
Enzymatic Computing

KLAUS-PETER ZAUNER Science and Engineering of Natural Systems School of Electronics and Computer Science University of Southampton, U.K.

Biological Computing Substrates

Outline

Motivation The Past

Biological Substrates What can biology contribute? Macromolecules Cells

Towards Implementation

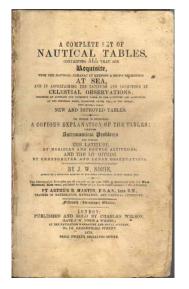
Outline

Motivation The Past

Biological Substrates What can biology contribute? Macromolecules Cells

Towards Implementation

Access to a 19th century database...



Access to a 19th century database...

The idea of the computer as we know it has been conceived in face of an intense need for tables:

- Astronomical tables
- Barometrical tables
- Nautical tables
- Trigonometrical tables
 - :
 - •

A computer in the 1940s (on the chair—not on the table!)

A computer in the 1940s (on the chair—not on the table!)

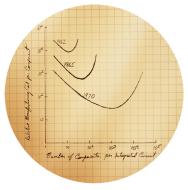
The equivalent of a server room...

Two place accuracy is sufficient. Sec. 3 D = S sec.E [1t.] = D/M.V. 1 590 . = 193 t² in. Jin. N + J [in.] 2D + s lfeet -578 N+J1 5 Min. 2D +s sec .R I [in.] 25 + 8 573 I side ibic. 29 + 8 fump Mean side jump - ---- him. Mean deviation in S. J. ---- Min. Commuted by-----Chapted by -----Date-----

The Present Computing Paradigm

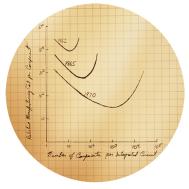
Mechanisation of table calculation

- Fast, simple operations
- Large cycle numbers


Universal Computation... \rightarrow Computer Science focused almost exclusively on processing *time* and memory *space*.

The present computing paradigm: A GEAT SUCCESS!

Exponential progress over 30 years with essentially same operational principle and device structure.


Gordon Moore 1965

No doubt, this will end.

The present computing paradigm: A GEAT SUCCESS!

Gordon Moore 1965

No doubt, this will end.

Exponential progress over 30 years with essentially same operational principle and device structure.

Mechanisation of Table Calculation

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Right approach for any kind of information processing?

Suitable for any computational substrate?

25 N19 26/226

01 N16

Why look for other paradigms?

Efficiency

- ► Turing computable ≠ real-time with a realisable device
- Programmability has high cost

Scope

Programming is limited to compressible maps

Density Driven my material properties

"It is not at all certain that in this domain a real object might not constitute the simplest description of itself, that is, any attempt to describe it by the usual literary or formal-logical method may lead to something less manageable and more involved." John von Neumann, 1948

Outline

Motivation The Past

Biological Substrates What can biology contribute? Macromolecules Cells

Towards Implementation

Life needs Information Processing

- From the very outset living matter had to defend its intricate organisation against the onslaught of entropy.
- Subsequently the need to compete with rivalling life forms required evermore refined information processing.

 \rightarrow As a consequence organisms exhibit an intriguing sophistication in overcoming computationally difficult challenges.

Nature vs. Engineering

Our paradigm

Machines designed to precisely enact a formalism that is arbitrary with regard to the computing substrate.

- Physics of the machine is hidden from the programmer
- Requires high energy barriers to enforce precise control over machine states

Nature's paradigm

No need for predictable behaviour of components and component interaction (but of course repeatability).

- Large number of component interactions
- Course of computation driven by physics and chemistry
- Small amounts of matter sufficient to implement function

Nature vs. Engineering

Our paradigm

Machines designed to precisely enact a formalism that is arbitrary with regard to the computing substrate.

- Physics of the machine is hidden from the programmer
- Requires high energy barriers to enforce precise control over machine states

Nature's paradigm

No need for predictable behaviour of components and component interaction (but of course repeatability).

- Large number of component interactions
- Course of computation driven by physics and chemistry
- Small amounts of matter sufficient to implement function

Nature's Molecular Computers

Seed germination: Complex, ambiguous sensor information has to be evaluated to make a crucial decision: to grow or not to grow.

Bacterial chemotaxis: Molecular motors are controlled according to the fused information from a large number of sensors.

Single cells \rightarrow all information is processed on the molecular level

A Very Brief History of Molecular Computing

1970s First ideas (M. Conrad, 1972; E. Liberman, 1972)

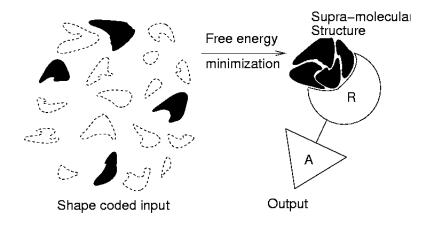
- 1980s Many conceptual architectures, first experiments, Biophysical Institute at Puchino
- 1990s Several prototypes, DNA Computing (R. Birge, 1992; L. Adlemann, 1994; Winfree & Seeman, 1998)
 2000 First commercial application (N. Hampp)

ACM 1985

Bacteriorhodopsin, 2000

Molecules offer:

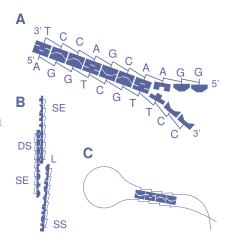
- Reproducable nonlinearity
- Self-assembly (defined shape, additive weak forces)
- High integration density of complex I/O mappings


Self-Assembly Computing

- Molecules are large enough to possess specific shape features.
- Molecules are small enough to explore each other by diffusion.
- Molecules interact through short range, additive electrostatic forces.
- If the shapes of two molecules are complementary, the numerous close contacts allow for potential energy to overcome entropy at relatively high temperature.

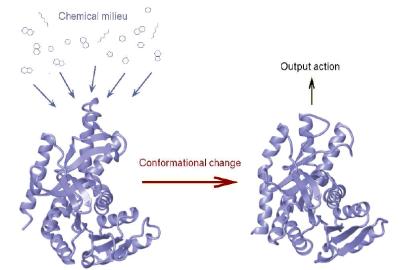
Self-Assembly Computing

Abstract model of self-assembly processing


M. Conrad, 1989

Self-Assembly Computing

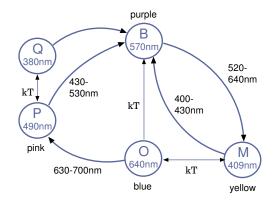
- ► Symbolic pattern recognition → free-energy minimisation
- Protein, RNA, DNA or organic molecules can be employed
- Problem: diffusion does not scale up (Adam & Delbrück 1968)



The self-assembly properties of DNA oligonucleotides are relatively easy to predict.

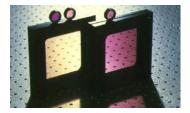
Conformation-based computing

Conformation fuses signals form the chemical context.

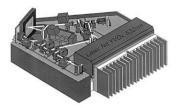


Bacteriorhodopsin: A Photonic Automaton

- Photocycle comprises at least 8 states
- $\blacktriangleright \ B \to M \ transition \\ produces \\ photocurrent$
- ▶ Fastest transition:
 ≈ 50 ps



Transition scheme for BR states commonly employed in information processing applications.



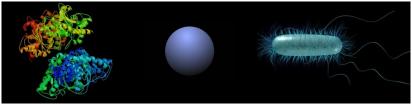
Bacteriorhodopsin: Application

- Commercial application: holographic real-time image processing
- ► BR films with 90 × 90 mm aperture
- Resolution: 5000 lp/mm

- BR can x support processing speed at video frame rate (30 f/s)
- The optical computation in the joint transfrom correlator corresponds to 900 000 × 900 000 pixels

Juchem & Hampp 2000

Cells offer:

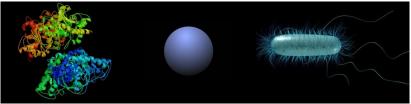

- Cheap and fast nano-engineering (self-reproduction)
- QA build in (testing at point of assembly)
- Replenishment of components
- Self-reconfiguration and self-repair

Vision (50+ years)

Molecular information technology at the border between inanimate and animate matter.

inanimate

animate


Future Information Processors

Vision (50+ years)

Molecular information technology at the border between inanimate and animate matter.

inanimate

animate

Lab-on-chip \rightarrow

Future Information Processors

← Living devices

KLAUS-PETER ZAUNER School of Electronics and Computer Science University of Southampton U.K

Potential Benefits

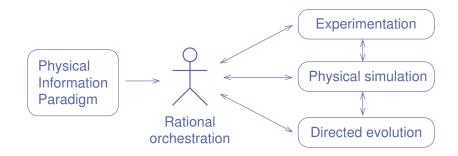
▶ Robotics at mm²-scale

- Bioimmersive devices
- Complexification of matter

Potential Benefits

▶ Robotics at mm²-scale

- Bioimmersive devices
- Complexification of matter


Potential Benefits

- ▶ Robotics at mm²-scale
- Bioimmersive devices
- Complexification of matter

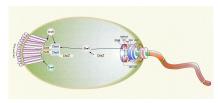
Orchestration of Informed Matter

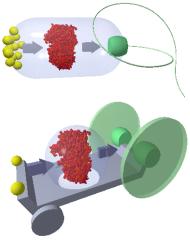
Computer Science needs to be expanded from formal to physical paradigms

Outline

Motivation The Past

Biological Substrates What can biology contribute? Macromolecules Cells


Towards Implementation


Towards artificial devices

Bacterial chemotaxis—sensory signals are processed on the molecular level to control a molecular motor.

We need:

- 1. a Robot
- 2. a Molecular Controller
- 3. an Interface

Molecular Robot Control

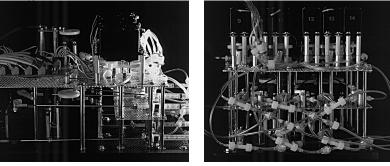
1. The robot: A Braitenberg Vehicle

V. Braitenberg: Experiments in Synthetic Psychology, MIT Press, 1984

Malate Dehydrogenase (MDH)

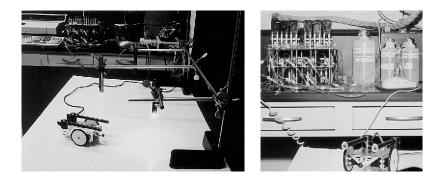
2. The Molecular Controller

L-malate + NAD⁺ \longleftrightarrow oxalacetate + NADH + H⁺ Mg^{2^+} Citrate L-Malate MDH NADH OxalacetateH⁺


Malate dehydrogenase is an enzyme that occurs in a wide variety of species including the microbial world and plants.

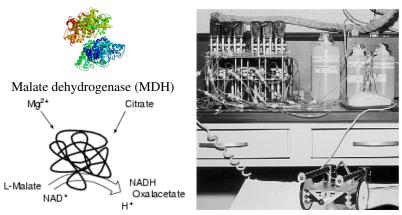
Molecular Robot Control

3. Interfacing



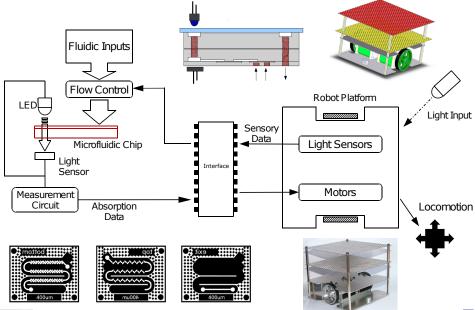
Computer controlled fluidics to transduce signals from the robot's light sensors to chemical signals ("second messengers").

Molecular Robot Control


The chemical signals from the robot's light sensors are processed by the enzyme malate dehydrogenase. The resulting output is detected with a spectrophotometer and used to control the wheels of the robot.

with Naoki Matsumaru and Jeff Pfaffmann

Molecular Robot Control: MDH


Phototaxis of a Braitenberg Vehicle controlled by malate dehydrogenase activity. The nonlinear response of MDH allows the robot to remain within a zone of intermediate light level.

with Naoki Matsumaru and Jeff Pfaffmann

Microfluidics for Enzymatic Robot Control

From Cells to Circuits and back I

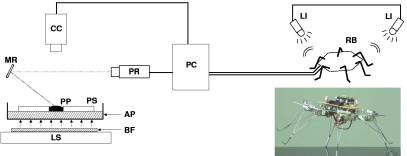
- Single cell (Plasmodium)
- Very robust
- Distributed, parallel, molecular information processing
- Cells can be shaped into circuits of coupled oscillators

Physarum polycephalum

Optical interfacing

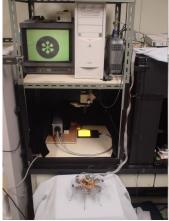
Cellular robot control

Grown in desired shape

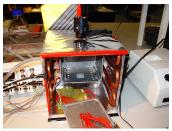


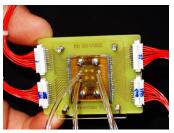
Robot Control With a Cell

Signals from the robot's light sensors are projected onto the channels of the *Physarum* circuit. The oscillations of the cell are mapped onto the robot legs.



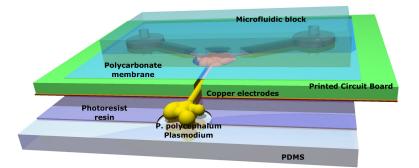
Tsuda, Zauner & Gunji, 2005




Miniaturisation

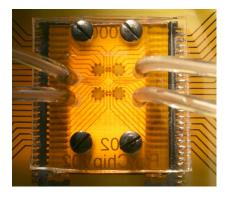
Original setup (2005)

Electronic interfacing (2006)


Integration in chip (2007)

KLAUS-PETER ZAUNER School of Electronics and Computer Science University of Southampton U.K.

Physarum on a chip



with Ferran Revilla and Hywel Morgan

Physarum on a chip

- ▶ Impedance Measurements at 100kHz to 1 MHz
- Supply of water and nutriants
- Optically tarnsparent

with Ferran Revilla and Hywel Morgan

Concluding Remarks

- 1. Interfacing with biological substrates is now becoming feasible in small devices
- 2. We *need new computing paradigms* to elicit efficient computation from the novel bio- and nano-materials that are becoming available
- 3. We need to learn to engineer systems that contain both "programmable" and "non-programmable" components.

Many Thanks to: Michael Conrad Yukio Gunji,Gareth Jones, Tobias Kleeman, Paul Macey, Naoki Matsumaru, Hywel Morgan, Jeff Pfaffmann, Effirul Ramlan, Ferran Revilla, Robert Spanton, Soichiro Tsuda

NASA

Microsoft Research Cambridge

Publications are available at: www.ecs.soton.ac.uk/people/kpz/