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Introduction

We are currently working on the development of terminationalgsers
for imperative programs. These are tools that prove as memyi+t
nation lemmas as possible as quickly as possible. Thesengsran
lemmas are of the form:

"the program location X within a loop of recursive functioamot be
visited infinitely often during executions that stay withire loop or
current recursive stack depth”.

With our method, we can take any abstract interpretatiomd@so-
gram analysis and produce a termination analysis usingethdts of
the program analysis. Because we can use any abstractretsrpn,
we are producing many different termincation analysergdmywerting
Invariance analyses into termination analyses. Althobghtéchnique
we propose Is sound for any analysis based on abstractnatatipn,
this does not mean any analysis will produce a useful termomanal-
ysis. We require the domains of the analysis torioh, such as the
Octagon domain. An example domain that would not produceea u
ful termination analyser is the sign domain. Our technigsesuthe
iIdeas from Terminator and Transition Invariants to try amovp the
termination of programs using arbitary program analyses.

Example Termination Analysis

51 while(x>a && y>b) {

52

53 if (nondet()) {

54 do {

55

56 X=X - 1:
57

58 } while (nondet())
59

61 } else {

62 y =y - 1;
63

64

65

66

We present a small, informal example. In the example we use-a [
gram invariance analysis supporting finite disjunctive ptafion over
the Octagon domain. The inner loop in the example above does
guarantee termination, due to the non-deterministic @dttowever,

It is not possible for the program to visit location 52 infeiyt often.
This property is called |-termination property. If eachpint in the
program has the |-termination property, then the programiteates.

Example Analysis

Finally, we run our program analysis with this state as thegisig state,
which gives us a set of transition invariants

(x>a+1Ay>b+1Axsg>x+ 1A
\V4
(x>a+1ANy>b+1Axg > A

ygzy—l—l/\agza/\bS:b)
\V/
(x>a—1Ny>b+1Axs>ax+ 1A

53

One important aspect of this trick is that the analysis isavedre of
our intended meaning of variables likg andy: it simply thinks of
them as symbolic constants. It does not know that the stega®pre-
senting relations.

Due to the result in [6], all the disjuncts at location 52 arellw
founded. Thus, we have proven that location 52 will not betedas
infinitely often.
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The foundation of our technique is based ugsansition Invariants
[6], which Is a binary relation approximating the pairs ohchable
states(u, v) such that u is reachable and v is reachable from u
one or more program steps. Let-p be the transition relation for
the prograniP. Let —>; be — p’s transitive closure. A transition

Invariant?' i1s defined to be a relation such tha{»]tg T.

We construct these transition invariants for every cutpam the
program and check if it is well-founded [5]. A relatiaR is well-
founded if it has no infinite sequenceas s, ... with respect taR

We use the results from other program analyses to consthéct
transition invariants we need to check termination. Inessewe get
termination provers for free!

Example Termination Analysis

L ocation

| nvariant

50 ;

52 r>a+1ANy>b+1

55 r>a+1ANy>b+1

57 r>alNy>b+1

59 r>alNy>b+1

63 r>a+1ANy>0b

65 |[(x>aANy>b+1)V(r>a+1Ay>0D)
67 :

We run the invariance analysis using the Octagon domain aute fi
disjunctive completeion, which might compute the follogiiover-
approximation of the reachable state space for this prognaexed
by locations (program counters). Each row in the table isrEs an
Invariant for the related program location. An abstradiestan be seen
to denote a set of concrete states. For example, at line S2vaueant
represents the states:

The Goodand theBad

1. TheGood

(a) We have a 'family’ of completely automatic termincatianaly-
sers, which work without the need for ranking functions

(b) The analysis uses simple domains such as the Octagonmoma

(c) We reuse all the heuristics provided by the program amabiuch
as widening, narrowing.

(d) If the termination proof does not succeed, we have a gaotgy
point from a TERMINATOR style termination proof

(e) The technique ifast!

(f) The tehnique Is robust with respect to arbitarily nedtsmps, as
we are simple using the standard program analysis techstgue
prove relationships between states at cutpoints.

2. TheBad

(a) We require disjunctive domains. This in essence meadais t
we have sets of values at program points rather than one
encompassign value. We have developed heurisitics to donJe
a domain into a 'disjunctive domain’ of sorts suitable for anal-
ySis.
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Outline of the Algorithm

We now outline the algorithm very briefly. Given a prograhand an
program analysi®), on domainD, we perform the following:

1. Run the analysi®), on P
2. For every cutpoint in the program

(a) We seed the analysis result at that cutpoint. Seedingdigs
converts an invariant into a relation between states. Wehdo t
by adding auxillary variables and equalities into the irssat. For
example, if we have an invariant— y >= 0, then seeding will
Introduce two new variables;, y; and add the equalities;, =
r ANys =ytogetrs =z Ays =y Ax —y >= 0. The intuition Is
thatz g, ys record the variables value before we do the next step

(b) Having seeded, we now run the analysis again on the seedec
variant to get another invariant. The valuesa0fy may have
changed, but we know the relationship between their cunaint
ues and their previous values because of the auxillaryhasave
iIntroduced. Thus we have a relation from the previous stateea
cutpoint and the current state.

(c) We then check that the second generated invariant is- well
founded. If any of the seeded invariants are not well-foande
then we can conclude that the program may diverge. On the othe
hand, if all the seeded invariants are well-founded, thenpito-
gram must be terminating.

Example Termination Analysis

The next step Is to seed the invariants at the cutpoint. gx@kample
we are trying to prove that location 52 is not visited iniflgetften.
We now seed the invariant at location 52. This involves agldieed
variables to the invariant:

(x>a+1Ay>b+1ANxs=xANys=yANbs=bAcs=c)

This can be thought of as a binary relation on program statelse
following way:
{(s,?)

}

Notice that we’re using s to represent the value afin s, andx to
represent the value afin ¢.
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