CS)

Novice Programmers

Someone who is learning to be a

professional programmer

Next Steps:

Adapting current research results in end-user development to

debugging strategies of distributed systems

Applying commercial products (e.g., the Microsoft Robotics

Studio) to evaluate against real world distributed systems

Changing Paradigm

time

state

time

state

algorithm

1. State changes within programs are described by

algorithms (how to achieve a state)

2. Rules allow to describe the conditions for state

changes (why to reach a state)

time

state

3. By expressing a desire, the end-user can define a

state (which state to reach)

rule

foreach (Observer o in observers)

{

o.Update(this);

}

sensor(ESB3).

sensor(ESB4).

…

light(on) :- sensor(X),

range(2),

event(motion).

while a meeting takes place

and no beamer is used

the room shall be bright

Knowledge about

software engineering

techniques is required

Detailed knowledge

about the system is

required to define

facts and rules

Defining the context

Expressing the desire

Defining states is possible in pervasive computing and

allows to query why a system did or did not reach a

certain state

1st year 2nd year 3rd year

* by Brad Myers, 2006

98% End-User

Programmers

