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Motivation
The processor scheduling problem is to map a set of precedence con-
strained tasks Ti where i = 1, . . . , n onto a set of processors Pk where
k = 1, . . . , p such that a specified objective function, for example, sched-
ule length, mean flow time or processor idleness is minimized.

assignment ordering timing
fully dynamic run-time run-time run-time

static allocation compile-time run-time run-time
self-timed compile-time compile-time run-time
fully static compile-time compile-time compile-time

Beyond assigning computation nodes to processor we also need to allocate
communication resources for interprocessor data transfers. We shouldn’t
separate these two concerns.

Work Stealing
Work-stealing is a provably efficient, fully-dynamic scheduling algorithm
whose expected time to execute a fully-strict, multi-threaded computation
on P processors is:

E(T ) =
T1

P
+ O(T∞) (1)

where T1 is the minimum serial execution time of the multi-threaded
computation and T∞ is the minimum execution time with an infinite
number of processors. [1]

When the number of available processors P is no more than the average
available parallelism T1/T∞ the first term in equation (1) dominates the
second term and therefore we obtain linear parallel speedup. If the number
of available processors increases then P = ω(T1/T∞), hence second term
in equation (1) dominates. Therefore the work stealing algorithm stops
scaling efficiently as we add further processors.

We investigate how to reduce computation depth (T∞) by reducing the
critical forwarding path between the first use and last definition of depen-
dent values.

Critical forwarding path [2]

3:4 • A. Zhai et al.

T
im
e

Memory

E1

store *p

E2

load *q

(a) Speculate (good when p != q).

E2

Memory

E2

Sta
llstore *p

signal

E1

wait

load *q

(b) Synchronize (good when p == q and *q is un-
predictable).

...=X
X=...
signal

...=X
X=...
signal

...=X
X=...
signal

signal
wait...=X

X=...

signal
X=...
...=X

wait

...=X
X=...signal

wait wait

sta
ll

sta
ll

sta
ll

sta
ll

T
im
e

cri
tca

l p
ath

E2 E3 E1 E2 E3E1

(c) Reduce critical forwarding path.

Memory

E1

store *p

Value
Predictor

E2

load *q

(d) Predict (good when p == q and *q is pre-
dictable).

Fig. 2. A memory value may be communicated between two epochs (E1 and E2) through (a) spec-
ulation, (b) synchronization, or (d) prediction. In the case of synchronization, we can further accel-
erate value communication by reducing the critical forwarding path (c).

et al. 1997; Sazeides and Smith 1997; Wang and Franklin 1997], as illustrated in
Figure 2d.

To get a sense of the potential upside of enhancing value communication un-
der TLS, let us briefly consider the ideal case. From a performance perspective,
the ideal case would correspond to a value predictor that could perfectly pre-
dict the value of any interthread dependence. In such a case, speculation would
never fail and synchronization would never stall. While this perfect-prediction
scenario is unrealistic, it does allow us to bound the potential impact of improv-
ing value communication in TLS.

Figure 3 shows the impact of perfect prediction on a set of speculatively par-
allelized loops for several SPECint benchmarks, running on a four-processor
CMP that implements hardware support for TLS [Steffan et al. 2000]. Each
bar is normalized to the execution time of the original sequential version, such
that bars less than 100 are speeding up. Each bar is broken down into four
segments explaining what happened during all potential graduation slots. The
number of graduation slots is the product of: (1) the issue width (four in this
case), (2) the number of cycles, and (3) the number of processors (four in this
case). The fail segment represents all slots wasted on failed thread-level spec-
ulation and the remaining three segments represent slots spent on successful
speculation. The busy segment is the number of slots where instructions grad-
uate; the sync portion represents slots spent waiting for synchronization for
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A compiler can schedule instructions to reduce the critical forwarding path,
therefore increasing parallel overlap and improving performance by plac-
ing wait instructions as late as possible and signal instructions as early as
possible in the code.

Accelerating value communication
Data-flow analysis conservatively assumes that all execution paths are
taken. In practice, however only a small number of paths is frequently
executed.

We use ideas from deferred-data flow analysis [3] to aggressively schedule
instructions on the critical forwarding path by speculating on control and
data dependencies. If the incorrect value has been passed we squash spec-
ulated thread and restart it with correct value. When speculation is correct
we improve performance by increasing overlapped execution of instruc-
tions from multiple threads, while with incorrect speculation we still in-
directly improve performance by increasing instruction-level parallelism.

Example

processor activity
step p1 p2 p3

1 T1 : 1
2 2
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5 T3 : 5 T6 : 19 T4 : 8
6 T3 : 6 T6 : 20 T4 : 9
7 T1 : 21 T2 : 12 T4 : 10
8 T1 : 22 T5 : 13 T4 : 11
9 T2 : 16 T2 : 14

10 T1 : 23 T2 : 15

The graph above demonstrates an example when multi-threaded computation would benefit from reduced critical forwarding path. Data-dependency
edges are represented by the blue and black curved edges and the table on the left is its 3-processor execution schedule. When our analysis is applied
we replace blue curved edges with red curved edges and obtain the 3-processor execution schedule shown on the right. As it can be seen overall
performance and processor utilisation is improved. Furthermore, there is now enough independent work to be able to use 4 processors at the same
time.

Evaluation
Multi-threaded programming is usually done by library of threading
primitives thus compilers are designed independently of threading issues.
We propose to bridge this gap by extending LLVM Intermediate Represen-
tation (IR) with parallel primitives. Our compiler infrastructure will out-
put LLVM bitcode and we will evaluate our analysis using PARSEC and
SPECInt2000 benchmarks on a detailed machine model that is being de-
veloped as a part of the Communication-Centric Computer Design (C3D)
project.

Future work
We are looking at different high-level programming models that can ef-
fectively map to many-core architectures: stream programming and join
calculus. The important aspect from these models that we are interested in
is amount of information we can obtain at compile-time to reduce amount
of work we need to do at run-time. Also, we plan to consider what ef-
fect knowledge of underlying architecture has on scheduling and if it im-
proves performance how to package it and pass to the compiler.
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