
Dynamic Dependency GraphsDynamic Dependency Graphs
How much parallelism is out there?How much parallelism is out there?

CONST: 3

SUB: 2

SUB: 1

SUB: 0

CONST: 1

MUL: 1

CONST: 1

CONST: 1

CONST: 1

MUL: 2

MUL: 6

Critical Path

Jonathan Mak & Alan Mycroft

University of Cambridge

Computer Laboratory

Factorial(3)*

Types of dependencyTypes of dependency

To look at realising some of this parallelism, we examine

the various types of dependency that make up the

Dynamic Dependency Graph, and the effect they have on

the available parallelism*.

True dependencies on the StackTrue dependencies on the Stack

On some examples it is found that a lot of true

dependencies on the critical path are due to increments

and decrements of the Stack/Frame Pointers. By

employing a tree-like version of the execution stack

known as a “Spaghetti Stack” we can alleviate this

problem.

* We consider true dependencies for registers and memory locations, and output and anti-dependencies for memory alone, as register renaming,

which can remove output and anti-dependencies for registers, is relatively trivial and standard among today’s processors.

End of the “Free Lunch”End of the “Free Lunch”

The advance of multi-core architectures is forcing

the programming community to think about

extracting parallelism from programs as they won’t

automatically speed up with newer processors.

The Dynamic Dependency GraphThe Dynamic Dependency Graph

As a measure of the parallelism that can possibly

be exploited during the execution of a program, we

built an analyser to examine the execution traces

and construct their “Dynamic Dependency Graphs”.

From such graphs we can extract the critical path

and hence calculate the limit of parallelism

(extending [Wall 1993]), or the time taken in an

ideal world given an unlimited number of processor

cores and zero communication costs.

True dependency

(Read-after-Write)

add r4, r5, r6

sub r2, r3, r4

Anti-dependency

(Write-after-Read)

add r4, r5, r6

sub r6, r2, r3

Output dependency

(Write-after-Write)

add r4, r5, r6

sub r4, r2, r3

mul r7, r4, r8

Control dependency

(Branch/jump)

 beq r2, r3, L

 add r4, r5, r6

L: ...

ConclusionsConclusions

 Many existing programs have lots (100+) of

potential implicit parallelism.

 Speculative execution often leads to an over tenfold

increase in potential parallelism (██ gap on graph)

 Use of “Spaghetti Stack” could further double

potential parallelism for some programs (██ gap on

graph)

Future DirectionsFuture Directions

 Bridging theory (this study) and practice (real

compilers)

 Transforming sequential programs for Thread-level

Speculation

* Usual recursive definition, i.e. Factorial(n) = if (n=0) then 1 else n * Factorial(n-1)

