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Abstract

How can we learn motor tasks efficiently without expert knowledge?

• experience-based autonomous learning from scratch

• no task-specific prior assumptions

• artificial learning often requires many (millions) trials, humans don’t

use key features from human/animal learning to make artificial learn-

ing more efficient

probabilistic model for predictions is of central importance

1 Key Ingredients and Algorithm

• some important features of human experience-based learning:

– generalization and predictions using a forward model

– representation and incorporation of uncertainty into the decision-

making process

describe features by a probabilistic model of the world

• properties of a probabilistic model

– extract more useful information from data

– represent and quantify uncertainty

– simultaneous consideration of all “plausible” transitions

Algorithm 1 Learning algorithm
init: try some policy (real world) ⊲ interaction

loop

record collected experience

update probabilistic dynamics model ⊲ internal

loop ⊲ policy optimization

simulate model with current policy ⊲ internal

compute corresponding expected long-term cost ⊲ internal

improve policy ⊲ internal

end loop

try new policy (real world) ⊲ interaction
end loop

2 Some Details

• use Gaussian processes (GPs) to learn short-term transition dynamics

adaptive, non-parametric, probabilistic

tractable Bayesian inference (no sampling required)

• cascade short-term predictions to obtain long-term predictions [2]

crucial: keep track of uncertainty evolution

• explicitly consider distributions over states and actions during internal

simulation
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• analytic expression for expected long-term cost V
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• saturating immediate cost function ℓ

– does not penalize unimportant details of the state distribution

– indirectly controls exploration/exploitation even for a greedy policy
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Figure 1: Saturating immediate cost ℓ. Left panel: comparison

to quadratic cost. Right panel: allowance for “natural” explo-

ration/exploitation due to probabilistic modeling.

3 Results

• learn to solve tasks from scratch according to Algorithm 1

• probabilistic GP dynamics model based on experience

• cost function only penalizes distance from the target
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Figure 2: Swing-up of the Pendubot (only first joint is actuated)

using experience of about 2 minutes.

3.2 Inverted Pendulum

Figure 3: Snapshots of a typical trajectory after having learned the

task. Learning the swing up plus balancing required 17.5 seconds

experience.

4 Discussion

• algorithm learns important details of the tasks (e.g., low velocities

around the target state)

• predicted uncertainty along a good trajectory declines to zero

• probabilistic model is crucial: deterministic model does not work

• unprecedented speed of learning (number of trials)

• hardware experiment demonstrates success and applicability

5 Wrap-up

• probabilistic models capture two key ingredients of human learning:

generalization and explicit uncertainty modeling

• efficient learning from scratch without expert knowledge

• coherent Bayesian averaging over unknowns is crucial

•no success with deterministic models
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