# Using a Mixture Model for Class-Based Segmentation

# M<u>icr</u>osoft<sup>®</sup> Research

# Florian Schroff<sup>1</sup>

## Andrew Zisserman<sup>1</sup>

# Antonio Criminisi<sup>2</sup>

<sup>1</sup>Robotics Research Group, University of Oxford, Oxford OX1 3PJ <sup>2</sup>Microsoft Research Ltd, Cambridge, UK

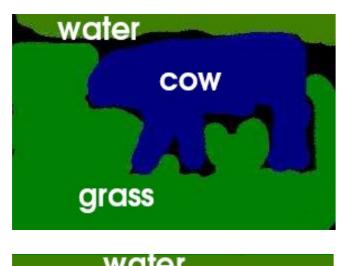
#### 1. INTRODUCTION

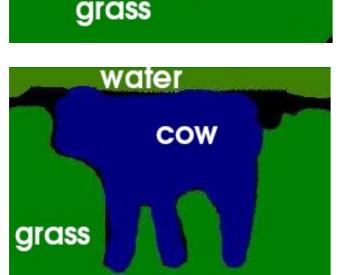
 Pixel-wise segmentation of objects using class models. **GOALS** 

Compact representation of class models.

#### Training data







**Training** 

**Training** 

images

**Testing** 

Testing

images





Visual

vocabulary

Compute

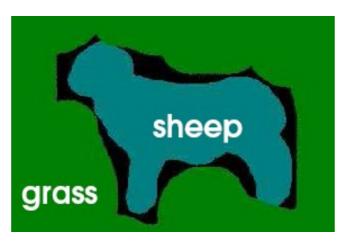
texton maps

Visual

vocabulary

Compute

texton maps

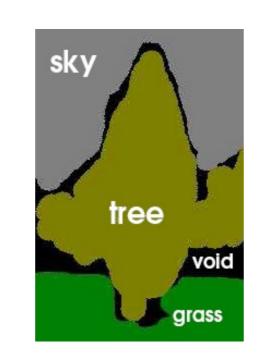




#### Microsoft research Cambridge object recognition database:

- rough pixel-wise segmentation of objects (colours correspond to object classes)
- the objects in one training image are called exemplar in the following





Object class

models

Output

semantic

maps

#### 2. SYSTEM OVERVIEW

Feature

clustering

Extract

dense features

Extract

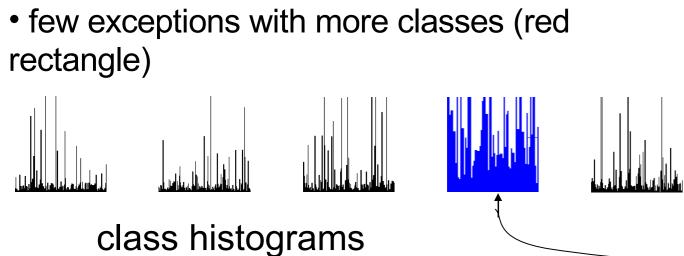
dense features

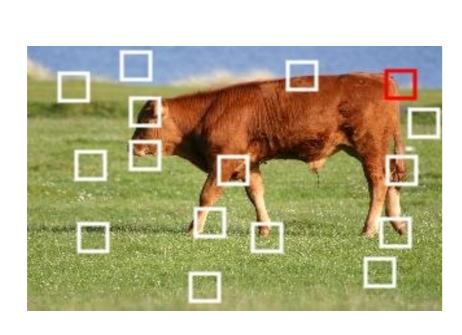
#### **Training**

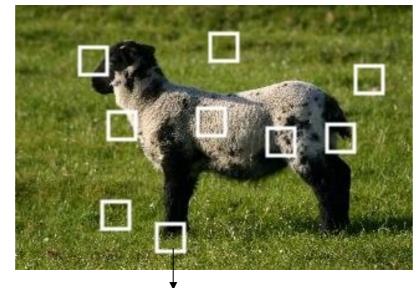
- **S1**: Extract Features: square patches (NxN, dense for each pixel). Raw Lab values are used as descriptor (dim. feature = NxNx3)
- **S2**: Form the visual vocabulary (V words) by vector quantizing the descriptors (k-means clustering)
- S3: Compute textonmaps (assigning the closest visual word to each descriptor)
- **S4**: Learning the class-histograms (class-models)

### **Testing**

- use sliding window, to retrieve pixel-wise classification
- sliding windows (size W) often contain at most two different object classes (white rectangles)
- rectangle)







Learn

class histograms

Object class

models

Pixel-wise

classification





# 3. THE CLASS-MODELS

- class models are histograms of visual words computed from the training images
- $D_{KL}(\mathbf{a} \parallel \mathbf{b}) = \sum_{i} a_{i} \log \frac{a_{i}}{b_{i}}$
- classification is performed by assigning the closest class model histogram to the query histogram. Kullback-Leibler, Eucledian or Chi-Square distance as distance measures are used
- $D_{L2}(\mathbf{a},\mathbf{b}) = \sum (a_i b_i)^2$

#### Single class histograms

- combining the histograms from the training regions into single histograms (class models), in an optimal fashion
- the distance of all exemplar histograms  $n^{j}$  to the single class histogram q'is minimized  $E_{KL}$ , yielding  $\hat{q}$
- $E_{KL} := \sum_{i=1}^{Nc} n^j D_{KL}(\mathbf{p}^j \parallel \mathbf{q}) \quad \text{subject to } \parallel \mathbf{q} \parallel_1 = 1, q_i \ge 0 \ \forall i$

$$\hat{\mathbf{q}} := \frac{\sum_{j} n^{j} \mathbf{p}^{j}}{\sum_{j} n^{j} \parallel \mathbf{p}^{j} \parallel_{1}}$$

#### 4. HISTOGRAM MIXTURE MODEL

- the query histogram is modeled as a mixture of class histograms, thus leading to a mixed classification for each pixel
- the mixture model provides additional cues about the object borders
- it can avoid the training of an additional background class
- $\alpha \mathbf{a} + (1 \alpha)\mathbf{b}$  with  $\mathbf{a} \neq \mathbf{b}$

leads to following minimization for all i,j:

$$\sum_{i=1}^{V} h_i \log \left( \frac{h_i}{\alpha a_i + (1-\alpha)b_i} \right)$$
 subject to  $0 \le \alpha \le 1$ 

### References

- G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categorization with bags of keypoints. In Workshop on Statistical Learning in Computer Vision ECCV pages 1–22 2004
- T. Leung and J. Malik. Recognizing surfaces using three-dimensional textons. In *Proc. ICCV*, pages 1010–1017, Kerkyra, Greece, Sep 1999.
- M. Varma and A. Zisserman. Texture classification: Are filter banks necessary? In *Proc. CVPR*, volume 2,
- pages 691–698, Jun 2003. J. Winn, Criminisi, A., and T. Minka. Object Categorization by Learned Universal Visual Dictionary. *Proc. ICCV*, 2005.

#### 5. EXPERIMENTS

#### **Influence of Parameters:**

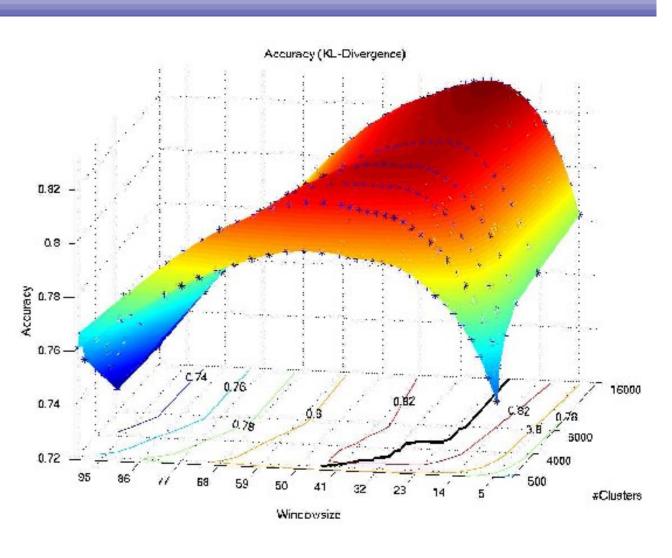
N=3 or 5; V=500 ... 16000; W=2x+1 ( x=5 ... 100 )

 Classification accuracy with different parameters V and W visualized on the right and the table underneath

#### **Pixel-wise classification:**

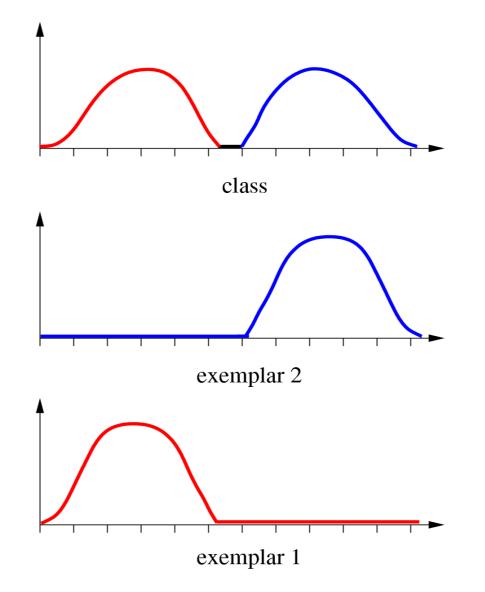
- 9-class database and KL yields 75.2% accuracy (using a Eucledian yields 58.7%)
- Confusion matrix shows pixel-wise classification

| GT\Cl    | building | grass | tree  | cow   | sky   | plane | face  | car   | bicycle |
|----------|----------|-------|-------|-------|-------|-------|-------|-------|---------|
| building | 56.67    | 0.02  | 4.81  | 3.04  | 2.20  | 12.77 | 1.40  | 11.60 | 7.50    |
| grass    | 0.50     | 84.79 | 9.69  | 3.85  |       | 1.15  |       |       | 0.01    |
| tree     | 6.40     | 5.62  | 76.43 | 1.15  | 0.28  | 1.26  |       | 2.41  | 6.45    |
| cow      | 1.90     | 2.42  | 2.66  | 83.82 |       | 0.18  | 4.52  | 3.68  | 0.82    |
| sky      | 6.52     |       | 2.05  | 0.03  | 81.14 | 6.35  |       | 3.89  | 0.01    |
| plane    | 16.75    | 0.80  | 5.00  | 3.39  | 0.14  | 53.83 |       | 16.55 | 3.54    |
| face     | 4.61     | 0.01  | 0.44  | 19.06 |       | 0.62  | 68.51 | 3.58  | 3.17    |
| car      | 7.38     |       | 1.08  | 3.40  | 0.68  | 2.56  | 1.95  | 71.40 | 11.55   |
| bicycle  | 9.87     | 0.07  | 4.76  | 2.93  |       | 1.48  | 0.08  | 8.83  | 71.98   |



| V        | Acc. | w          | Acc. |
|----------|------|------------|------|
| (w = 11) | (%)  | (V = 8000) | (%)  |
| 500      | 79.1 | 5          | 80.3 |
| 1000     | 80.7 | 11         | 82.4 |
| 2000     | 81.7 | 15         | 82.4 |
| 4000     | 82.3 | 20         | 82.1 |
| 8000     | 82.4 | 26         | 81.1 |
| 16000    | 83.0 | 30         | 80   |
|          |      | •          |      |

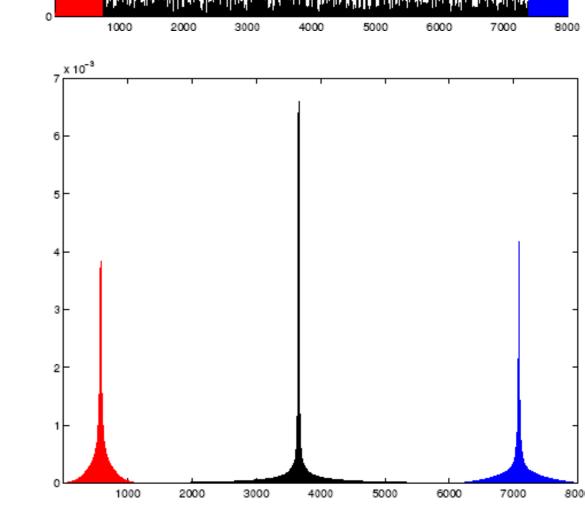
### 6. Kullback-Leibler vs. Euclidian distance



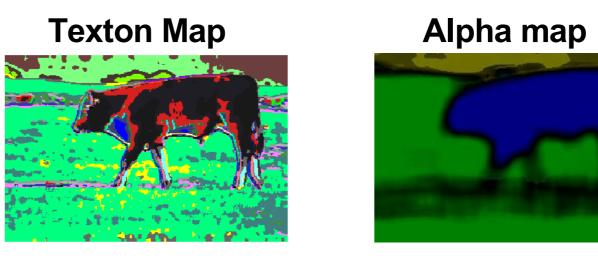
- combination of exemplar histograms into single class histograms leads to multimodal distributions (see cow model on the right, and reordered histogram bins underneath)
- sketch of multi-modal class histogram and corresponding exemplar histograms shown on the left

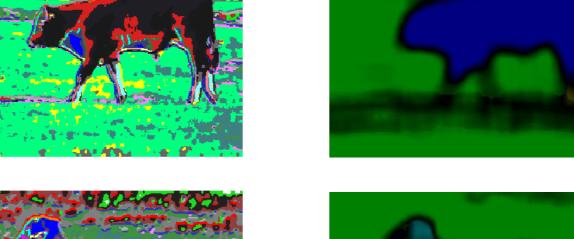
#### Advantages of Kullback-Leibler (KL):

- KL does not penalize missing modes in the query histogram as much as Euclidean distance does
- KL is principally better suited to compare multi-modal distributions

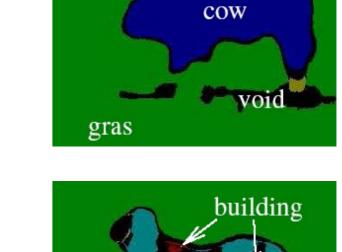


#### 7. SEGMENTATION RESULTS







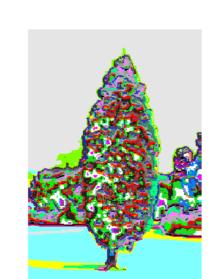


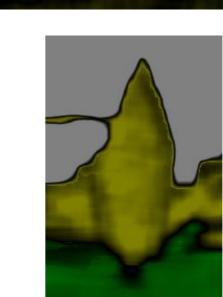
Rejection 0.6

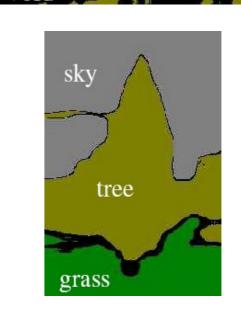


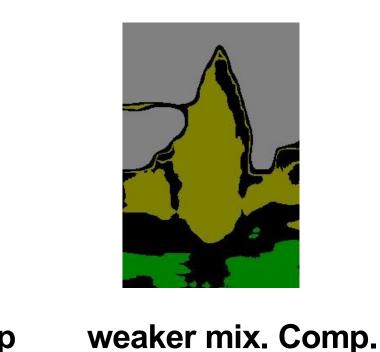
Rejection 0.8



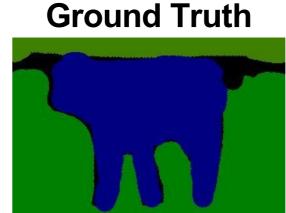


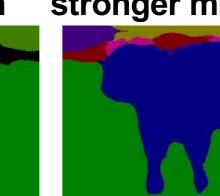


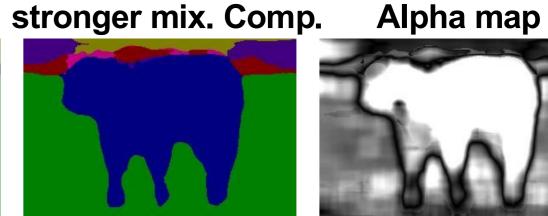














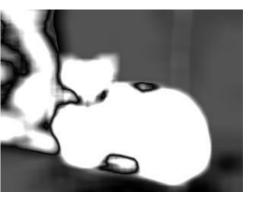


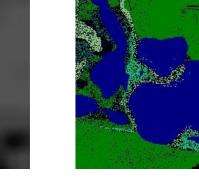












- mixture model weaker mixing component correspondingly the lower weighted component
- a rejection threshold rejects all pixels with either mixing component having a smaller weight than the threshold (0.8 on the right)
- the alpha map visualizes the weight, i.e. the value of alpha

