
What are the challenges?
Semantic analysis vs. find/replace
It is not possible just to simply replace lock-unlock
pair with atomic section.
Sometimes they are not paired because they exist
in different functions/files.
Some locks are unlocked just by setting certain
properties to certain values and vice-versa.
Not every lock has corresponding unlock and vice-
versa.

System calls
Syscalls are capable of modifying the state of the
memory or the system in a way that their side
effects cannot be reverted. So, when a malloc, write,
thread_kill are called inside a transaction, there
must be a solution for the case of abort. Strategies
that can be used are:
Undo functions (fig. 1)
Defer syscall's action until the commit time (fig. 2)
Irrevocable transactions
Unrestricted transactions

lock (thread) atomic {
threadsafe_malloc(...) register_undo(f);
unlock (condition) threadsafe_malloc(...)
 }
 ...
 void f (...) {
 free(...)
 }
 lock-based transactified

 Fig. 1: UNDO MECHANISM PSEUDOCODE

lock (condition) thread[] toRestart;
for (td in allThreads) atomic {
 td.restart() for (td in allThreads)
unlock (condition) toRestart.push(td)
 }
 for (td in toRestart)
 td.restart()

 lock-based transactified

 Fig. 2: DEFERRAL MECHANISM PSEUDOCODE

Transactification of Real World System Libraries
Authors: Nebojša Miletić, Vesna Smiljković

Introduction
Transactional memory is a concurrency control
mechanism analogous to database transactions for
controlling access to shared memory resources in
concurrent computing.
It is meant to simplify concurrent programming by
allowing group of load and store operations to
execute in an atomic way.
Its main intention is to replace the lock mechanism
that is widely used and has showed as very hard to
program with, but viable alternative has never
appeared.

BSCMSRC conducts fundamental and applied
research in TM by developing TM applications,
benchmark suites, compiler and runtime tools and
architectural simulators for TM.

What the intended outcome is?
Ultimate goal is to have existing and community
adopted system library converted to equivalent
transactional version. In that way, other real
applications can be used on top of it, without fear of
undefined behaviours and with fully facilitated TM
semantics.

In certain cases, some of the locks are inherently
necessary (e.g. keyboard input, printer output etc).
Such cases will have to be reasonably explained. In
worst case, we would show that transactification of
existing system library is possible at very high cost
and try to recommend alternative solutions.

Current work, next steps
At this moment we are investigating what are all
possible problems that we might face, locating the
most viable TM to use (together with other tools,
e.g. for compiling). Very important decision will be
the system library that we will work with, but it has
to be wide adopted and familiar to the community.

After the transactification is finished, in order to
prove the concept, the library will have to be tested
on relevant benchmarks, but also with some TM and
non-TM real applications. Hopefully, a publication will
follow to make the TM step closer to the general
programmers community.

UNIVERSITAT POLITÈCNICA
DE CATALUNYA

What the research is?
Transictification is a process of converting lock-
based software to one that uses transactional
memories. In that way the converted application
fully facilitates the semantics of TM. Sometimes it
means modification of the code, and sometimes it is
necessary to write certain functions from the
scratch, but it is important to keep the same
interface and funcionality.

Why a real world system library?
System library is a necessary tool to write other
applications and only if it uses TM, it allows to
compose applications which use TM, as well.
Otherwise, lack of composability is a problem
because it can lead to undefined behavior – what
would happen if a transaction aborts after the lock
and before the unlock command in the following
code:

atomic {
lock(resource);
...
unlock(resource);
...

}
Working with real library makes real applications
possible and it gives homogeneous approach to the
developers.

	Slide 1

