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Proteins are amino 
acid chains that are formed at the  

ribosome. While initially unfolded, the  
chains usually have to fold into a specific three-
dim ensional ‘native’ structure in order to becom e  

biologically active [1]. This folding event, leading from a  
state of high energy to a minimum energy state, can be 
described as a pathw ay on a ‘free energy landscape’  
 (figure 1): like a skier the protein tries to get from a 

mountain peak into the valley without having to put in 
additional energy. In some cases there might be several 
favourable pathways to do so. However, especially when 
w ith age the body’s quality control m echanism s start to 

weaken, proteins might choose an incorrect folding 
pathway, mis-fold, and form aggregates: they end up in 

the wrong valley from where there is no return. 
 

Such aggregates are believed to trigger  
diseases like A lzheim er’s and  

late onset diabetes [3]. 
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Computational models 
can help defining energy  

landscapes and further our under- 
standing of mis-folding events [4].  

The behaviour of very small molecules can be  
treated via quantum mechanical calculations, but for 

more complex proteins it can only be approximated, for  
example via Molecular Dynamics (MD) computer 

simulations (figure 2). These methods rely on the laws of 
Physics and information obtained from experiments to 

approximate atomic movements.  
We try to increase accuracy and speed of MD simulations 

by using experimental data from Nuclear Magnetic 
Resonance spectroscopy (NMR) [6]. 

 In particular, we presently try predicting a property 
called ‘chem ical shifts’ (c.s.) w hich is a very sensitive 
m easure of an atom ’s atom ic environm ent [7]. B y 

defining penalty functions that depend on the difference  
between calculated c.s. of a simulated protein  

structure and experimental c.s  of a target  
structure we hope to be able to guide  

computer-based folding towards  
that target structure. 

Based on data fitting between  
chemical shift data [13, 14] and protein  

structure [15] a preliminary version of the  
prediction algorithm has been developed.  

The m ain ‘C am Shift’ equation consists of a linear  
combination of terms: 

 

 = c + dbb + dsc + dcb + hb + ar, 
 

where the scalar  on the left hand side is the chemical 
shift value for a given atom and the terms on the right 

depend on inter-atomic distances (dbb, dsc,  dcb), as well 
as capturing more complex hydrogen bonding and 

aromatic ring effects (hb, ar). c is a constant. 

 
At present, this equation was trained with data  

for two different atom types in a protein: 
H and C. 

A number of chemical shift 
predictors exist which use a variety of  

techniques from artificial neural networks 
to protein homology [8-11]. A recent study using 

Random Forests non-linear regression suggest 
that there is room for improvement in all cases [12]. 

 
Our aim is twofold: 

 
- Achieve better performance than current approaches 

 
- Develop a fast-to-compute, easily differentiable 

function that, unlike existing predictors, can easily be 
implemented into MD simulations 

  
 

 
 

In short, future steps will be: 
 
 

- Optimization and extension of terms for c.s.  
contributions 

 
- Extension of the algorithm to work on other atom 

types 
 

- Detailed comparison of predictive performance with  
that of existing predictors 

 
- Implementation of CamShift into Molecular Dynamics 

package 
 

- Applying new implementation to protein  
folding simulations 

 
 

This first version of the predictor achieves a  
root mean square deviation (rmsd) between  

predicted and experimental chemical shifts of  
0.28 ppm1 for H and 1.52 ppm for C, which is  
a significant improvement to the results for an  

uninformed best guess (based on always predicting  
the mean of the sample) resulting in rmsds of  

0.57 ppm for H and 4.9 ppm for C 
 

However, this is not yet as good as other predictors  
that report accuracies of up to 0.23 ppm (H) and  

0.98 ppm (C) in some cases [11]. 
 
 
 
 
 

1ppm = parts per million, the  
unit of chemical shifts 

The foreground graphic shows the side-chain of the natural amino acid tyrosine 

Fig. 1: Schematic representation of a simple 
energy landscape. Different starting structures of 
the same protein travel along the landscape 
towards their native structure, possibly via 
intermediates, or transition states. (from [2]) 

Fig. 2: A Molecular Dynamics simulation box 
containing the protein dihydrofolate reductase and 
water molecules as solvent (from [5]). The 
hundreds of millions of possible pair-wise 
interactions and resulting movements in such 
complex systems can only be approximated. 


