
Binary clone detection
Christopher Gautier

under the supervision of Prof. Alan Mycroft
Computer Laboratory, University of Cambridge

Software plagiarism

Open source software is particularly vulnerable to code-theft.
Unscrupulous companies might be tempted to reduce develop-
ment costs by taking existing open-source code and incorporat-
ing it into commercial opaque binaries without credits or autho-
rization.

If source code is not available, code from executables and li-
braries can still be extracted and incorporated into another
project, using binary software adaptation techniques.

Whereas source code plagiarism has been relatively well studied,
binary clone detection remains effectively an unsolved

problem, notably due to the greater complexity of analyzing op-
timized machine code or bytecode.

Related themes

Value State Dependence Graphs

The VSDG is basically the VDG IR
of Weise et al. (cf. “Value Dependence
Graphs: Representation without Taxa-
tion”), augmented with explicit state

nodes and dependencies to represent
R/W to the heap, I/O instruction se-
quences, or any other stateful information.

The VSDG follows the trend of mak-
ing control-flow representation more im-
plicit, and data-flow dependences more ex-
plicit, hence producing more normaliz-

ing representations.

Historically:
CFG → PDG → SSA → VDG → VSDG

max() end

 return value state

 x y state

max() start

γ

TF

(a<b) ?

C

a b

Our motivation:

If we use a “normalizing-enough” IR, two
different programs with identical seman-
tics may have the same representation.

The clone detection task becomes a sub-

graph isomorphism problem.

Current status
Certain classes of optimization (e.g. basic block reordering, loop
transformations etc.) introduce variability in the VSDGs.

Therefore VSDGs must be further normalized. Can we
do undo compiler passes with graph rewriting rules, or has the
compilation process thrown away too much information?

Case study: loop inversion

I; I;

while(cond){U;} ⇒ if(cond’) do{U;}while(cond);

λ

end

start

*

γ

*

λ-call

λ

U

F P

T

λ-call λ

I

