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Abstract

How can we learn motor tasks efficiently without expert knowledge?

e experience-based autonomous learning from scratch

e no task-specific prior assumptions

e artificial learning often requires many (millions) trials, humans don't

= use key features from human/animal learning to make artificial learn-
ing more efficient
= probabilistic model for predictions is of central importance

1 Key Ingredients and Algorithm

e some important features of human experience-based learning:

— generalization and predictions using a forward model

— representation and incorporation of uncertainty into the decision-
making process

= describe features by a probabilistic model of the world
e properties of a probabilistic model

— extract more useful information from data
— represent and quantify uncertainty

— simultaneous consideration of all “plausible” transitions

Algorithm 1 Learning algorithm

init: try some policy (real world) > interaction
loop

record collected experience

update probabilistic dynamics model > internal

loop > policy optimization
simulate model with current policy > interna
compute corresponding expected long-term cost > interna
improve policy > interna

end loop

try new policy (real world) > interaction

end loop

2 Some Details

e use Gaussian processes (GPs) to learn short-term transition dynamics
= adaptive, non-parametric, probabilistic
= tractable Bayesian inference (no sampling required)

e cascade short-term predictions to obtain long-term predictions [2]
= crucial: keep track of uncertainty evolution

e explicitly consider distributions over states and actions during internal
simulation
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e analytic expression for expected long-term cost V'™ along path 7
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e saturating immediate cost function /¢

— does not penalize unimportant details of the state distribution
— indirectly controls exploration/exploitation even for a greedy policy
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Figure 1: Saturating immediate cost £. Left panel: comparison
to quadratic cost. Right panel: allowance for “natural” explo-

ration /exploitation due to probabilistic modeling.

3 Resuts ]

e learn to solve tasks from scratch according to Algorithm 1

e probabilistic GP dynamics model based on experience

e cost function only penalizes distance from the target

3.1 Pendubot (Double Pendulum)
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Figure 2: Swing-up of the Pendubot (only first joint is actuated)
using experience of about 2 minutes.
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3.2 Inverted Pendulum

Figure 3: Snapshots of a typical trajectory after having learned the
task. Learning the swing up plus balancing required 17.5 seconds
experience.

4 Discussion

e algorithm learns important details of the tasks (e.g., low velocities
around the target state)

e predicted uncertainty along a good trajectory declines to zero
e probabilistic model is crucial: deterministic model does not work
e unprecedented speed of learning (number of trials)

e hardware experiment demonstrates success and applicability

5 Wrap-up

e probabilistic models capture two key ingredients of human learning:
generalization and explicit uncertainty modeling

o efficient learning from scratch without expert knowledge
e coherent Bayesian averaging over unknowns is crucial

® no success with deterministic models
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