
As noted above, the values of V produced by an optimal

player are only upper bounds on the true temperature T.

We can, however, use them as data that gives us a clue

about T.

Philipp Hennig

David Stern (MSR) & Thore Graepel (MSR)

Learning the Temperature of a Game
Cavendish Laboratory

Background

Preliminary Results

Games are interesting for machine learning research

because they pose a hard problem in a very concise

package of rules. So far, machines have mostly won

against humans by exploiting their superior computing

power: Deep Blue beat Kasparov by the brute force of a

huge database and very efficient analytical search [1].

A tougher challenge is Go, an ancient Board game with

a huge following in Asia. Go’s game tree has 10400

nodes, making exhaustive search physically impossible.

So machines will have to focus on “interesting” parts of

the tree. The knowledge needed for this can be

provided by abstract reasoning tools from pure

mathematics or be “discovered” by the machines

themselves, using Machine Learning techniques. This

work is an attempt to combine both.

References
[1] Campbell, Hoane and Hsu; “Deep Blue”;

Artificial Intelligence 134, pp. 57-83, 2002

[2] Gelly and Silver; “Achieving master level play in 9x9 computer Go”;

Adv. in Artificial Intelligence, 2008

[3] Auer, Cesa-Bianchi and Fischer; “Finite-time analysis of the multi-armed

bandit problem”; Machine Learning 47, pp. 235-256, 2002

[4] Berlekamp, Conway and Guy; “Winning ways for your mathematical plays”;

Peters 2004

[5] Muller, Enzensberger, Schaeffer. “Temperature Discovery Search”;

Adv. in Artificial Intelligence, 2004

Games

Per board situation, the machine performs a large

number (~100k) of “descents” into the game, starting at

the root (the current board situation) and choosing

moves step by step, all the way to a terminal position. In

situations seen previously, it explores the move j that

maximises

UCT: Greedy Reinforcement

Learning on trees

)(

log2

nT

n
X

j

j 

where is the average of the results achieved playing

this move Tj(n) times in those previous n descents

passing this situation. UCT strikes a balance between

exploration and exploitation, exploring moves that have

given good results so far and have not been played very

often. If a new, unknown node is reached, it performs a

roll-out, choosing random moves until a terminal node is

reached, which provides an update to the Xj of all

moves played in this descent. With each descent, UCT

selectively expands the search tree.

Professional Go is played on a much larger, 19x19

board. To scale up to this complexity, UCT has to make

use of massively parallel computer architectures. Since

each machine in the cluster has to have access to a full

search tree at any point in time, parallelisation is tricky.

jX

Go games develop along several parallel “battles” –

sub-games whose values are approximately indepen-

dent of each other. However, the perfect line of play (the

“Principal Variation”) shifts back and forth between

battles in a complex pattern. Combinatorial Game

Theory [4] deals with optimal play in such sums of

independent games. It uses concepts called the

Temperature T(G) and Mean m(G) of a game G. T(G)

represents the price (in game result points) an optimal

player would be willing to pay to be allowed to make the

first move in G. It quantifies the urgency of making a

move in a particular game. The Mean represents the

average outcome of many copies of G if both players

get to start half the time. It measures the value a game.

Using these concepts, Combinatorial Game Theory has

developed several strategies for nearly optimal play.

Combinatorial Game Theory

The Temperature of a game G can be measured by

adding a coupon stack C of coupons of value Vm, Vm-

d,Vm-2d,... giving players the chance to score points by

taking a coupon and passing in G.

Enriched Environments

0.5

1

1.5

2

2.5

3

Our Work

The coupon value V at which an optimal player stops

taking coupons for the first time and starts to play in G is

an upper bound on the temperature of G. Searching for

this value analytically [5] is even more expensive than

searching for the optimal solution of G alone. An

approximate method is needed.

We are trying to use a greedy reinforcement learning

method to measure the temperatures of small games,

using an enriched environment. The search tree is the

Game tree of G with “taking the next coupon off C”

added as a legal move at every node.

UCT relies on point estimates to make its decisions: At

any given point in time, UCT believes in just one

approximation to the true solution. But Enriched Env-

ironments often allow for multiple, equally optimal lines

of play, with only one (with the lowest V) conveying the

true temperature. We thus need a Bayesian search

algorithm, which keeps track of a whole distribution of

possible paths through the search tree.

The Thomson Heuristic –

a Bayesian alternative to UCT

tm

r

X

t

N(r|m,t)

N(X|r,t)

Our model assumes playing a particular move will lead

to a final reward r, which is normally distributed with

mean m and precision t, which we would like to know.

The actual reward X seen after a roll-out is influenced

by the dynamics of the underlying children (which

change their behaviour during learning), which we

model very simplistically with Gaussian noise of mean r

and precision t. After each roll-out, the estimates for m

and t are updated (using Bayes’ rule), and the machine

slowly becomes more confident about what the

distribution over lines of play should be.

Both UCT and our model are greedy methods: The

decision taken at a given board position uses only

locally available information. Performance drops if

optimal play necessitates a long sequence of co-

ordinated moves. Unfortunately, an Enriched Environ-

ment is exactly such a situation, so it is important to

keep the sequence leading to V as short as possible.

We thus update Vm and d iteratively during the search.

Iterative Parameter-Updates

A Likelihood-Model

We are using the game Amazons as a test case,

because it has been studied extensively in the CGT

community, and analytical solutions are available, at

least for small games.

The Bayesian searcher performs well in games

against UCT, winning 73% of the time when given

the same computing resources

On small boards the algorithm produces

encouraging results

The left plot shows P(V|T) as a function of V: For a

given T, all values V>T are equally likely. Values V<T

are less likely, but possible, and also uniformly

distributed over this range. The plot on the right shows

P(V|T) as a function of T: Observing a value for V

makes all T>V much less likely. The dashed lines

represent the special degenerate case of the player

starting play directly in G, which conveys less

information than other values of V.

On bigger boards, where exhaustive methods fail

completely, the results are still very coarse.

1

2

3

Abstract: We attempt to combine the pure

mathematical theory of combinatorial games with

applied machine learning techniques to develop a

parallelizable architecture for approximate game

tree search.

Conclusions
What we have achieved:

1. Coarse estimates of the temperatures of games

that are too complex to be searched analytically

2. A Bayesian search algorithm that beats UCT on

our test set.

What remains to be done:

1. Better estimates of Temperatures for large games

2. A sub-game identifier for Go, either based on roll-

out statistics or a stand-alone, unsupervised

method

0.5

0.5-0.3 0.4

854

18
573

263

The machine MoGo beat a professional human player

on a small, 9x9 Go board earlier this year [2]. It uses a

method called Upper Confidence Bound for Trees

(UCT).
0.5

0.5-0.3 0.4

1075

22
208

133

0.6

712

