Non-blocking synchronization for multi-core processors

The problem with the ever increasing power consumption and heat dissipation
in modern processors has moved the issue of parallelism into the forefront.

Dual-core processors are now common-
place and Intel has already presented a
research processor with 80 cores.

10000

1000

W)

100

Programs now have to be specially
designed to run faster on multi-core
processors. They need to be divided into
tasks that can be performed in parallel on
different cores. For these tasks to be able
to communicate with each other they
have tO have dCCess tO Safe and efﬁCient 80 core research processor
synchronization.

10

Power consumption (

1

0,1

1971 1974 1978 1985 1992 2000 2008

Year

Taken from Patrick P. Gelsinger, Microprocesorsfor the New Millenium, 1ISSCC2001

Predicted power consumption

Task 1 Task 2 Task 3
Locks

A lock provides a very simple form of synchronization and is one of the
most commonly used methods of synchronization. The lock gives one
task an exclusive access to a certain memory area. This can lead to
poor parallelization and introduces the risk of deadlocks if the code is
not designed correctly. It also makes objects hard to compose.

STM

Software transactional memory is a method that allows the programmer
to mark sections of the code as atomic so that either all operations in

the section are performed or none. This makes it easy for programmers
to write concurrent but not necessarily efficient code.

Lock-free

Lock-free data structures allow tasks to communicate with each other
in @ highly efficient manner. They provide objects that can be easily
composed, however they can be somewhat complicated to design.

Splay tree E

I'm currently trying to provide a parallel lock-free version of a splay tree. RN

A splay tree is a commonly used data structure. It is a self-balancing tree N

that gives better performance than any other tree when faced with a non-

uniform sequence of searches. It behaves like a cache and gives faster C A
access to more recently used data. VAN

Challenges

- Frequently used data is gathered at the root which increases conflicts. +
- Every access to the tree changes it which is expensive.

- No extra data should be added to the tree.

Daniel Cederman - cederman@cs.chalmers.se MiCFOSOft® C D F G

Supervisor: Philippas Tsigas - tsigas@cs.chalmers.se

Distributed Computing and Systems - www.cs.chalmers.se/~dcs
Computer Science and Engineering
Chalmers University of Technology

Sweden

(5 CHALMERS (J Ssibuied Sompuling and Systems

