


TERMINATION ANALYSERS FORFREE!
Aziem Chawdhary

Department of Computer Science, Queen Mary, University of London

Introduction

We are currently working on the development of termination analysers
for imperative programs. These are tools that prove as many termi-
nation lemmas as possible as quickly as possible. These termination
lemmas are of the form:

”the program location X within a loop of recursive function cannot be
visited infinitely often during executions that stay withinthe loop or

current recursive stack depth”.

With our method, we can take any abstract interpretation based pro-
gram analysis and produce a termination analysis using the results of
the program analysis. Because we can use any abstract interpretation,
we are producing many different termincation analysers, byconverting
invariance analyses into termination analyses. Although the technique
we propose is sound for any analysis based on abstract interpretation,
this does not mean any analysis will produce a useful termination anal-
ysis. We require the domains of the analysis to berich, such as the
Octagon domain. An example domain that would not produce a use-
ful termination analyser is the sign domain. Our technique uses the
ideas from Terminator and Transition Invariants to try and prove the
termination of programs using arbitary program analyses.

Foundations

The foundation of our technique is based uponTransition Invariants
[6], which is a binary relation approximating the pairs of reachable
states(u, v) such that u is reachable and v is reachable from u via
one or more program steps. Let−→P be the transition relation for
the programP . Let −→+

P
be−→P ’s transitive closure. A transition

invariantT is defined to be a relation such that−→+
P
⊆ T .

We construct these transition invariants for every cutpoint in the
program and check if it is well-founded [5]. A relationR is well-
founded if it has no infinite sequencess0, s1, ... with respect toR

We use the results from other program analyses to construct the
transition invariants we need to check termination. In essence, we get
termination provers for free!

Outline of the Algorithm

We now outline the algorithm very briefly. Given a programP and an
program analysisDa on domainD, we perform the following:

1. Run the analysisDa onP

2. For every cutpoint in the program

(a) We seed the analysis result at that cutpoint. Seeding basically
converts an invariant into a relation between states. We do this
by adding auxillary variables and equalities into the invariant. For
example, if we have an invariantx − y >= 0, then seeding will
introduce two new variablesxs, ys and add the equalitiesxs =
x ∧ ys = y to getxs = x ∧ ys = y ∧ x − y >= 0. The intuition is
thatxs, ys record the variables value before we do the next step.

(b) Having seeded, we now run the analysis again on the seededin-
variant to get another invariant. The values ofx, y may have
changed, but we know the relationship between their currentval-
ues and their previous values because of the auxillary variables we
introduced. Thus we have a relation from the previous state at the
cutpoint and the current state.

(c) We then check that the second generated invariant is well-
founded. If any of the seeded invariants are not well-founded,
then we can conclude that the program may diverge. On the other
hand, if all the seeded invariants are well-founded, then the pro-
gram must be terminating.

Example Termination Analysis

We present a small, informal example. In the example we use a pro-
gram invariance analysis supporting finite disjunctive completion over
the Octagon domain. The inner loop in the example above does not
guarantee termination, due to the non-deterministic choice. However,
it is not possible for the program to visit location 52 infinitely often.
This property is called l-termination property. If each cutpoint in the
program has the l-termination property, then the program terminates.

Example Termination Analysis

Location Invariant
... ...

(x ≥ a ∧ y ≥ b + 1) ∨ (x ≥ a + 1 ∧ y ≥ b)
Location

... ...
50 ...
52 x ≥ a + 1 ∧ y ≥ b + 1
55 x ≥ a + 1 ∧ y ≥ b + 1
57 x ≥ a ∧ y ≥ b + 1
59 x ≥ a ∧ y ≥ b + 1
63 x ≥ a + 1 ∧ y ≥ b

65 (x ≥ a ∧ y ≥ b + 1) ∨ (x ≥ a + 1 ∧ y ≥ b)
67 ...
... ...

We run the invariance analysis using the Octagon domain and finite
disjunctive completeion, which might compute the following over-
approximation of the reachable state space for this programindexed
by locations (program counters). Each row in the table represents an
invariant for the related program location. An abstract state can be seen
to denote a set of concrete states. For example, at line 52 theinvariant
represents the states:

Example Termination Analysis

The next step is to seed the invariants at the cutpoint. In this example
we are trying to prove that location 52 is not visited inifinetly often.
We now seed the invariant at location 52. This involves adding seed
variables to the invariant:

(x ≥ a + 1 ∧ y ≥ b + 1 ∧ xs = x ∧ ys = y ∧ bs = b ∧ cs = c)

This can be thought of as a binary relation on program states in the
following way:

{(s, t) | pc(s) = pc(t) = 52
∧ s(x) = t(x)
∧ s(y) = t(y)
∧ s(a) = t(a)
∧ s(b) = t(b)
∧ t(x) ≥ t(a) + 1
∧ t(y) ≥ t(b) + 1

}

Notice that we’re usingxs to represent the value ofx in s, andx to
represent the value ofx in t.

Example Analysis

Finally, we run our program analysis with this state as the starting state,
which gives us a set of transition invariants

Location (x ≥ a ∧ y ≥ b − 1) ∨ (x ≥ a + 1 ∧ y ≥ b)
... ...

50 ...
52 (x ≥ a + 1 ∧ y ≥ b + 1 ∧ xs ≥ x + 1∧

ys ≥ y ∧ as = a ∧ bs = b)
∨

(x ≥ a + 1 ∧ y ≥ b + 1 ∧ xs ≥ x∧
ys ≥ y + 1 ∧ as = a ∧ bs = b)

∨
(x ≥ a − 1 ∧ y ≥ b + 1 ∧ xs ≥ x + 1∧

ys ≥ y + 1 ∧ as = a ∧ bs = b)
53 ...
... ...

One important aspect of this trick is that the analysis is notaware of
our intended meaning of variables likexs andys: it simply thinks of
them as symbolic constants. It does not know that the states are repre-
senting relations.
Due to the result in [6], all the disjuncts at location 52 are well-
founded. Thus, we have proven that location 52 will not be visited
infinitely often.

TheGoodand theBad

1. TheGood

(a) We have a ’family’ of completely automatic termincationanaly-
sers, which work without the need for ranking functions

(b) The analysis uses simple domains such as the Octagon domain
(c) We reuse all the heuristics provided by the program analysis such

as widening, narrowing.
(d) If the termination proof does not succeed, we have a good starting

point from a TERMINATOR style termination proof
(e) The technique isfast!
(f) The tehnique is robust with respect to arbitarily nestedloops, as

we are simple using the standard program analysis techniques to
prove relationships between states at cutpoints.

2. TheBad

(a) We require disjunctive domains. This in essence means that
we have sets of values at program points rather than one all-
encompassign value. We have developed heurisitics to convert
a domain into a ’disjunctive domain’ of sorts suitable for our anal-
ysis.

References and Acknowlegdements

References

[1] B. Cook, A. Podelski, and A. Rybalchenko. Abstraction refine-
ment for termination. InSAS’2005: Static Analysis Symposium,
volume 3672 ofLNCS, pages 87–101. Springer, 2005.

[2] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs
for systems code. InPLDI’06: Programming Language Design
and Implementation, 2006.

[3] B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond
safety. InCAV’06: Conference on Computer Aided Verification,
2006.

[4] A. Min é. The octagon abstract domain.Higher-Order and Sym-
bolic Computation, 2006. (to appear).

[5] A. Podelski and A. Rybalchenko. A complete method for the
synthesis of linear ranking functions. InVMCAI’2004: Verifica-
tion, Model Checking, and Abstract Interpretation, volume 2937
of LNCS, pages 239–251. Springer, 2004.

[6] A. Podelski and A. Rybalchenko. Transition invariants.In
LICS’2004: Logic in Computer Science, pages 32–41. IEEE,
2004.

[]

This is ongoing work with Prof Peter O’Hearn and Dr. Dino Distefano at Queen
Mary, University of London and Dr Josh Berdine and Dr Byron Cook at Microsoft
Research, Cambridge.


