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Abstract LETOR is a benchmark collection for the research on learning to rank for

information retrieval, released by Microsoft Research Asia. In this paper, we describe

the details of the LETOR collection and show how it can be used in different kinds

of researches. Specifically, we describe how the document corpora and query sets in

LETOR are selected, how the documents are sampled, how the learning features and

meta information are extracted, and how the datasets are partitioned for comprehensive

evaluation. We then compare several state-of-the-art learning to rank algorithms on

LETOR, report their ranking performances, and make discussions on the results. After

that, we discuss possible new research topics that can be supported by LETOR, in

addition to algorithm comparison. We hope that this paper can help people to gain

deeper understanding of LETOR, and enable more interesting research projects on

learning to rank and related topics.

Keywords Learning to rank · information retrieval · benchmark datasets · feature
extraction

1 Introduction

Ranking is the central problem for many applications of information retrieval (IR).

These include document retrieval [5], collaborative filtering [16], key term extraction
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[9], definition finding [46], important email routing [8], sentiment analysis [29], product

rating [12], and anti web spam [15]. In the task of ranking, given a set of objects, we

utilize a ranking model (function) to create a ranked list of the objects. The relative

order of objects in the list may represent their degrees of relevance, preference, or

importance, depending on applications. Among the aforementioned applications, doc-

ument retrieval is by all means the most important one, and therefore we will take it

as an example when performing the discussions in this paper.

Learning to rank, when applied to document retrieval, is a task as follows. Assume

that there is a corpus of documents. In training, a number of queries are provided;

each query is associated with a set of documents with relevance judgments; a ranking

function is then created using the training data, such that the model can precisely

predict the ranked lists in the training data. In retrieval (i.e., testing), given a new

query, the ranking function is used to create a ranked list for the documents associated

with the query. Since the learning to rank technology can successfully leverage multiple

features for ranking, and can automatically learn the optimal way of combining these

features, it has been gaining increasing attention in recent years. Many learning to rank

methods have been proposed and applied to different IR applications.

To facilitate the research on learning to rank, an experimental platform is sorely

needed, which contains indexed document corpora, selected queries for training and

test, feature vectors extracted for each document, implementation of baseline algo-

rithms, and standard evalaution tools. However, there was no such an environment

and it largely blocked the advancement of the related research. Researchers had to

use their own datasets (i.e., different document corpora, different query sets, differ-

ent features, and/or different evaluation tools), and thus it was not possible to make

meaningful comparison among different methods. This is in sharp contrast with sev-

eral other fields where research has been significantly enhanced by the availabilities of

benchmark collections, such as Reuters 21578 1 and RCV1 [23] for text categorization,

and UCI [1] for general classification. In order to accelerate the research on learning to

rank, we decided to build the benchmark collection LETOR. The construction of such

a collection is, however, not easy, because it requires rich knowledge on the domain and

a lot of engineering efforts. Thanks to the contributions from many people, we were

able to release LETOR and upgrade it for several times.

LETOR was constructed based on multiple data corpora and query sets, which

have been widely used in IR. The documents in the corpora were sampled according

to carefully designed strategies, and then features and metadata were extracted for

each query-document pair. Additional information including hyperlink graph, similarity

relationship, and sitemap was also included. The data was partitioned into five folds for

cross validation, and standard evaluation tools were provided. In addition, the ranking

performances of several state-of-the-art ranking methods were also provided, which can

serve as baselines for newly developed methods.

LETOR has been widely used in the research community since its release. The

first version of LETOR was released in April 2007 and used in the SIGIR 2007 work-

shop on learning to rank for information retrieval (http://research.microsoft.com/

users/LR4IR-2007/). At the end of 2007, the second version of LETOR was re-

leased, which was later used in the SIGIR 2008 workshop on learning to rank for IR

(http://research.microsoft.com/users/LR4IR-2008/). Based on the valuable feed-

1 http://www.daviddlewis.com/resources/testcollections/reuters21578/
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back and suggestions we collected, the third version of LETOR was released in Decem-

ber 2008. The focus of this paper is on the third version 2, LETOR 3.0.

The contributions of LETOR to the research community lie in the following aspects.

(1) It eases the development of ranking algorithms.

Researchers can focus on algorithm development, and do not need to worry about

experimental setup (e.g., creating datasets and extracting features). In that sense,

LETOR has greatly reduced the barrier of the research on learning to rank.

(2) It makes the comparison among different learning to rank algorithms possible.

The standard document corpora, query sets, features, and partitions in LETOR

enable researchers to conduct comparative experiments. The inclusion of baselines

in LETOR also greatly saves researchers’ experimental efforts.

(3) It offers opportunities for new research topics on learning to rank.

In addition to algorithm comparison, LETOR can also be used to study the prob-

lems of ranking model construction, feature creation, feature selection, dependent

ranking, and transfer/multitask ranking.

The remaining part of the paper is organized as follows. We introduce the problem

of learning to rank for IR in Section 2. Section 3 gives a detailed description about

LETOR. Section 4 reports the performances of several state-of-the-art learning to rank

algorithms on LETOR. We then show how LETOR can be used to study other research

topics beyond algorithm comparison in Section 5. Finally limitations of LETOR are

discussed in Section 6 and concluding remarks are given in Section 7.

2 Learning to Rank for IR

There are two major approaches to tackle the ranking problems in IR: the learning

to rank approach and the traditional non-learning approach such as BM25 [38] and

language model [51].

The main difference between the two approaches lies in that the former can au-

tomatically learn the parameters of the ranking function using training data, while

the latter usually determines the parameters heuristically. If a ranking model has only

several parameters, heuristic tuning can be possible. However, if there are many pa-

rameters, it will become very difficult. As more and more evidences have been proved

as useful for ranking, the traditional non-learning approach will face challenges in ef-

fectively using these evidences.

In contrast, the learning to rank approach can make good use of multiple evidences.

Therefore learning to rank has been drawing broad attention in both machine learn-

ing and IR communities, and many learning to rank algorithms have been proposed

recently. Roughly speaking, there are mainly three kinds of algorithms, namely, the

pointwise approach [25,24], the pairwise approach [17,13,4,42,36,26], and the listwise

approach [6,35,45,20,47,40,50,33,34,43,31].

The pointwise approach regards a single document as its input in learning and

defines its loss function based on individual documents. According to different out-

put spaces of the ranking function, the pointwise approach can be further categorized

as regression based algorithms [25], classification based algorithms [25], and ordinal

regression based algorithms [24].

2 The latest version when the paper was submitted.
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The pairwise approach takes document pairs as instances in learning, and formalizes

the problem of learning to rank as that of pairwise classification. Specifically, in learning

it collects or generates document pairs from the training data, with each document

pair assigned a label representing the relative order of the two documents. It then

trains a ranking model by using classification technologies. The uses of Support Vector

Machines (SVM), Boosting, and Neural Network as the classification model lead to

the methods of Ranking SVM [17], RankBoost [13], and RankNet [4]. Many other

algorithms have also been proposed, such as FRank [42], multiple hyperplane ranker

[36] and nested ranker [26].

The listwise approach takes document lists as instances in learning and the loss

function is defined on that basis. Representative work includes ListNet [6], RankCosine

[35], relational ranking [34], global ranking [33], and StructRank [20]. A sub branch of

the listwise approach is usually referred to as the direct optimization of IR measures.

Example algorithms include AdaRank [47], SoftRank [40], SVM-MAP [50], PermuRank

[48], ApproxRank [31], and BoltzRank [43].

3 Creating LETOR Collection

In this section, we introduce the processes of creating the LETOR collection, includ-

ing four main steps: selecting document corpora (together with query sets), sampling

documents, extracting learning features and meta information, and finalizing datasets.

3.1 Selecting Document Corpora

In the LETOR collection, we selected two document corpora: the “Gov” corpus and the

OHSUMED corpus. These two corpora were selected because (1) they were publicly

available [44] and (2) they had been widely used by previous work on ranking in the

literature of IR [5,11,10,38].

3.1.1 The “Gov” Corpus and Six Query Sets

In TREC 2003 and 2004, there is a special track for web IR, named the Web track [11,

10]. The tracks used the “Gov” corpus, which is based on a January, 2002 crawl of the

“Gov” domain. There are about one million html documents in this corpus.

Three search tasks are defined in the Web track: topic distillation (TD), homepage

finding (HP) and named page finding (NP). Topic distillation aims to find a list of

entry points of good websites principally devoted to the topic. The focus is to return

entry pages of good websites rather than the web pages containing relevant information,

because entry pages provide a better overview of the websites. Homepage finding aims

at returning the homepage of the query. Named page finding is about finding the page

whose name is identical to the query. In principle, there is only one answer for homepage

finding and named page finding. Many papers [36,47,32,49] have been published using

the three tasks on the “Gov” corpus as the basis for evaluation.

The following example illustrates the differences among these three tasks [41]. Con-

sider the query ‘USGS’, which is the acronym for the US Geological Survey.
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Table 1 Number of queries in TREC Web track

Task TREC2003 TREC2004

Topic distillation 50 75
Homepage finding 150 75
Named page finding 150 75

– For topic distillation, the query means “find for me homepages of sites describing

the US Geological Survey”. Possible answers include http://www.usgs.gov, http:

//water.usgs.gov, http://geography.usgs.gov, http://earthquake.usgs.gov.

– For homepage finding, the query means “find for me the URL of the USGS home-

page (http://www.usgs.gov). I have forgotten or do not know that URL, or I

prefer typing ‘usgs’ to typing the full URL”. The right answer is exactly http:

//www.usgs.gov.

– For named page finding , the query may mean find me the URL of a non-homepage

e.g. searching for http://www.usgs.gov/aboutusgs.html with the query ‘introduc-

tion to usgs’. The query is the name of the page in question (rather than e.g. words

describing its topic).

The numbers of queries in these three tasks are shown in Table. 1. For simplicity,

we use acronyms in following sections: TD2003 for the topic distillation query set in

TREC2003, TD2004 for the topic distillation query set in TREC2004, NP2003 for

the named page finding query set in TREC2003, NP2004 for the named page finding

query set in TREC2004, HP2003 for the homepage finding query set in TREC2003,

and HP2004 for the homepage finding query set in TREC2004.

3.1.2 The OHSUMED Corpus

The OHSUMED corpus [18] is a subset of MEDLINE, a database on medical publica-

tions. It consists of about 0.3 million records (out of over 7 million) from 270 medical

journals during the period of 1987-1991. The fields of a record include title, abstract,

MeSH indexing terms, author, source, and publication type.

A query set with 106 queries on the OHSUMED corpus has been widely used in

previous work [36,47], in which each query describes a medical search need (associated

with patient information and topic information). The relevance degrees of the docu-

ments with respect to the queries are judged by human annotators, on three levels:

definitely relevant, partially relevant, and irrelevant. There are in total 16,140 query-

document pairs with relevance judgments.

3.2 Sampling Documents

Due to the large scale of the corpora, it is not feasible to judge the relevance of all the

documents to a given query. As a common practice in IR, given a query, only some

“possibly” relevant documents are selected for judgment. For similar reasons, it is not

necessary to extract feature vectors from all the documents in the corpora. A reasonable

approach is to sample some “possibly” relevant documents, and then extract feature

vectors from the corresponding query-document pairs. In this section, we introduce the

sampling strategy used in the construction of LETOR.
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For the “Gov” corpus, given a query, the annotators organized by the TREC com-

mittee labeled some relevant documents. For the remaining unlabeled documents, the

TREC committee treated them as irrelevant in the evaluation process [11]. Follow-

ing this practice, in LETOR, we also treated the unlabeled documents for a query

as irrelevant. Specifically, following the suggestions in [30] and [27], we performed the

document sampling in the following way. We first used the BM25 model to rank all

the documents with respect to each query, and then selected the top 1000 documents

for each query for feature extraction. Note that for some rare queries, less than 1000

documents can be retrieved. As a result, some queries have less than 1000 associated

documents in LETOR.

Different from the “Gov” corpus in which unjudged documents are regarded as

irrelevant, in OHSUMED, the judgments explicitly contain the category of “irrelevant”

and the unjudged documents are ignored in evaluation [18]. Following this practice,

we only sampled judged documents for feature extraction and ignored the unjudged

documents. As a result, on average, a query has about 152 documents associated for

feature extraction.

3.3 Extracting Learning Features

In IR, given a query, we would like to rank a set of documents according to their

relevance and importance to the query. In learning to rank, each query-document pair

is represented by a multi-dimensional feature vector, and each dimension of the vector

is a feature indicating how relevant or important the document is with respect to the

query. For example, the first element of the vector could be the BM25 score of the

document with regards to the query; the second element could be the frequency of the

query terms appearing in the document; and the third one could be the PageRank

score of the document. In this section, we introduce how the features in LETOR were

extracted.

The following principles were used in the feature extraction process of LETOR.

(1) To cover as many classical features in IR as possible.

(2) To reproduce as many features proposed in recent SIGIR papers as possible, which

were used in the experiments on the OHSUMED corpus or the “Gov” corpus.

(3) To conform to the settings in the original documents or papers. If the authors

suggested parameter tuning on a feature, parameter tuning was also conducted in

the feature extraction of LETOR. Otherwise, the default parameters reported in

the documents or papers were directly applied.

The feature file in LETOR is formatted in a matrix style. A sample file is shown in

Figure 1. Each row represents a query-document pair. The first column is the relevance

judgment of the query-document pair; the second column is the query ID, followed with

the feature ID and feature values.

3.3.1 Extracting Features for the “Gov” Corpus

For the “Gov” corpus, we extracted 64 features in total for each query-document pair,

as shown in Table 2. Note that the id of each feature in this table is the same as in the

LETOR datasets. We categorized the features into three classes: Q-D means that the
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Fig. 1 Sample data from LETOR

feature is dependent on both the query and the document, D means that the feature

only depends on the document, and Q means that the feature only depends on the

query. Here we would like to point out that a linear ranking function cannot make use

of the class-Q features, since these features are the same for all the documents under

a query.

Table 2: Learning Features for the “Gov” Corpus

ID Feature Description Category

1
∑

qi∈q∩d c(qi, d) in body Q-D

2
∑

qi∈q∩d c(qi, d) in anchor Q-D

3
∑

qi∈q∩d c(qi, d) in title Q-D

4
∑

qi∈q∩d c(qi, d) in URL Q-D

5
∑

qi∈q∩d c(qi, d) in whole document Q-D

6
∑

qi∈q idf(qi) in body Q

7
∑

qi∈q idf(qi) in anchor Q

8
∑

qi∈q idf(qi) in title Q

9
∑

qi∈q idf(qi) in URL Q

10
∑

qi∈q idf(qi) in whole document Q

11
∑

qi∈q∩d c(qi, d) · idf(qi) in body Q-D

12
∑

qi∈q∩d c(qi, d) · idf(qi) in anchor Q-D

13
∑

qi∈q∩d c(qi, d) · idf(qi) in title Q-D

14
∑

qi∈q∩d c(qi, d) · idf(qi) in URL Q-D

15
∑

qi∈q∩d c(qi, d) · idf(qi) in whole

document

Q-D

16 |d| of body D

17 |d| of anchor D

18 |d| of title D

19 |d| of URL D

20 |d| of whole document D
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21 BM25 of body Q-D

22 BM25 of anchor Q-D

23 BM25 of title Q-D

24 BM25 of URL Q-D

25 BM25 of whole document Q-D

26 LMIR.ABS of body Q-D

27 LMIR.ABS of anchor Q-D

28 LMIR.ABS of title Q-D

29 LMIR.ABS of URL Q-D

30 LMIR.ABS of whole document Q-D

31 LMIR.DIR of body Q-D

32 LMIR.DIR of anchor Q-D

33 LMIR.DIR of title Q-D

34 LMIR.DIR of URL Q-D

35 LMIR.DIR of whole document Q-D

36 LMIR.JM of body Q-D

37 LMIR.JM of anchor Q-D

38 LMIR.JM of title Q-D

39 LMIR.JM of URL Q-D

40 LMIR.JM of whole document Q-D

41 Sitemap based term propagation Q-D

42 Sitemap based score propagation Q-D

43 Hyperlink based score propagation:

weighted in-link

Q-D

44 Hyperlink based score propagation:

weighted out-link

Q-D

45 Hyperlink based score propagation:

uniform out-link

Q-D

46 Hyperlink based propagation:

weighted in-link

Q-D

47 Hyperlink based feature propaga-

tion: weighted out-link

Q-D

48 Hyperlink based feature propaga-

tion: uniform out-link

Q-D

49 HITS authority Q-D

50 HITS hub Q-D

51 PageRank D

52 HostRank D

53 Topical PageRank Q-D

54 Topical HITS authority Q-D

55 Topical HITS hub Q-D

56 Inlink number D

57 Outlink number D

58 Number of slash in URL D

59 Length of URL D

60 Number of child page D
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61 BM25 of extracted title Q-D

62 LMIR.ABS of extracted title Q-D

63 LMIR.DIR of extracted title Q-D

64 LMIR.JM of extracted title Q-D

Some details about these features are listed as below.

(1) We considered five streams/fields [37] of a document: body, anchor, title, URL, and

their union.

(2) q represents a query, which contains terms q1, ..., qt. In the two corpora, a query is

expressed by two parts: the title of the query and the description of the query. Here

we only considered the words appearing in the title of the query as query terms for

feature extraction.

(3) c(qi, d) denotes the number of occurrences of query term qi in document d. Note that

while talking about a stream (e.g. title), c(qi, d) means the number of occurrences

of qi in the specific stream (e.g., title) of document d.

(4) Inverse document frequency (IDF) of query term qi was computed as follows,

idf(qi) = log
|C| − df(qi) + 0.5

df(qi) + 0.5
, (1)

where document frequency df(qi) is the number of documents containing qi in a

stream, and |C| is the total number of documents in the document collection. Note

that IDF is document-independent, and all the documents associated with the same

query has the same IDF value.

(5) |d| denotes the length (i.e., the number of words) of document d. When considering

a specific stream, |d| means the length of the stream. For example, |d| of body

means the length of the body of document d.

(6) The BM25 score of a document d was computed as follows,

BM25(d, q) =
∑
qi∈q

idf(qi) · c(qi, d) · (k1 + 1)

c(qi, d) + k1 · (1− b+ b · |d|
avgdl )

· (k3 + 1)c(qi, q)

k3 + c(qi, q)
, (2)

where avgdl denotes the average document length in the entire document corpus.

k1, k3 and b are free parameters. In feature 21-25 and 61, we set k1 = 2.5, k3 = 0

and b = 0.8. The avgdl for each stream can be obtained from meta information, as

described in the next sub section.

(7) For the language model features (26-40, 62-64), the implementation and the sug-

gested parameters given in [51] were used. For the LMIR.ABS features, we set pa-

rameter δ = 0.7; for LMIR.DIR features, we set parameter µ = 2000; for LMIR.JM

features, we set parameter λ = 0.1.

(8) For sitemap-based propagation features (41-42), we set the propagation rate α = 0.9

according to [32]. For hyperlink based propagation features (43-48), we set the

propagation rate α = 0.85 according to [39].

(9) Because the original PageRank score of a document is usually very small, we am-

plified it by 105. We also scaled up the original HostRank score by 103.

(10) For topical PageRank and topical HITS, the same twelve categories as in [28] were

used.
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(11) To count the number of children of a web page (for feature 60), we simply used

the URLs of documents to recover parent-child relationship between any two web

pages.

(12) Extracted title was extracted from the content of a html document [19], and it is

sometimes more meaningful than the original title of the html document.

3.3.2 Extracting Features for the OHSUMED Corpus

For the OHSUMED corpus, there are in total 45 features extracted from the steams/fields

of title, abstract, and ‘title + abstract’, as shown in Table 3. Note that the id of each

feature in this table is the same as in the LETOR datasets. We categorized the fea-

tures into two classes: Q-D means that the feature depends on both the query and the

document, and Q means that the feature only depends on the query.

Some details about these features are listed as below.

(1) For the language model features (13-15, 28-30, 43-45), the implementation and

suggested parameters given in [51] were used: for LMIR.ABS features, we set pa-

rameter δ = 0.5; for LMIR.DIR features, we set parameter µ = 50; for LMIR.JM

features, we set parameter λ = 0.5.

(2) For BM25 feature, we set its parameters as k1 = 1.2, k3 = 7 and b = 0.75.

3.4 Extracting Meta Information

In addition to the learning features, meta information that can be used to reproduce

these learning features and even to create new features is also provided in LETOR.

With the help of the meta information, one can conduct research on feature engineering,

which is very important to learning to rank. For example, one can tune the parameters

in existing learning features such as BM25 and LMIR, or investigate new features.

There are three kinds of meta information. The first is about the statistical informa-

tion of a corpus; the second is about the raw information of the documents associated

with a query; and the third is about the relationship among documents in a corpus.

Corpus meta information

An xml file was created to contain the information about the corpus, as shown in

Figure. 2. As can be seen from the figure, this file contains the number of documents,

the number of streams, the number of (unique) terms in each stream, and so on. One

can easily obtain quantities like avgdl based on such information.

Query meta information

An xml file was created for each individual query, as shown in Figure. 3, containing

the raw information about the query and its associated documents. Line 3 in the figure

indicates the ID of the query, which comes from the original corpus. Other information

includes streaminfo, terminfo, and docinfo.

(1) The node “streaminfo” (line 5-10 in Figure 3) describes the statistical information

of query terms with respect to each stream. If there are n streams in the corpus,

there will be n “stream” nodes under the “streaminfo” node. The node “streamid”

is consistent with the XML file containing the corpus information. We say that “a
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Table 3 Learning Features for the OHSUMED Corpus

ID Feature Description Category
1

∑
qi∈q∩d c(qi, d) in title Q-D

2
∑

qi∈q∩d log (c(qi, d) + 1) in title Q-D

3
∑

qi∈q∩d
c(qi,d)

|d| in title Q-D

4
∑

qi∈q∩d log
(

c(qi,d)
|d| + 1

)
in title Q-D

5
∑

qi∈q log
(

|C|
df(qi)

)
in title Q

6
∑

qi∈q log
(
log

(
|C|

df(qi)

))
in title Q

7
∑

qi∈q log
(

|C|
c(qi,C)

+ 1
)
in title Q

8
∑

qi∈q∩d log
(

c(qi,d)
|d| · log

(
|C|

df(qi)

)
+ 1

)
in title Q-D

9
∑

qi∈q∩d c(qi, d) · log
(

|C|
df(qi)

)
in title Q-D

10
∑

qi∈q∩d log
(

c(qi,d)
|d| · |C|

c(qi,C)
+ 1

)
in title Q-D

11 BM25 of title Q-D
12 log(BM25) of title Q-D
13 LMIR.DIR of title Q-D
14 LMIR.JM of title Q-D
15 LMIR.ABS of title Q-D
16

∑
qi∈q∩d c(qi, d) in abstract Q-D

17
∑

qi∈q∩d log (c(qi, d) + 1) in abstract Q-D

18
∑

qi∈q∩d
c(qi,d)

|d| in abstract Q-D

19
∑

qi∈q∩d log
(

c(qi,d)
|d| + 1

)
in abstract Q-D

20
∑

qi∈q log
(

|C|
df(qi)

)
in abstract Q

21
∑

qi∈q log
(
log

(
|C|

df(qi)

))
in abstract Q

22
∑

qi∈q log
(

|C|
c(qi,C)

+ 1
)
in abstract Q

23
∑

qi∈q∩d log
(

c(qi,d)
|d| · log

(
|C|

df(qi)

)
+ 1

)
in abstract Q-D

24
∑

qi∈q∩d c(qi, d) · log
(

|C|
df(qi)

)
in abstract Q-D

25
∑

qi∈q∩d log
(

c(qi,d)
|d| · |C|

c(qi,C)
+ 1

)
in abstract Q-D

26 BM25 of abstract Q-D
27 log(BM25) of abstract Q-D
28 LMIR.DIR of abstract Q-D
29 LMIR.JM of abstract Q-D
30 LMIR.ABS of abstract Q-D
31

∑
qi∈q∩d c(qi, d) in ‘title + abstract’ Q-D

32
∑

qi∈q∩d log (c(qi, d) + 1) in ‘title + abstract’ Q-D

33
∑

qi∈q∩d
c(qi,d)

|d| in ‘title + abstract’ Q-D

34
∑

qi∈q∩d log
(

c(qi,d)
|d| + 1

)
in ‘title + abstract’ Q-D

35
∑

qi∈q log
(

|C|
df(qi)

)
in ‘title + abstract’ Q

36
∑

qi∈q log
(
log

(
|C|

df(qi)

))
in ‘title + abstract’ Q

37
∑

qi∈q log
(

|C|
c(qi,C)

+ 1
)
in ‘title + abstract’ Q

38
∑

qi∈q∩d log
(

c(qi,d)
|d| · log

(
|C|

df(qi)

)
+ 1

)
in ‘title + abstract’ Q-D

39
∑

qi∈q∩d c(qi, d) · log
(

|C|
df(qi)

)
in ‘title + abstract’ Q-D

40
∑

qi∈q∩d log
(

c(qi,d)
|d| · |C|

c(qi,C)
+ 1

)
in ‘title + abstract’ Q-D

41 BM25 of ‘title + abstract’ Q-D
42 log(BM25) of ‘title + abstract’ Q-D
43 LMIR.DIR of ‘title + abstract’ Q-D
44 LMIR.JM of in ‘title + abstract’ Q-D
45 LMIR.ABS of in ‘title + abstract’ Q-D
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<?xml version="1.0" encoding="utf-8"?>
<collectioninfo>
  <name>OHSUMED</name>
  <docnum>348566</docnum>
  <streamnum>3</streamnum>
  <stream>
    <streamid>1</streamid>
    <streamdescription>Title</streamdescription>
    <uniquetermnum>53613</uniquetermnum>
    <totaltermnum>2770138</totaltermnum>
  </stream>
  <stream>
    <streamid>2</streamid>
    <streamdescription>Abstract</streamdescription>
    <uniquetermnum>120208</uniquetermnum>
    <totaltermnum>23680877</totaltermnum>
  </stream>
  <stream>
    <streamid>3</streamid>
    <streamdescription>Title and Abstract</streamdescription>
    <uniquetermnum>126335</uniquetermnum>
    <totaltermnum>26451015</totaltermnum>
  </stream>
</collectioninfo>

Fig. 2 XML file to describe a corpus

term appears in a stream (e.g., title) of a corpus” if this term is included in the

stream (e.g., title) of at least one document in the corpus. The element “stream-

specificquerylength” refers to the number of query terms that appear in this specific

stream. It is a building block for language model features.

(2) The node “terminfo” (line 12-23 in Figure 3) contains the information of each query

term with respect to each individual stream. We processed queries by stemming

and removing stop words, and as a result the queries here may be a little differ-

ent from the original ones. The node “termnum” indicates the total number of

terms in this query. The node “streamfrequency” indicates the number of docu-

ments in the corpus that contain the query term in stream “streamid”. The node

“streamtermfrequency” indicates the times that a query term appears in stream

“streamid” of all the documents in the corpus. A node “term” may contain multiple

“streams” as its child nodes, depending on the number of streams in the corpus; a

node “terminfo” may have multiple “terms” as its child nodes, depending on the

number of terms in the query.

(3) The node “docinfo” (line 25-40 in Figure 3) plays a role similar to the forward

index [3], but is limited to the query terms and the selected documents. The node

“docnum” indicates the number of documents selected for a query, followed by the

information of these selected documents. Here “docid” is consistent with the files

containing the learning features. The node “label” refers to the judgment of the

document with regards to a query. The node “length” under the node “stream”

means the total number of words (not limited to the query terms) in the stream

of a document, and the node “uniquelength” means the number of unique words

contained in the stream of a document. The node “termfrequency” indicates the

times that a query term appears in the stream of a document. Similarly, a node

“docinfo” may contain multiple child nodes of “doc”; a node “doc” may contain

multiple nodes of “stream”; and a node“stream” may contain multiple child nodes

of “term”.
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1 <?xml version="1.0" encoding="utf-8"?>
2 <query>
3   <id>xxx</id>
4
5   <streaminfo>
6     <stream> 
7       <streamid>1</streamid>
8       <streamspecificquerylength>4</streamspecificquerylength>
9     </stream>

10   </streaminfo>
11
12   <terminfo>
13     <termnum>xxx</termnum>
14     <term>   
15       <termid>xxx</termid>
16       <word>xxx</word>
17       <stream>
18         <streamid>xxx</streamid>
19         <streamfrequency>xxx</streamfrequency>
20         <streamtermfrequency>xxx</streamtermfrequency>
21       </stream>
22     </term>
23   </terminfo>
24
25   <docinfo>
26     <docnum>xxx</docnum>
27     <doc>
28       <docid>xxx</docid>
29       <label>xxx</label>
30       <stream>
31         <streamid>xxx</streamid>
32         <length>xxx</length>
33         <uniquelength>xxx</uniquelength>
34         <term>
35           <termid>xxx</termid>
36           <termfrequency>xxx</termfrequency>
37         </term>
38       </stream>
39     </doc>
40   </docinfo>
41
42 </query>

Fig. 3 XML file to describe a query

Additional meta information

As requested by researchers working on learning to rank, we have created several

additional files that contain the hyperlink graph, the sitemap information, and the

similarity relationship matrix of the corpora. The hyperlink graph and the sitemap

information (built by analyzing URLs of all the documents according to some heuristic

rules) are specific for the “Gov” corpus. With the data, one can study link analysis

algorithms and relevance propagation algorithms [32]. The similarity matrix is provided

for the OHSUMED corpus, which describes the similarity between all the sampled

documents associated with a query. With such kind of information, one can study the

problem of dependent ranking [52,34,33].
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Table 4 Data Partitioning for five-fold Cross Validation

Folds Training set Validation set Test set
Fold1 {S1,S2,S3} S4 S5
Fold2 {S2,S3,S4} S5 S1
Fold3 {S3,S4,S5} S1 S2
Fold4 {S4,S5,S1} S2 S3
Fold5 {S5,S1,S2} S3 S4

3.5 Finalizing Datasets

As described in Section 3.1, there are seven datasets in the LETOR collection: TD2003,

TD2004, NP2003, NP2004, HP2003, HP2004, and OHSUMED. There are three versions

for each dataset: Feature NULL, Feature MIN, and QueryLevelNorm.

(1) Feature NULL: Since some documents may not contain query terms in certain

streams (such as URL), we used “NULL” to indicate that the corresponding feature

is absent for a query-document pair. One may need to preprocess these “NULL”

values before applying a learning to rank algorithm. One can also study how to

handle such absent features [7] with this version of data.

(2) Feature MIN : In this version, the “NULL” values have been replaced by the min-

imal value of a feature in all the documents associated with a given query. This

version of dataset can be directly used for learning.

(3) QueryLevelNorm: Taking into consideration that the values of different features

or different queries may vary largely, this version further conducted query-level

normalization of the feature values based on the Feature MIN version.

We partitioned each dataset into five parts with about the same number of queries,

denoted as S1, S2, S3, S4, and S5, for five-fold cross validation. In each fold, we propose

using three parts for training, one part for validation, and the remaining part for test

(See Table 4). The training set is used to learn ranking models. The validation set

is used to tune the hyper parameters of the learning algorithms, such as the number

of iterations in RankBoost and the combination coefficient in the objective function

of Ranking SVM. The test set is used to evaluate the performance of the learned

ranking models. Note that since we conducted five-fold cross validation, the reported

performance of a ranking method is actually the average performance over the five

trials.

The LETOR collection, containing the aforementioned feature representations of

documents, their relevance judgments with respective to queries, and the partitioned

training, validation and test sets, can be downloaded from http://research.microsoft.

com/~letor/.

4 Benchmarking the Collection

On top of the data collections introduced above, standard evaluation tools and the eval-

uation results for several represenatative learning to rank algorithms are also provided

in LETOR. The availability of these baseline results can ease the comparison between

existing algorithms and newly designed algorithms, and ensure the objectiveness and

correctness of the comparison.
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In this section, we will introduce the experimental settings for the evaluation of the

baselines algorithms, and make discussions on the experimental results.

4.1 Evaluation Measures and Tools

Three widely used measures were adopted for evaluation: precision at position k [2],

average precision (AP) [2], and normalized discounted cumulative gain (NDCG) [21].

Precision at Position k (P@k)

P@k is a measure for evaluating top k positions of a ranked list using two levels

(relevant and irrelevant) of relevance judgment:

P@k =
1

k

k∑
j=1

rj , (3)

where k denotes the truncation position and

rj =

{
1 if document in j-th position is relevant,

0 otherwise.

For a set of queries, we averaged the P@k values of all the queries to get the

mean P@k value. Since P@k requires binary judgments while there are three levels of

relevance judgments in the OHSUMED corpus, we simply propose treating “definitely

relevant” as relevant and the other two levels as irrelevant when computing P@k.

Average Precision (AP)

Average precision (AP), another measure based on two levels of relevance judgment,

is defined on the basis of P@k:

AP =
1

|D+|

N∑
j=1

rj × P@j, (4)

where N indicates the number of retrieved documents and |D+| denotes the number

of relevant documents with respect to the query. Given a ranked list for a query, we

can compute AP for this query. Then MAP is defined as the mean of AP over a set of

queries.

Normalized Discount Cumulative Gain (NDCG)

NDCG@k is a measure for evaluating top k positions of a ranked list using multiple

levels (labels) of relevance judgment. It is defined as follows,

NDCG@k = N−1
k

k∑
j=1

g(rj)d(j), (5)

where k has the same meaning as in Eq (3);Nk denotes the maximum3 of
∑k

j=1 g(rj)d(j);

rj denotes the relevance level of the document ranked at the j-th position; g(rj) denotes

a gain function:

g(rj) = 2rj − 1;

3 The maximum is obtained when the documents are ranked in the perfect order.
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and d(j) denotes a discount function:

d(j) =

{
1 for j = 1, 2

1
log2(j)

otherwise.

Note that in order to calculate NDCG scores, we need to define the rating of each

document. For the OHSUMED dataset, we defined three ratings 0, 1, 2, correspond-

ing to “irrelevant”, “partially relevant”, and “definitely relevant” respectively; and for

the other six datasets, we defined two ratings 0, 1 corresponding to “irrelevant” and

“relevant”.

To avoid differences in the evaluation results due to different implementations of

these measures, a set of standard evaluation tools are provided in LETOR. The tools

are written in perl, and can output Precision, MAP and NDCG for the ranking re-

sults of a given ranking algorithm, and the significance test results between two given

ranking algorithms. We encourage all the users to use the tools. By using a single set

of evaluation tools, the experimental results of different methods can be easily and

impartially compared. The input to the evaluation tools should be one of the origi-

nal datasets in the collection, because the evaluation tools (such as Eval-Score-3.0.pl)

sort the documents according to their input order when the documents have the same

ranking scores. That is, the evaluation tools are sensitive to the order of documents in

the input file.

4.2 Baseline Ranking Algorithms

We tested a number of learning to rank algorithms on LETOR and provided the cor-

responding results as beaslines. To make fair comparisons, we tried to use the same

setting for all the algorithms. Firstly, most algorithms adopted linear ranking func-

tions, except RankBoost and FRank, which adopted non-linear ranking functions by

combining multiple binary weak rankers. Secondly, all the algorithms utilized MAP on

validation set for model selection.

4.2.1 Pointwise Approach

As for the pointwise approach, we tested the linear regression based algorithm on

LETOR. This algorithm aims to learn a linear ranking function which maps a feature

vector to a real value. Since only relevance label is provided for each query-document

pair, one needs to map the label to a real value for training. The general rule is that

after mapping the real value of a more relevant document should be larger that that

of a less relevant document. In our experiments, we used the validation set to select a

good mapping from labels to real values.

4.2.2 Pairwise Approach

Several pairwise ranking algorithms were tested on LETOR, including Ranking SVM,

RankBoost, and FRank.

The basic idea of Ranking SVM [17,22] is to formalize learning to rank as a prob-

lem of binary classification on document pairs, and then to solve the classification

problem using Support Vector Machines. The public tool of SVMlight was used in our



17

experiment. We chose the linear ranking function, and tuned the parameter c using the

validation set. To reduce the training time, we set -# 5000 when running SVMlight.

RankBoost [13] also formalizes learning to rank as a problem of binary classifica-

tion, but solves the classification problem by means of boosting. Like all the boosting

algorithms, RankBoost trains one weak ranker at each round of iteration, and combines

these weak rankers to get the final ranking function. After each round, the document

pairs are re-weighted by decreasing the weights of correctly ranked pairs and increasing

the weights of incorrectly ranked pairs. In our implementation, we defined each weak

ranker on the basis of a single feature. With a proper threshold, the weak ranker has

binary output {0, 1}. For each round of iteration, we selected the best weak ranker

from (# of features) x (255 thresholds) candidates. The validation set was used to

determine the best number of iterations.

FRank [42] is another pairwise ranking algorithm that utilizes a novel loss function

called the fidelity loss within the probabilistic ranking framework [4]. The fidelity loss

has several nice properties for ranking. To efficiently minimize the fidelity loss, a gener-

alized additive model is adopted. In our experiments, the validation set was employed

to determine the number of weak learners in the additive model.

4.2.3 Listwise Approach

Four listwise ranking algorithms were tested on LETOR, i.e., ListNet, AdaRank-MAP,

AdaRank-NDCG, and SVMMAP.

ListNet [6] is based on a probability distribution on permutations. Specifically, for

a document list, ListNet first uses the Luce model to define a permutation probability

distribution based on the scores outputted by the ranking function, and then defines

another distribution based on the ground truth labels. After that, the cross entropy

between the two distributions is used to define the loss function. To define the dis-

tribution based on the ground truth, ListNet needs to map the relevance label of a

query-document pair to a real-valued score. In our experiments, the validation set was

used to determine the mapping.

AdaRank-MAP [47] manages to directly optimize MAP. The basic idea of AdaRank-

MAP is to repeatedly construct ‘weak rankers’ on the basis of re-weighted training

queries and finally linearly combine the weak rankers for making ranking predictions.

AdaRank-MAP utilizes MAP to measure the goodness of a weak ranker. In our exper-

iments, the validation set was employed to determine the number of weak rankers.

AdaRank-NDCG [47] manages to directly optimize NDCG. The basic idea of

AdaRank-NDCG is Similar to that of AdaRank-MAP. the difference lies in that AdaRank-

NDCG utilizes NDCG to measure the goodness of a weak ranker. In our experiments,

the validation set was employed to determine the number of weak rankers.

SVMMAP [50] is a structured Support Vector Machine (SVM) method that opti-

mizes an upper bound of (1-AP) in the predicted rankings. There is a hyper parameter

in the loss function of SVMMAP. In our experiments, the validation set was employed

to determine the value of the hyper parameter.

4.3 Results

The ranking performances of the aforementioned algorithms are listed in Table 5 - 18.

From the experimental results, we find that listwise ranking algorithms perform very
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Table 5 NDCG on TD2003 dataset

Algorithm @1 @3 @5 @10
Regression 0.32 0.3071 0.2984 0.326

Ranking SVM 0.32 0.3441 0.3621 0.346
RankBoost 0.28 0.3246 0.3149 0.3122
FRank 0.3 0.2671 0.2468 0.269
ListNet 0.4 0.3365 0.3393 0.348

AdaRank-MAP 0.26 0.3067 0.3029 0.306
AdaRank-NDCG 0.36 0.2908 0.2939 0.303

SVMMAP 0.32 0.3199 0.3318 0.3282

Table 6 Precision and MAP on TD2003 dataset

Algorithm @1 @3 @5 @10 MAP
Regression 0.32 0.26 0.216 0.178 0.2409

Ranking SVM 0.32 0.2933 0.276 0.188 0.2628
RankBoost 0.28 0.28 0.232 0.1700 0.2274
FRank 0.3 0.2333 0.172 0.152 0.2031
ListNet 0.4 0.2933 0.252 0.200 0.2753

AdaRank-MAP 0.26 0.26 0.208 0.158 0.2283
AdaRank-NDCG 0.36 0.24 0.204 0.164 0.2368

SVMMAP 0.32 0.2533 0.232 0.1700 0.2445

Table 7 NDCG on TD2004 dataset

Algorithm @1 @3 @5 @10
Regression 0.36 0.3352 0.3257 0.303

Ranking SVM 0.4133 0.3467 0.324 0.307
RankBoost 0.5067 0.4295 0.3878 0.3504
FRank 0.4933 0.3875 0.3629 0.333
ListNet 0.36 0.3573 0.3325 0.317

AdaRank-MAP 0.4133 0.3757 0.3602 0.328
AdaRank-NDCG 0.4267 0.3688 0.3514 0.316

SVMMAP 0.2933 0.3035 0.3007 0.2907

Table 8 Precision and MAP on TD2004 dataset

Algorithm @1 @3 @5 @10 MAP
Regression 0.36 0.3333 0.312 0.249 0.2078

Ranking SVM 0.4133 0.3467 0.3013 0.252 0.2237
RankBoost 0.5067 0.4267 0.352 0.2747 0.2614
FRank 0.4933 0.3778 0.3333 0.262 0.2388
ListNet 0.36 0.36 0.3067 0.256 0.2231

AdaRank-MAP 0.4133 0.3689 0.328 0.249 0.2189
AdaRank-NDCG 0.4267 0.3644 0.328 0.248 0.1936

SVMMAP 0.2933 0.3022 0.2907 0.2467 0.2049

Table 9 NDCG on NP2003 dataset

Algorithm @1 @3 @5 @10
Regression 0.4467 0.6135 0.6423 0.665

Ranking SVM 0.58 0.7654 0.7823 0.800
RankBoost 0.6 0.7636 0.7818 0.8068
FRank 0.54 0.7261 0.7595 0.776
ListNet 0.5667 0.7579 0.7843 0.801

AdaRank-MAP 0.58 0.7286 0.7482 0.764
AdaRank-NDCG 0.56 0.7161 0.7447 0.767

SVMMAP 0.56 0.7673 0.7881 0.7975
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Table 10 Precision and MAP on NP2003 dataset

Algorithm @1 @3 @5 @10 MAP
Regression 0.4467 0.22 0.1453 0.081 0.5644

Ranking SVM 0.58 0.2711 0.1707 0.092 0.6957
RankBoost 0.6 0.2689 0.1693 0.0940 0.7074
FRank 0.54 0.2533 0.168 0.090 0.6640
ListNet 0.5667 0.2667 0.172 0.092 0.6895

AdaRank-MAP 0.58 0.2511 0.16 0.086 0.6783
AdaRank-NDCG 0.56 0.2467 0.1613 0.089 0.6678

SVMMAP 0.56 0.2689 0.1707 0.0893 0.6869

Table 11 NDCG on NP2004 dataset

Algorithm @1 @3 @5 @10
Regression 0.3733 0.5554 0.6135 0.653

Ranking SVM 0.5067 0.7503 0.7957 0.806
RankBoost 0.4267 0.6274 0.6512 0.6914
FRank 0.48 0.6431 0.687 0.729
ListNet 0.5333 0.7587 0.7965 0.812

AdaRank-MAP 0.48 0.6979 0.731 0.749
AdaRank-NDCG 0.5067 0.6722 0.7122 0.738

SVMMAP 0.52 0.7489 0.7869 0.8079

Table 12 Precision and MAP on NP2004 dataset

Algorithm @1 @3 @5 @10 MAP
Regression 0.3733 0.2 0.144 0.082 0.5142

Ranking SVM 0.5067 0.2622 0.1787 0.093 0.6588
RankBoost 0.4267 0.2311 0.152 0.0880 0.5640
FRank 0.48 0.2356 0.16 0.093 0.6008
ListNet 0.5333 0.2667 0.1787 0.094 0.6720

AdaRank-MAP 0.48 0.2444 0.1627 0.088 0.6220
AdaRank-NDCG 0.5067 0.2489 0.1653 0.090 0.6269

SVMMAP 0.52 0.2667 0.1787 0.0960 0.6620

Table 13 NDCG on HP2003 dataset

Algorithm @1 @3 @5 @10
Regression 0.42 0.5097 0.5463 0.594

Ranking SVM 0.6933 0.7749 0.7954 0.807
RankBoost 0.6667 0.792 0.8034 0.8171
FRank 0.6533 0.7432 0.778 0.797
ListNet 0.72 0.8128 0.8298 0.837

AdaRank-MAP 0.7333 0.8051 0.8252 0.838
AdaRank-NDCG 0.7133 0.7902 0.8006 0.806

SVMMAP 0.7133 0.7791 0.7922 0.7994

Table 14 Precision and MAP on HP2003 dataset

Algorithm @1 @3 @5 @10 MAP
Regression 0.42 0.2111 0.1453 0.088 0.4968

Ranking SVM 0.6933 0.3089 0.1987 0.104 0.7408
RankBoost 0.6667 0.3111 0.1987 0.1053 0.7330
FRank 0.6533 0.2889 0.1987 0.106 0.7095
ListNet 0.72 0.32 0.204 0.106 0.7659

AdaRank-MAP 0.7333 0.3089 0.1987 0.106 0.7710
AdaRank-NDCG 0.7133 0.3111 0.1947 0.100 0.7480

SVMMAP 0.7133 0.3089 0.1947 0.1000 0.7421
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Table 15 NDCG on HP2004 dataset

Algorithm @1 @3 @5 @10
Regression 0.3867 0.5752 0.613 0.646

Ranking SVM 0.5733 0.7147 0.7512 0.768
RankBoost 0.5067 0.6989 0.7211 0.7428
FRank 0.6 0.7287 0.7486 0.761
ListNet 0.6 0.7213 0.7694 0.784

AdaRank-MAP 0.6133 0.8164 0.8277 0.832
AdaRank-NDCG 0.5867 0.7512 0.792 0.805

SVMMAP 0.6267 0.7536 0.8011 0.8062

Table 16 Precision and MAP on HP2004 dataset

Algorithm @1 @3 @5 @10 MAP
Regression 0.3867 0.2133 0.144 0.084 0.5256

Ranking SVM 0.5733 0.2667 0.1787 0.096 0.6675
RankBoost 0.5067 0.2533 0.1653 0.0920 0.6251
FRank 0.6 0.2622 0.168 0.089 0.6817
ListNet 0.6 0.2711 0.1893 0.098 0.6899

AdaRank-MAP 0.6133 0.2978 0.1867 0.094 0.7219
AdaRank-NDCG 0.5867 0.2711 0.1813 0.096 0.6914

SVMMAP 0.6267 0.28 0.1893 0.0960 0.7176

Table 17 NDCG on OHSUMED dataset

Algorithm @1 @3 @5 @10
Regression 0.4456 0.4426 0.4278 0.411

Ranking SVM 0.4958 0.4207 0.4164 0.414
RankBoost 0.4632 0.4555 0.4494 0.4302
FRank 0.53 0.4812 0.4588 0.443
ListNet 0.5326 0.4732 0.4432 0.441

AdaRank-MAP 0.5388 0.4682 0.4613 0.442
AdaRank-NDCG 0.533 0.479 0.4673 0.449

SVMMAP 0.5229 0.4663 0.4516 0.4319

Table 18 Precision and MAP on OHSUMED dataset

Algorithm @1 @3 @5 @10 MAP
Regression 0.5965 0.5768 0.5337 0.466 0.4220

Ranking SVM 0.5974 0.5427 0.5319 0.486 0.4334
RankBoost 0.5576 0.5609 0.5447 0.4966 0.4411
FRank 0.6429 0.5925 0.5638 0.501 0.4439
ListNet 0.6524 0.6016 0.5502 0.497 0.4457

AdaRank-MAP 0.6338 0.5895 0.5674 0.497 0.4487
AdaRank-NDCG 0.6719 0.5984 0.5767 0.508 0.4498

SVMMAP 0.6433 0.5802 0.5523 0.4910 0.4453

well on most datasets. Among the four listwise ranking algorithms, ListNet seems to be

better than the others. AdaRank-MAP, AdaRank-NDCG and SVMMAP obtain similar

performances. Pairwise ranking algorithms achieve good ranking accuracy on some (but

not all) datasets. For example, RankBoost offers the best performance on TD2004 and

NP2003; Ranking SVM shows very promising results on NP2003 and NP2004; and

FRank achieves very good results on TD2004 and NP2004. In contrast, simple linear

regression performs worse than the pairwise and listwise ranking algorithms. Its results

are not so good on most datasets.
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We observe that most ranking algorithms perform differently on different datasets.

They may perform very well on some datasets but not so well on the other datasets.

To evaluate the overall ranking performance of an algorithm, we used the number of

other algorithms that it can beat over all the seven datasets as a measure. That is,

Si(M) =

7∑
j=1

8∑
k=1

1{Mi(j)>Mk(j)}

where j is the index of a dataset, i and k are the indices of an algorithm, Mi(j) is the

performance of i-th algorithm on j-th dataset in terms of measure M (such as MAP),

and 1{Mi(j)>Mk(j)} is the indicator function

1{Mi(j)>Mk(j)} = { 1 ifMi(j) > Mk(j),

0 otherwise.

It is clear that the larger Si(M) is, the better the i-th algorithm performs. For ease

of reference, we call this measure winning number. Figure 4 shows the winning number

in terms of NDCG for all the algorithms under investigation. From this figure, we have

the following observations 4.

(1) In terms of NDCG@1, among the four listwise ranking algorithms, ListNet is better

than AdaRank-MAP and AdaRank-NDCG, while SVMMAP performs a little worse

than the others. The three pairwise ranking algorithms achieve comparable results,

among which Ranking SVM seems to be slightly better than the other two. Overall,

the listwise algorithms seem to perform better than the pointwise and pairwise

algorithms.

(2) In terms of NDCG@3, ListNet and AdaRank-MAP perform much better than the

other algorithms, while the performances of Ranking SVM, RankBoost, AdaRank-

NDCG, and SVMMAP are very similar to each other.

(3) For NDCG@10, one can get similar conclusions to those for NDCG@3.

Comparing NDCG@1, NDCG@3, and NDCG@10, it seems that the listwise ranking

algorithms have certain advantages over other algorithms at top positions (position 1)

of the ranking results. Here we give a possible explanation. Because the loss functions

of listwise algorithms are defined on all the documents of a query, it can consider all

the documents and make use of the position information of them. In contrast, the loss

functions of the pointwise and pairwise algorithms are defined on a single document or

a document pair. It cannot access the scores of all the documents at the same time and

cannot see the position information of each document. Since most IR measures (such

as MAP and NDCG) are position based, listwise algorithms which can see the position

information in their loss functions should perform better than pointwise and pairwise

algorithms which cannot see such information in their loss functions.

Figure 5 shows the winning number in terms of Precision and MAP. We have the

following observations from the figure.

4 These observations are based on the results on the LETOR website when the paper was
submitted. The website is continuously updating to incorporate the active contributions from
the IR community. For the latest status of the algorithms, please refer to the LETOR website:
http://research.microsoft.com/~letor.
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(1) In terms of P@1, among the four listwise ranking algorithms, ListNet is better

than AdaRank-NDCG, while AdaRank-MAP and SVMMAP perform worse than

AdaRank-NDCG. The three pairwise ranking algorithms achieve comparable re-

sults, among which Ranking SVM seems to be slightly better. Overall, the listwise

algorithms seem to perform than the pointwise and pairwise algorithms.

(2) For P@3, one can get similar conclusions to those for P@1.

(3) In terms of P@10, ListNet performs much better than all the other algorithms; the

performances of Ranking SVM, RankBoost and FRank are better than AdaRank-

MAP, AdaRank-NDCG, and SVMMAP.

(4) In terms of MAP, ListNet is the best one; Ranking SVM, AdaRank-MAP, and

SVMMAP achieve similar results, and are better than the remaining algorithms.

Furthermore, the variance among the three pairwise ranking algorithms is much

larger than the variance in terms of other measures (P@1, 3 and 10). The possible

explanation is as follows. Since MAP involves all the documents associated with a

query in the evaluation process, it can better differentiate algorithms.

To summarize, the experimental results show that the listwise algorithms (ListNet,

AdaRank-MAP, AdaRank-NDCG, and SVMMAP) have certain advantages over other

algorithms, especially for the top positions of the ranking results.

Note that the above experimental results are in some sense still preliminary, since

the result of almost every algorithm can be further improved. For example, for regres-

sion, we can add a regularization item to make it more robust; for Ranking SVM, if the

time complexity is not an issue, we can remove the constraint of -# 5000 to achieve a

better convergence of the algorithm; for ListNet, we can also add a regularization item

to its loss function and make it more generalizable to the test set. Considering these

issues, we would like to call for contributions from the research community. Researchers

are encouraged to submit the results of their newly developed algorithms as well as

their carefully tuned existing algorithms to LETOR. In order to let others re-produce

the submitted results, the contributors are respectfully asked to prepare a package for

the algorithm, including

(1) a brief document introducing the algorithm;

(2) an executable file of the algorithm;

(3) a script to run the algorithm on the seven datasets of LETOR.

We believe with the collaborative efforts of the entire community, we can have

more versatile and reliable baselines on LETOR, and better facilitate the research on

learning to rank.

5 Supporting New Research Directions

So far LETOR has mainly been used as an experimental platform to compare different

algorithms. In this section, we show that LETOR can also be used to support many

new research directions.

5.1 Ranking Models

Most of the previous work (as reviewed in Section 2) focuses on developing better loss

functions, and simply uses a scoring function as the ranking model. It may be one of



23

 0

10

20

30

40

NDCG1 NDCG3 NDCG10

W
in

 N
um

be
r

Measure

Regression
RankSVM
RankBoost

FRank
ListNet

AdaRank-MAP

AdaRank-NDCG
SVMMAP

Fig. 4 Comparison cross seven datasets by NDCG

 0

10

20

30

40

P1 P3 P10 MAP

W
in

 N
um

be
r

Measure

Regression
RankSVM
RankBoost

FRank
ListNet

AdaRank-MAP

AdaRank-NDCG
SVMMAP

Fig. 5 Comparison cross seven datasets by Precision and MAP

the major topics at the next step to investigate new ranking models. For example, one

can study new algorithms using pairwise and listwise ranking functions. Please note

the challenge of using a pairwise/listwise ranking function. That is, the test complexity

will be much higher than that of using a scoring function. One should pay attention to

the issue if he/she performs research on pairwise and listwise ranking functions.
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5.2 Feature Engineering

Feature is, by all means, very important for learning to rank algorithms. Since LETOR

contains rich meta information, it can be used to study feature related problems.

Feature Extraction

The performance of a ranking algorithm greatly depends on the effectiveness of the

features used. LETOR contains the low-level information such as term frequency and

document length. It also contains rich meta information about the corpora and the

documents. These can be used to derive new features, and study their contributions to

ranking.

Feature Selection

Feature selection has been extensively studied for classification. However, as far

as we know, the discussions on feature selection for ranking are still very limited.

LETOR contains tens of standard features, and it is feasible to use LETOR to study

the selection of most effective features for ranking.

Dimensionality Reduction

Different from feature selection, dimensionality reduction tries to reduce the number

of features by transforming/combining the original features. Dimensionality reduction

has been shown very effective in many applications, such as face detection and signal

processing. Similarly to feature selection, little work has been done on dimensionality

reduction for ranking. It is an important research topic, and LETOR can be used to

support such research.

5.3 New Ranking Scenarios

LETOR also offers the opportunities to investigate some new ranking scenarios. Here

we give several examples as follows.

Query Classification and Query Dependent Ranking

In most previous work, a single ranking function is used to handle all kinds of

queries. This may not be appropriate, particularly for web search. Queries in web search

may vary largely in semantics and user intentions. Using a single model alone would

make compromises among queries and result in lower accuracy in relevance ranking.

Instead, it would be better to exploit different ranking models for different queries.

Since LETOR contains several different kinds of query sets (such as topic distillation,

homepage finding, and named page finding) and rich information about queries, it is

possible to study the problems of query classification and query dependent ranking

[14].

Beyond Independent Ranking

Existing technologies on learning to rank assume that the relevance of a document

is independent of the relevance of other documents. The assumption makes it possible

to score each document independently first and sort the documents according to their

scores after that. In reality, the assumption may not always hold. There are many
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retrieval applications in which documents are not independent and relation information

among documents can be or must be exploited. For example, Web pages from the same

site form a sitemap hierarchy. If both a page and its parent page are about the topic

of the query, then it would be better to rank higher the parent page for this query. As

another example, similarities between documents are available, and we can leverage

the information to enhance relevance ranking. Other problems like Subtopic Retrieval

[36] also need utilize relation information. LETOR contains rich relation information,

including hyperlink graph, similarity matrix, and sitemap hierarchy, and therefore can

well support the research on dependent ranking.

Multitask Ranking and Transfer Ranking

Multitask learning aims at learning several related task at the same time, and the

learning of the tasks can benefit from each other. In other words, the information

provided by the training signal for each task serves as a domain-specific inductive bias

for the other tasks. Transfer learning uses the data in one or more auxiliary domains

to help the learning task in the main domain. Because LETOR contains seven query

sets and three different retrieval tasks, it is a good test bed for multitask ranking and

transfer ranking.

To summarize, although the current use of LETOR is mostly about algorithm

comparison, LETOR actually can be used to support much richer research agenda. We

hope that more and more interesting researches can be carried out with the help of

LETOR, and the state of the art of learning to rnak can be significantly advanced.

6 Limitations

Although LETOR has been widely used, it has certain limitations as listed below.

Document Sampling Strategy

For the “Gov” datasets, the retrieval problem is essentially cast as a re-ranking

task (for top 1000 documents) in LETOR. On one hand, this is a common practice

for real-world Web search engines. Usually two rankers are used by a search engine for

sake of efficiency: firstly a simple ranker (e.g., BM25) is used to select some candidate

documents, and then a more complex ranker (e.g., the learning to rank algorithms

as mentioned in the paper) is used to produce the final ranking result. On the other

hand, however, there are also some retrieval applications that should not be cast as

a re-ranking task. We will add datasets beyond re-ranking settings to LETOR in the

future.

For the “Gov” datasets, we sampled documents for each query using a cutoff number

of 1000. We will study the impact of the cutoff number on the performances of the

ranking algorithms. It is possible that the dataset should be refined using a better

cutoff number.

Features

In both academic and industrial communities, more and more features have been

studied and applied to improve ranking accuracy. The feature list provided in LETOR

is far away from comprehensive. For example, document features (such as document

length) are not included in the OHSUMED dataset, and proximity features are not

included in all the seven datasets. We will add more features into the LETOR datasets

in the future.
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Scale and Diversity of Datasets

As compared with the real-web search, the scale (number of queries) of the datasets

in LETOR is not yet very large. To verify the performances of learning to rank tech-

niques for real-web search, large scale datasets are needed. We are working on some

large scale datasets and plan to release them in the future versions of LETOR.

Although there are seven query sets in LETOR3.0, there are only two document

corpora involved. We will create new datasets using more document corpora in the

future.

Baselines

Most baseline algorithms in LETOR use linear ranking functions. From Section 4.3,

we can see that the performances of these algorithms are not good enough, since the

perfect ranking should achieved the accuracy of 1 in terms of all the measures (P@k,

MAP and NDCG). As pointed out in Section 3.3, class-Q features cannot be effectively

used by linear ranking functions. We will add more algorithms with nonlinear ranking

functions as baselines of LETOR. We also encourage researchers in the community to

test more non-linear ranking models.

7 Conclusions

By explaining the data creation process and the results of the state-of-the-arts learning

to rank algorithms in this paper, we have provided the information for people to better

understand the nature of LETOR and to more effectively utilize the datasets in their

research work.

We have received a lot of comments and feedback about LETOR after its first

release. We hope we can get more suggestions from the research community. We also

encourage researchers to contribute to LETOR by submitting their results.

Finally, we expect that LETOR can be just a start for the research community to

build benchmark datasets for learning to rank. With more and more such efforts, the

research on learning to rank for IR can be significantly advanced.
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