Improving the performance
of Atomic Sections

| Current Work !

= Motivation

Processor manufacturers are no longer increasing clock speeds at the same rate they
have done previously, due to the demands it places on power. Instead, they are now
using increases in transistor density to put multiple processing cores on a chip. To
harness this parallel computing power, software programs need to be multi-threaded.

However, shared memory multi-threaded programming is hard because threads can
interfere with each other when they simultaneously read and write to the same memory
location. Furthermore, such situations, also known as race conditions, can be extremely
difficult to detect and debug because their occurrence depends on the non-
deterministic way in which threads are interleaved.

Currently, programmers prevent such errors by ensuring that conflicting accesses are
mutually exclusive, using locks. However lock-based programming is host to a number
of difficulties itself, including:

* Locks are not always composable

* Locks can introduce deadlock

* Locks break modularity

* Not always possible to lock everything

* Priority inversion, convoying, starvation

Deadlock

T Ta:
Lock(A) Lock(B) Lock(A)

Lock(B) Lock(A) Lock(B)
Access A& B Access A & B | Lock(B)
Unlock(B) Unlock(A) Waiting Lock(A)
Unlock(A) Unlock(B) Waiting Waiting

tomic Sections j

This has led to the proposal of a high-level language construct called an atomic section
that allows programmers to denote the parts of their program that should execute free
of thread interferences but delegate the responsibility of enforcing this to the compiler/
run-time. Semantically, the result of executing multiple atomic sections concurrently is
the same as if they were run in some serial order. This is known as serialisability:

Serialisability

Te: Ta: Access Access

atomic { atomic { A&B or A&B
Access A& B Access A& B Access Access

) } A&B | [A&B

A naive implementation of these semantics would be to acquire/release a global lock.
However, this prevents non-conflicting atomic sections from executing in parallel.
Hence, implementations strive to allow as much concurrency as possible while at the
same time avoiding race conditions and deadlock.

The most popular technique for achieving this is Transactional Memory, which rolls
back updates if a conflict is detected or, with current state-of-the-art implementations,
if deadlock/starvation occurs. Although, this leads to the following problems:

» Irreversible operations, such as I/O and system calls, are hard

» Logging and roll-back can lead to high run-time overhead

\ J)

We are currently looking at how to infer fine-grained locks. The granularity of locking is
tightly coupled with the granularity of the compile-time representation of objects. Some
previous work represents objects by allocation sites. However, this can be coarse, as all
objects constructed by the same statement are protected by the same lock.

Programmers refer to objects in their source code using Ivalues (e.g. x.f). These Ivalues
can refer to any number of objects at run-time. Furthermore, in languages such as Java
where each object is protected by its own lock, the Ivalue not only gives us the run-time
object being accessed but also the unique lock that protects it. Hence, we infer Ivalues.

Our analysis uses finite state automata to precisely represent lvalues that may even
contain unbounded accesses [1]. Furthermore, we can handle aliasing and assignments.

To support such fine-grained locking, we dynamically

detect deadlock at run-time. However, so that no “so, lockynotx” Lock(y)
memory updates are performed by threads involved Tewrite X fo
in a deadlock, (because we cannot rollback), we

acquire all locks together at the start of an atomic

-
section. C O ")
) Unbounded Accesses
We are currently scaling our approach to Java and are

.next
support large programs, we have reformulated our

while (n != null)
n = n.next; n
analysis to be summary-based (IDE analysis). - J
o — "
The main challenge we are currently facing is

imprecision introduced when using the class library. % New atomics wait
For example, PrintStream.println(String) has 1100 A3 Agq

sSis.

access x”
xf=1

(B‘;ckwards anal

implementing it in the Soot framework. In order to

methods reachable from it in its static call graph, exclusive) | ~ T T 7
however, only a fraction of these methods get Y

executed at run-time. Most of these additional 1 : :
methods are due to corner cases. t —————— - F j

To solve this, we are considering a dynamic technique called “exclusivity,” whereby our
analysis ignores code paths that rarely get executed. However, to maintain atomicity
when these paths are ever run, the current atomic section executes in “exclusive” mode.
This means waiting for all other concurrent atomic sections to finish executing, then
resuming execution till the end disallowing new atomic sections from starting. After the
exclusive atomic has finished, new atomics can run again. Such code paths are rare and
thus atomic sections will only rarely execute exclusively. We can also use this technique
for dealing with reflection and unsafe native calls.

-

(]

____Locklnference

Another approach, called lock inference, is to statically infer which locks need to be
acquired for atomicity and automatically insert lock()/unlock() in a way that deadlock is
avoided.

Ti, Ta:
T1, Ta: Lock(A) Lock(A)
ke Apply analysis Lock(B) Lock(B) Lock(A)
R A Waiting
Access A& B H ccess A& B i
Unlock(B) Unlock(B) Waiting
: Unlock(A) Unlock(A) Lock(B)
No deadlock!

The advantages of this approach are:

« It supports irreversible operations

« It provides excellent performance in the common case of no contention
« It has significantly less run-time overhead

In general, the objectives of lock inference are to:

* Maximise concurrency (use fine-grained locks and minimise time spent holding locks)
* Ensure freedom from deadlock (order locks or acquire all locks together)

* Minimise the number of locks (use multiple granularities of locks)

However, lock inference relies heavily on static analysis. Consequently, it has to be
conservative about what to lock. The following make lock inference hard:

* Locks cannot be acquired after a lock has been released (two-phase locking)

* Aliasing

* Loops/recursion

Two-phase locking

Loops - e.g. linked lists

* Large libraries Lock(A) // What do we lock here?
« Reflection Unlock(A) Incorrect while (n != null)

Lock(B, = s
* Native method calls ® DSELICED

. Exciting Future Work

1. Reducing the granularity of locks for unbounded and array accesses. For unbounded
accesses, we consider using ownership types and for array accesses, locking the
subregions of arrays that are accessed.

Loops - currently

Arrays - currently
Lock(Node class) // too coarse
while (n != null)

n = n.next;

Lock(a) // too coarse

for (int i=0; i<a.length/2; i++)
ali] = 2;

2. Reduce the time spent holding locks by identifying the subregions of atomic sections
that conflict with each other on a per-atomic basis and only serialising them. In the
following example, the blue and red conflicts can be serialised independently:

I 02 = process(m)l I listB.size() I

listB.add(1,02)

3. Supporting parallelism inside an atomic section and using it to reduce the time spent
holding a lock by forking off computations that can run in parallel.

| listA.add(o) |

A1

m and n perform
disjoint accesses

4. Considering a hybrid implementation with transactional memory, giving the benefits
of high concurrency from transactional memory, but reduced run-time overhead and
more general support for irreversible operations from locks.

}‘ Publications |

[1] David Cunningham, Khilan Gudka, and Susan Eisenbach. Keep off the grass: Locking
the right path for atomicity. In L.]. Hendren, editor, CC, volume 4959 of Lecture Notes
in Computer Science, pages 276-290. Springer, 2008.

Imperial College
London

Khilan Gudka
Supervisors: Prof. Susan Eisenbach and Tim Harris
More info: http://www.doc.ic.ac.uk/~khilan/

Microsoft

Research

