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Today's computing technology is built on a narrow foundation of 
materials. Nature demonstrates efficient information processing 
implemented with macromolecular computing substrates. Molecular 
materials possess a variety of properties that make them attractive for 
future computing technologies. However, traditional engineering and 
design approaches are ill suited to the complexity of these molecules. 
New methods are required to add macromolecules to the toolkit of the 
computer engineer. A crucial step towards this goal is the 
characterisation of the behaviour of macromolecules in the context of 
other molecules. The present project investigates and develops 
methods for efficiently characterising molecular materials through 
computer controlled experimentation. The ultimate aim of this work 
are algorithms that emulate the experimentation strategies of human
experimenters.
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Experimentation is the process of performing experiments to acquire information 
that provides more detailed knowledge about some system. Given a set of
observations from experiments, a scientist will formulate a number of working 
hypotheses that try to explain the observations. An experiment cannot prove a 
hypothesis, but may disprove some of the working hypotheses and thus refine
the set of hypotheses the scientist entertains to design further experiments.

Autonomous experimentation is an emerging concept in experimentation [1,3]. 
Moving beyond the traditional design of experiments, autonomous experimentation 
applies closed-loop experimentation, which uses the results of experiments 
conducted so far to decide which experiment should be performed next. 
Autonomous experimentation requires the combination of software to determine 
the experimentation that is to be carried out, and hardware to provide the platform 
for conducting the experiments.

Experimentation is also guided by resource management. When resource availability 
is limited, as it often is in experimentation, there is a trade off between information
gained and resources used. Therefore, algorithms that maximise the amount of 
information gained within available resources are of particular interest.

Autonomous Experimentation

Splitting the idea of an autonomous 
experimentation algorithm into separate 
components, such as hypotheses 
management, experiment generation, 
experiment selection and result 
interpretation, allows for individual 
development of core aspects of an 
autonomous experimentation algorithm. 
Different ideas for each component can 
be rapidly tested, by plugging in different 
implementations of each component 
into the experimentation system. 

Component Based Design
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Each experimentally observed result is used by the algorithm to generate a level 
of confidence that the result will be obtained across the experiment parameter 
space. Confidence shows the degree to which the hypothesis believes that the 
given result will be obtained when some experiment is performed, as shown in 
the figure below. The confidence for a result in an area of the experiment 
parameter space increases when supporting results are obtained and decreases 
when results that do not support it are obtained.

This algorithm was tested on a simulated toy experimentation problem. In the 
problem, there is a discrete two-dimensional space, where each point in the 
space has a value assigned to it. In a real problem, this value would be some 
experimental result data. The space is segmented by a series of grids, with 
increasingly finer resolutions. Experiments simulated in this space can only 
observe the average value of the points within a particular grid square.

In the figures below, the values of each point in the parameter space are depicted 
as the colour of the pixels. After performing an initial exploration of the space 
using the lowest resolution grid, the algorithm determines for which areas of the 
space the confidences are low. In the figures below, these areas are blacked out. 
The system then continues to explore the space by focusing on the areas of the 
space where the confidences are low. Increasingly higher grid resolutions are 
used in the figure below (left to right).

A Candidate Algorithm

Figure showing component based design. 
H1...Hn shows the working hypotheses. 
E1...Em shows the proposed experiments.
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Figure showing the confidences that a particular result will be obtained by 
experiments performed with parameters from the parameter space.


