

Bayesian Inference for Efficient Learning in Control

Marc Peter Deisenroth and Carl Edward Rasmussen

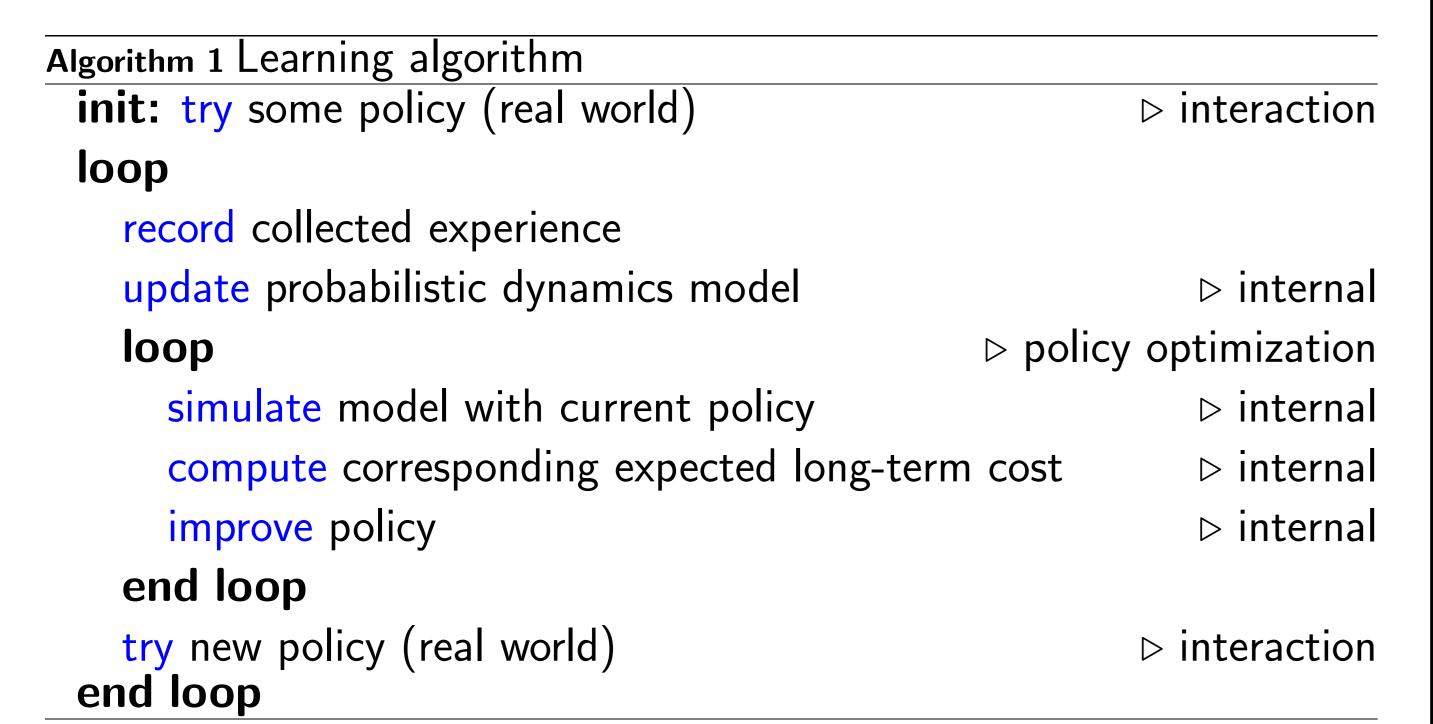
Abstract

How can we learn motor tasks efficiently without expert knowledge?

- experience-based autonomous learning from scratch
- no task-specific prior assumptions
- artificial learning often requires many (millions) trials, humans don't
- → use key features from human/animal learning to make artificial learning more efficient
- → probabilistic model for predictions is of central importance

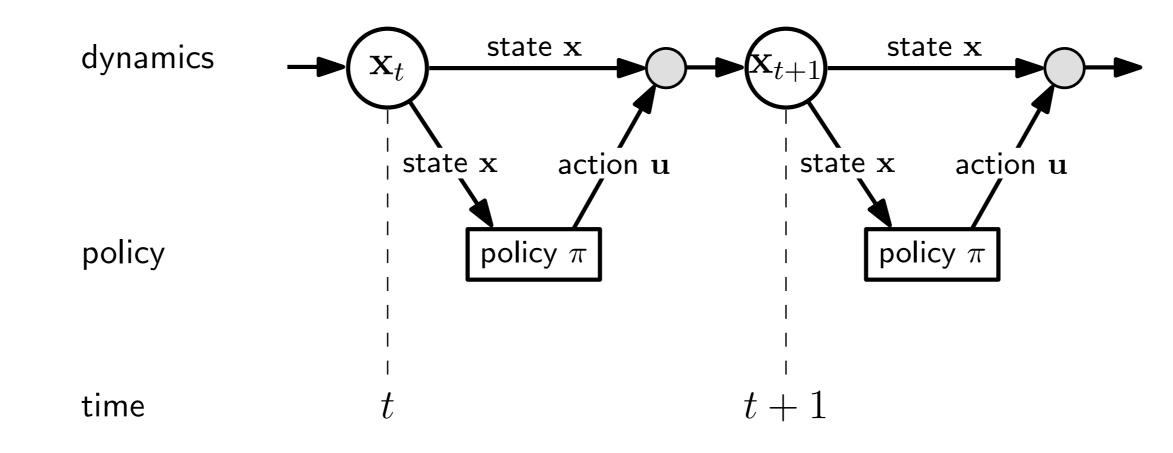
1 Key Ingredients and Algorithm

- some important features of human experience-based learning:
- generalization and predictions using a forward model
- representation and incorporation of uncertainty into the decisionmaking process
- → describe features by a probabilistic model of the world
- properties of a probabilistic model
- extract more useful information from data
- represent and quantify uncertainty
- simultaneous consideration of all "plausible" transitions



2 Some Details

- use Gaussian processes (GPs) to learn short-term transition dynamics
- → adaptive, non-parametric, probabilistic
- → tractable Bayesian inference (no sampling required)
- cascade short-term predictions to obtain long-term predictions [2]
- → crucial: keep track of uncertainty evolution
- explicitly consider distributions over states and actions during internal simulation



ullet analytic expression for expected long-term cost V^π along path $oldsymbol{ au}$

$$V^{\pi}(\mathbf{x}_0) = \mathbb{E}\left[\sum_{t=0}^{T} \ell(\mathbf{x}_t) \middle| \pi\right] = \sum_{t=0}^{T} \mathbb{E}[\ell(\mathbf{x}_t)]$$

- ullet saturating immediate cost function ℓ
- does not penalize unimportant details of the state distribution
- indirectly controls exploration/exploitation even for a greedy policy

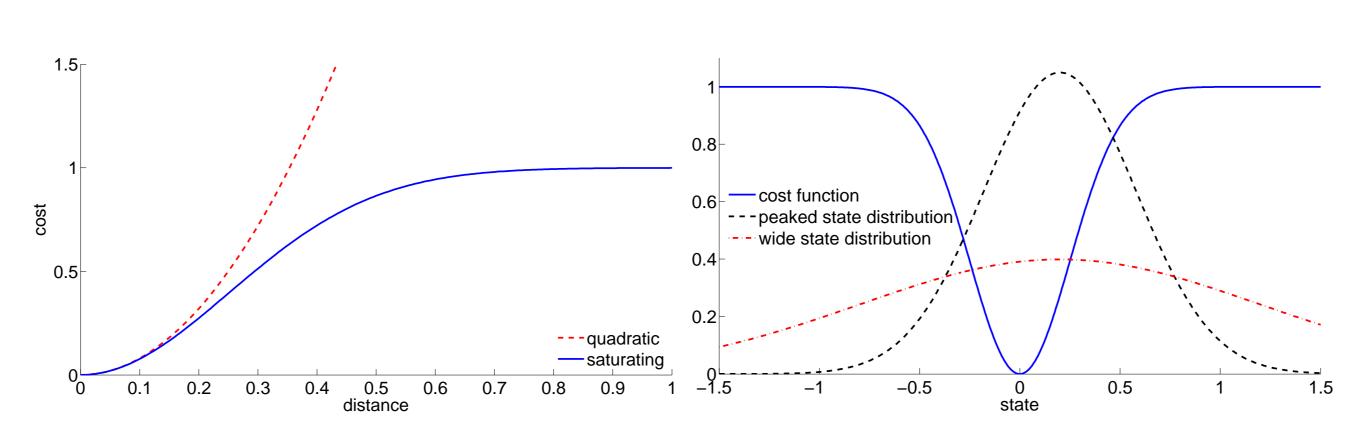


Figure 1: Saturating immediate cost ℓ . Left panel: comparison to quadratic cost. Right panel: allowance for "natural" exploration/exploitation due to probabilistic modeling.

3 Results

- learn to solve tasks from scratch according to Algorithm 1
- probabilistic GP dynamics model based on experience
- cost function only penalizes distance from the target

3.1 Pendubot (Double Pendulum)

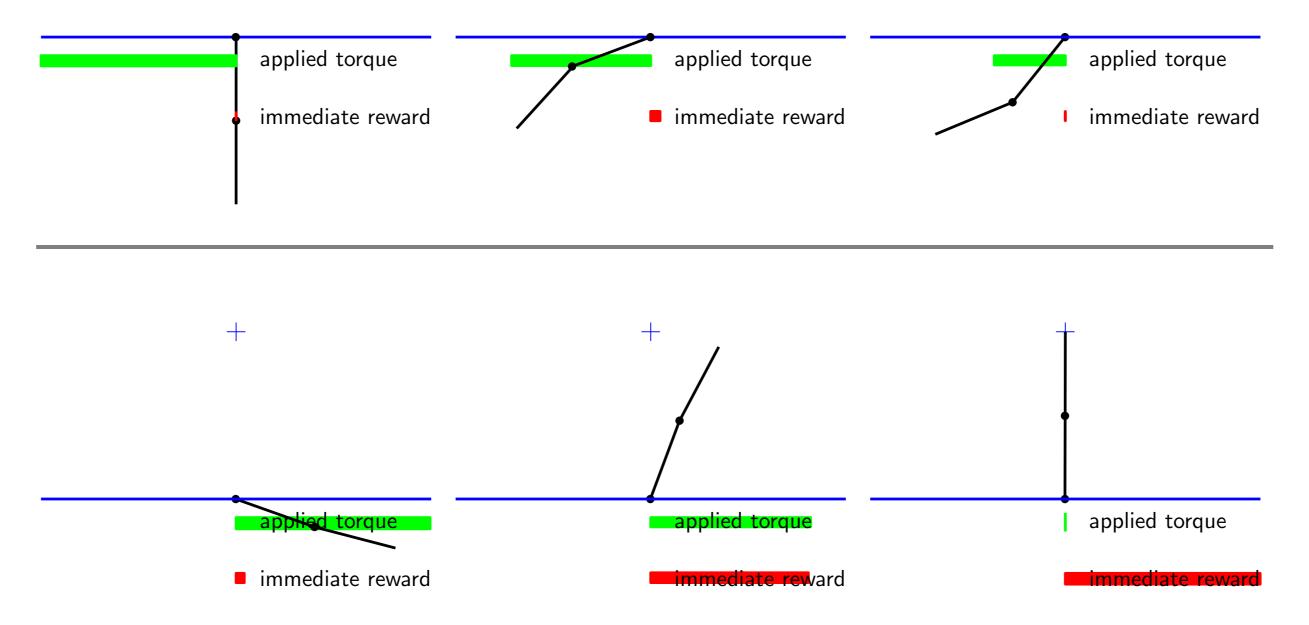


Figure 2: Swing-up of the Pendubot (only first joint is actuated) using experience of about 2 minutes.

3.2 Inverted Pendulum

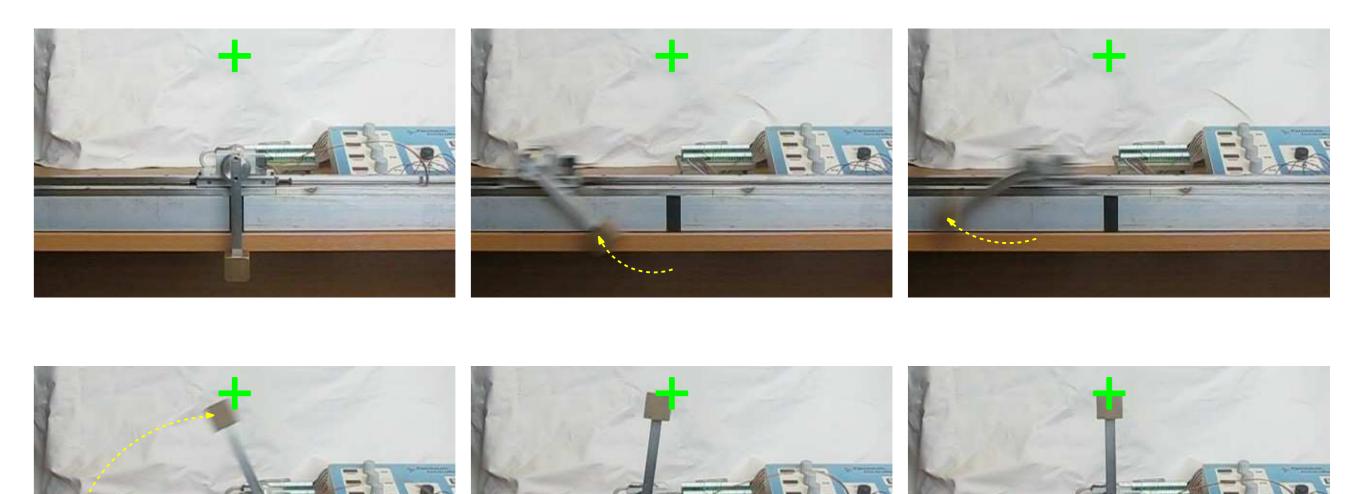


Figure 3: Snapshots of a typical trajectory after having learned the task. Learning the swing up plus balancing required 17.5 seconds experience.

4 Discussion

- algorithm learns important details of the tasks (e.g., low velocities around the target state)
- predicted uncertainty along a good trajectory declines to zero
- probabilistic model is crucial: deterministic model does not work
- unprecedented speed of learning (number of trials)
- hardware experiment demonstrates success and applicability

5 Wrap-up

- probabilistic models capture two key ingredients of human learning: generalization and explicit uncertainty modeling
- efficient learning from scratch without expert knowledge
- coherent Bayesian averaging over unknowns is crucial
- no success with deterministic models

References

- [1] C. E. Rasmussen and M. P. Deisenroth. *Probabilistic Inference for Fast Learning in Control*. Chapter in *Recent Advances in Reinforcement Learning*, vol. 5323 of *Lecture Notes in Computer Science*, pp. 229–242. Springer-Verlag, November 2008.
- [2] J. Quiñonero-Candela, A. Girard, J. Larsen, and C. E. Rasmussen. Propagation of Uncertainty in Bayesian Kernel Models—Application to Multiple-Step Ahead Forecasting. In *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2003)*, pp. 701–704, April 2003.