Provably correct lock-free data structures

Loic Fejoz INRIA/MSR/Nancy-University Stephan Merz INRIA Tim Harris MSR

1. Context With Lock Inductive Invariants .
Systems and applications

agk for highly Czrr)murrent (/' all events of the systems must \

actions. Classical solutions preserve an invariant predicate.

like mutual exclusion are
not any longer efficient and
cause problems like

deadlocks, starvations, Refi t

race conditions. efinemen

Moreover, it is difficult to Without lock We formalize abstract operations as atomic and then derive

reason about concurrency specifications by adding details until concrete program. It ensures
correctness by construction and eases proofs.

that is why we need formal o)e)
proofs of those algorithms. S p Eﬁa
& Other methods

50 : :
})) [Separatlc?n logic
(s 7 Ownership

Atomicity type and effect systems
Software Transactional Memory

Predicate diagrams

3333
B WN R

<7

2. Wanted: a method for developping and
verifying algorithm for lock-free

datastructures 4. Plan | |
Adapt Assume-Guarantee to well-established refinement
methods like B and TLA+.
Datastructure Threads _ _
formal + concurren,cy + | Environment Use automatic theorem-provers.
specification actions
Prove currently used algorithms.
? 5 Develop a methodology to formalize common patterns for such
= rover algorithms.
efficient & certified lock- 5. Preliminary experiments: RDCSS
free algorithm for A
modern hardware Ny RDCSS is a subpart of Multiple-Compare-And-Swap. CAS is
Needs | the operation that atomically changes the value of a slot if it is

equal to a given value. It is present on modern hardware and is
known to be a universal operator for concurrency.

RDCSS needs two pointers, two old values and one new
value. It changes the first pointer value if the current value of
pointers are equal to given old values. The trick in the
Implementation is to use a descriptor so that other threads can

compositionality, i.e. reason locally;
linearizability, i.e. act as if sequential;
automatic proving;

liveness, i.e. no blocking;
self-composable.

3. State-of-the-art methods finish operations.

- high level
+ §pecification

Assume-Guarantee '

(Assumption-Commitment and Rely-Guarantee) r:=RDCSS(al, 01, a2, 02, n2) _

Work like .Hoare triples but_add concurrency and com.positionality . check & install descriptor uninstall descriptor

by assuming some properties from environment's actions and : > -

ensuring some properties. ; [*a1=01] CAS(a2,d,n2)

Typical tuple is: - new descriptor r:=*a2 CAS(a2,02,d) g

<rely, guarantee>{precondition}Program{postcondition} '

like: ' >

<y'=y, yelN=y'eIN>{y=0}y:=10{y'=10} * concrete [*a1/=01] CAS(a2,d,02)
yProgram

Parallel composition axiom:

<r1,g1>{®1IP1{w1} <r2,g2>{®2}P2{w?2)} We have formalized this algorithm in B and in TLA+. Abstract
models have been checked but current tools and languages
<r1 Ar2, g1 v g2>{®1 A P2}P1 || P2{w1 2
a2, gl v g2>{®1 A GZJPT || P2{wl A w2y do not allow us to verify the implementation.

