
Dynamic Pricing and Traffic Engineering for Timely
Inter-Datacenter Transfers

Virajith Jalaparti, Ivan Bliznets, Srikanth Kandula, Brendan Lucier, Ishai Menache
Microsoft

ABSTRACT
As more business moves to the cloud, inter-datacenter

bandwidth becomes an ever more valuable and congested re-
source. This bandwidth is typically sold using a fixed price
per GB, and transfers are scheduled using traffic engineer-
ing mechanisms. However, this separation between the eco-
nomic and engineering aspects of the problem makes it dif-
ficult to steer customer demand to lightly loaded paths and
times, which is important for managing costs (typically pro-
portional to peak usage) and providing service guarantees.

To address these issues, we design and evaluate Pretium
– a framework that combines dynamic pricing with traf-
fic engineering for inter-datacenter bandwidth. In Pretium,
users specify their required rates or transfer sizes with dead-
lines, and a price module generates a price quote for dif-
ferent guarantees (promises) on these requests. The price
quote is generated using internal prices (which can vary over
time and links) which are maintained and periodically up-
dated by Pretium based on history. A supplementary sched-
ule adjustment module gears the agreed-upon network trans-
fers towards an efficient operating point by optimizing time-
varying operation costs. Using traces from a large produc-
tion WAN, we show that Pretium achieves up to 80% of the
social welfare of an offline oracular scheme, significantly
outperforming usage-based pricing alternatives.

CCS Concepts
•Networks → Network economics; Data center net-

works;

Keywords
Inter-datacenter networks; dynamic pricing; percentile

pricing; deadline scheduling.
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22 - 26, 2016, Florianopolis , Brazil
© 2016 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934893

1 Introduction
Bandwidth on the wide area network (WAN) is a valuable

and important resource. Private WANs, such as the ones con-
necting the datacenters at Google and Microsoft, carry both
(i) user-facing traffic, which typically requires low latency,
and (ii) large transfers of business data, which typically have
deadlines. Centralized traffic engineering (TE) techniques
have been proposed to improve network utilization [18, 20]
without affecting low latency traffic and with explicit sup-
port for deadlines [22, 34]. Such techniques crucially de-
pend on detailed traffic information: the priority class of
requests, precise latency requirements and/or transfer dead-
lines, etc. In principle, these features would be provided by
the users, but simply asking for this information can have
unintended side-effects. Users are incentivized to inflate pri-
orities and tighten deadlines, hoping for better service. The
cumulative effect can drastically reduce the overall perfor-
mance of the system.

Interviews with internal WAN customers at Microsoft (see
Table 1 for a summary) reinforce that customers have strict
requirements on many transfers and would pay more for
guaranteed deadlines. Unfortunately, such mechanisms of-
ten do not exist today. The issue is prevalent also in pub-
lic WANs, where customers pay for connectivity to cloud
providers (e.g., Azure, Google ElasticCloud). The currently
dominant method for pricing cloud bandwidth is fixed pric-
ing (Table 2), which does not permit service guarantees such
as deadline support for premium customers.

Another (seemingly unrelated) problem in the develop-
ment of public WANs is the disconnect between provider
costs and the most common pricing models. A large WAN
provider can incur annual costs measured in hundreds of mil-
lions of dollars. The structure of these costs can be complex
and non-linear: bandwidth costs often depend on the 95th

percentile usage of a link, and static capacity costs depend
on peak utilization (since the network must be provisioned
for such). However, the fixed pricing method currently in
use provides no lever to lower peak usage specifically, and
no lever to incentivize users to shift demand away from times
of peak load.

We address these problems simultaneously with a frame-
work that combines traffic engineering with dynamic pric-
ing. Our framework has the following goals:

1. Each user should be presented a menu of prices up

http://dx.doi.org/10.1145/2934872.2934893

front, from which they can select a service level.
2. Prices should align the preferences of individual users

with the goals and costs of the platform.
3. Prices should be dynamic, adapting to changes in de-

mand and usage patterns.
4. The pricing model should complement, not preclude,

centralized traffic engineering.
We achieve these goals with a system called Pretium.

Pretium serves both byte requests (e.g., move 10TB from
DC1 to DC2 before 2AM) and rate requests (e.g., a firm
leases 100 VMs in Azure US East and wants 250Mbps band-
width guaranteed in/out of that datacenter for the duration of
the lease). In Pretium, a customer specifies basic information
within the request, and is immediately presented with a price
quote that provides a menu of service levels (e.g., band-
width guarantees) and corresponding prices. The customer
can then choose a satisfactory point on the menu or modify
the request if nothing is appropriate. The selected transfer is
then managed by a central scheduler, tasked with upholding
the service level guarantees. A key technical challenge in the
design of Pretium is the online nature of the problem: price
quotes must be generated as requests arrive, and be crafted to
steer the system toward good aggregate performance while
managing the incentives of individual customers.

To maintain high system efficiency while respecting user
incentives, Pretium combines multiple ideas. First, it up-
dates prices dynamically using a feedback loop. Pretium
stores internal prices per link per time, which are used to
generate each customer’s price quote. Prices are updated
periodically using the observed requests, closing the loop.
Updates are based on dual pricing, and recent advances in
combinatorial market design and statistical learning [6, 8,
19]. Second, Pretium plans well into the future so it can
effectively balance price and service guarantees. It delays
binding promised user traffic to the underlying paths un-
til necessary, which allows for rerouting to accommodate
later arrivals, link failures and congestion. Third, Pretium
resolves the challenge of optimizing complex usage-based
costs. Widely-used measures like 95th percentile usage
(across time) of a link are hard to express as a tractable opti-
mization problem. We show that the sum of top 10% usages
is a good proxy for 95th percentile usage, and offer a way to
solve the resulting scheduling problem as a succinct LP.

The net effect is that Pretium is able to efficiently allocate
its network capacity, as measured by social welfare, i.e., the
total value generated (over all requests served) minus op-
erating costs.1 Our experiments with traffic traces from a
large production WAN show that Pretium achieves 60-80%
of the social welfare relative to an aggressive benchmark: an
omniscient offline optimization scheme that has full knowl-
edge about future demands including their values2. In con-
trast, baselines that have oracular information but are re-

1This is the natural generalization of many commonly-used metrics, such
as utilization maximization and congestion minimization, to a setting with
utility-weighted requests and operation costs.
2The offline scheme solves an LP with the full benefit of hindsight (com-
plete information), and is nearly optimal. The deviation from optimality is
due to linearizing the operation costs, which is required for tractability (§4).

Questions Responses
Do any transfers require deadlines? 100% said yes
What fraction of transfers have strict deadlines? 60% (on average)
Incur penalty on missed strict deadlines? 88% said yes
Would you pay extra for guaranteed deadlines? 64% said yes
Willing to delay some transfers if price reduced? 81% said yes
Willing to use a network that guarantees dead-
lines, even if price is known only at the start of a
transfer?

81% said yes

Table 1: Summary of results from a survey of several WAN cus-
tomers at Microsoft.

stricted to using fixed prices achieve much lower social wel-
fare and profit for the provider. We also find that Pretium out-
performs alternative extensions to simple fixed prices, such
as two-level pricing (peak vs. off-peak) and demand-driven
spot market pricing. We also confirm (both theoretically
and through simulations) that Pretium incentivizes reason-
able and desirable behavior from customers.

Our conclusion is that it is necessary to intertwine pric-
ing decisions with TE to best utilize WAN bandwidth. We
present one implementation of such an integrated system,
Pretium, and verify that it achieves much higher social wel-
fare than the current practice of setting a static pricing policy
and performing TE independently. Our contributions are:

• A novel system for network transfers on the WAN that
combines online dynamic pricing and TE.
• By dynamically adapting prices and planning well into

the future, Pretium offers a priori price quotes for guar-
anteed service (§4.1). A TE scheme at the back-end
ensures that the service guarantees are met despite on-
line arrivals and other network changes.
• A new way to model percentile-based usage costs as a

compact set of linear inequalities (§4.2).
• An evaluation on the topology and traffic observed on

a production WAN of a large enterprise (§6).

2 Background and Motivation
In this section, we provide necessary background for the

motivation and challenges behind Pretium. For this purpose,
we will refer to the characteristics of traffic on the inter-
datacenter WAN of a large enterprise. We also conducted
a user-survey of 15 operators and consumers of the WAN
(Table 1).
Lack of service guarantees. Public cloud providers charge
their user’s network traffic as shown in Table 2. In gen-
eral, traffic leaving the WAN (to the Internet) is charged
more than traffic that stays on the WAN. Bulk discounts are
offered and costs vary with geography. Note that current
pricing schemes are static in time and across users. Cloud
providers do not provide guarantees on network bandwidth
and/or transferring data within deadlines (i.e., no SLAs).
The provider-user engagements for private WANs are not
publicly known, in general. In our internal survey, we found
no evidence of formal service-level enforcement, although
more than half of the customers we interviewed were inter-
ested in some form of guarantees (see Table 1).

Cloud Traffic billed Price kind Service kind Price (USD/GB)
Dyn? Geo.

diff?
Bulk
Dis-
count?

Tiers? SLAs US/EU Asia South
America

Amazon
between
sites

No No No No No 0-
0.02

0-
0.09

0-0.16

to Internet No Yes Yes No No 0.05-
0.09

0.08-
0.14

0.19-
0.25

Azure to Internet No Yes Yes No No 0.05-
0.09

0.12-
0.14

0.16-
0.18

Google to G prod. No Yes No No No 0-0.01
to Internet No Yes Yes No No 0.08-

0.12
0.15-
0.21

0.08-
0.12

Rackspace all out No No Yes No No 0.06-0.12

Table 2: Pricing for WAN bandwidth by cloud providers (current as of 1/25/2016).

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100C
u
m

u
la

ti
v
e
 f

ra
ct

io
n

 (
o
v
e
r

lin
ks

)

90th to 10th percentile ratio

Figure 1: Ratio of 90th percentile
to 10th percentile link utilization
shown as a cumulative distribution
function.

Provider cost management. Under the current state-of-
the-art, providers can only imperfectly pass their costs to
customers. Although TE algorithms exist to meet customer
deadlines, there is no incentive for the customers to report
true demands or deadlines. Hence, even if some users have
flexible deadlines (Table 1), the lack of incentives for cus-
tomers to move load to less busy periods forces the provider
to over-provision network capacity (e.g., lease more capacity
from the upstream ISPs to keep up with the peak demands).

One might argue that compute and storage are more ex-
pensive than network on the provider’s balance sheet. How-
ever, getting the WAN pricing model correct has further im-
plications: (i) the network can become a key differentia-
tor across providers; and (ii) service guarantees on cross-
site transfers are becoming increasingly important due to the
demand for cloud-backed customer data and services (e.g.,
iCloud), and real time monitoring and management of ser-
vices that have a global footprint (e.g., Facebook, Gmail).
The need for adaptive pricing. We find that a fixed price
per link (or even a different price per hour-of-day) is unlikely
to extract most of the gains of fully dynamic prices. Our
analysis of data from a large inter-datacenter WAN shows
sizable variation in the utilization of WAN links (Figure 1)
– the 90th percentile is more than 5 times the 10th per-
centile utilization for more than 10% of the links, while it
is less than 2 times for nearly 70% of the links. Though
there is strong periodicity in the traffic, there are significant
short-term variations in the volume, due to flash-crowds or
link failures. The data also reveals that the extent of mul-
tiplexing in inter-datacenter networks is typically smaller
than in Internet traffic, i.e., fewer transfers contribute sub-
stantial portions of the overall traffic. Consequently, careful
resource-management of the WAN could make a difference;
e.g., shifting a single large transfer by a few hours could ac-
commodate many smaller competing transfers. To handle
such demand variation, prices should react dynamically.
Pricing versus auctions. Pretium proceeds by quoting
prices to customers upon arrival. An alternative design ap-
proach is to elicit bids, execute an auction, and then inform
the customers of the outcome. Because of our online set-
ting, standard auctions (such as a VCG auction) are not di-
rectly applicable; but there is a rich and relevant literature on
incentive-aware online scheduling [4, 17] that can possibly

be adapted to WAN allocation. Regardless of the feasibility
of auctions, we advocate a pricing approach for two reasons.
First, an auction forces customers to wait, potentially until
their deadlines, to discover their price (or whether their traf-
fic was routed at all). However, our user survey indicates
that a priori guarantees on service and price are important
(Table 1). Second, an auction requires users to fully specify
and commit to the details of their request in advance, in-
cluding all possible options of routes, durations, utility, etc.
In contrast, Pretium responds with a menu of {price, ser-
vice guarantee} options, allowing users to iteratively adjust
their request if needed (e.g., to explore a different route or
time window). Insofar as it is possible to achieve good per-
formance and truthful behavior with a pricing approach, we
view it as preferable to an auction.
The need to combine traffic engineering with pricing.
Pricing can guard existing TE techniques that improve WAN
utilization (e.g., [18, 20]) against strategic users. By quoting
lower prices for more flexible requests (e.g., a request with
a shorter deadline would be priced higher than a comparable
request with a longer deadline), our pricing method encour-
ages customers to report their true traffic requirements. Fur-
ther, TE is an important tool for setting the right prices; with-
out careful planning over paths and future times, some link-
time pairs may appear more or less busy than they should
be. A good TE procedure makes it easy to detect parts of
the network that are overloaded and adjusts prices. Hence,
Pretium carefully intertwines TE and pricing.

3 The WAN Ecosystem
In this section, we elaborate on the assumptions and no-

tations of the economic model used in this paper. We then
provide an example that highlights the benefits of Pretium.

3.1 Formal model
The WAN. We consider a bandwidth provider controlling
a network G of interconnected datacenters. Each edge e =
(u, v) inG represents a WAN link between datacenters u and
v or an egress link between datacenter u and an ISP v. Link
e has associated capacity ce, representing the total available
bandwidth per unit-time on that link.
The Customers. There is a pool of users (customers) who
make bandwidth requests. These requests arrive online. A

Notation Meaning
(Si, Ti) Source and Target datacenters for request i
Ri Set of all routes from Si to Ti

[t1i , t
2
i] Timesteps when request i is active (begin / deadline)

vi Value per byte of request i
di Total size (number of bytes) of request i
ce Total capacity of network link e
Xirt # bytes of req. i transmitted on route r at time t
pi(x) Price to route x bytes of data from request i
πi(x) Marginal price to route byte x of request i

x̄i
Max. # of bytes from req. i that can be guaranteed by its
deadline

xi Request i’s chosen amount of data
gi The guaranteed transfer for request i: min{xi, x̄i}
Biτ # bytes of request i transferred by time τ
C(X) Platform cost of schedule X = (Xi,r,t)
ye 95th percentile of bandwidth usage on link e
Ce Cost per unit of 95th percentile usage on link e
W Number of timesteps per time window

Table 3: Summary of notation.

byte request, indexed by i, has a quantity of data di to be
routed. The request indicates the source Si and target Ti;
data must be transmitted along a set of admissible paths (or
routes) Ri from Si to Ti. The request specifies a time in-
terval in which the data can be routed. We discretize time
into timesteps, where each timestep corresponds to, for ex-
ample, a five-minute interval. Accordingly, the time inter-
val of each request i is translated to [t1i , t

2
i], where t1i is the

timestep corresponding to the start time of the request, and
t2i is the timestep corresponding to its deadline. A sizeable
portion of inter-datacenter transfers have deadlines, and can
be modeled using this abstraction [18, 22]. For example,
periodic index refreshes are expected to be fully available
before a certain time of day. Some deadlines can be soft.
Each request can potentially be routed along multiple paths
(|Ri| ≥ 1). While this can result in packet-level reordering,
we do not model its effects, assuming existing techniques
can be applied to resolve any reordering (e.g., [29]).

Some network transfers may not have a concrete deadline.
A common scenario is transfers with a constant rate require-
ment for a certain period of time. Hence, Pretium supports
rate requests in addition to byte requests. For brevity, we
omit a detailed model of rate requests, but note that they can
be handled as a special case of our solution (§4.4). Other
portions of the WAN traffic may not be governed by any
TE scheme [18, 20, 22]. For example, there could be some
latency-sensitive requests or short transfers (e.g., in the order
of few seconds) that have to be routed immediately without
waiting for the TE solution. We call such traffic high-pri and
set aside a portion of capacity into the future to accommo-
date such requests; see §4.4 for more details.

Each request has a value vi, which is the most the cus-
tomer is willing to pay per byte transferred. For simplicity,
we assume linear values: the value of a partial transfer is
proportional to the quantity of data transferred. Neverthe-
less, the design principles behind Pretium do not depend on
a specific customer-utility model; in §4.4, we discuss how
our solution can be extended for non-linear utilities.

Finally, we note that we deliberately do not make a clear
distinction in this paper between private and public cloud

WANs. Pretium can be applied in either setting. In a private
cloud, the customers are individuals or groups within a large
enterprise, each of whom could be allocated a budget for in-
frastructure usage (in either real or virtual currency), and are
therefore incentivized to minimize WAN transfer costs. In a
public cloud, Pretium allows the cloud provider to dynami-
cally set its prices for WAN transfers.
Costs. The provider pays a cost to run the network. Operator
interviews reveal that some of the WAN links are “private" or
“owned”, meaning that their cost only changes during capac-
ity planning, which happens a few times each year. The re-
maining links are charged based on usage. Discussions with
operators reveal that pricing based on 95th percentile usage
is a common approach. These links are typically purchased
from upstream providers and connect the WAN to the Inter-
net. The 95th percentile utilization is typically calculated
over a fixed time period, such as a day, week or month.
Schedules. The provider is in charge of routing/scheduling
decisions, hence we use the terms “provider" and “sched-
uler" interchangeably. At each timestep, the scheduler must
choose which data to transfer, and along which paths, sub-
ject to capacity constraints. Scheduling is done online: each
request arrives at a certain time ai (≤ t1i), and the provider
is unaware of requests before they arrive.

We write Xirt for the number of bytes from request i
transmitted along route r ∈ Ri at time t. The quantities
X = (Xirt) fully describe a schedule of transfers. We write
C(X) for the total cost generated by schedule X . We defer
the specific description of C(X) to §4.2, and note that C(·)
can be nonlinear, e.g., modeling 95th percentile charges.
Prices and customer Behavior. The network provider can
charge payments to customers. In general, the price of a
transfer can depend on the number of bytes transferred, the
source and target nodes, the timing of the request, network
load, etc. In the implementations we consider, the sys-
tem exposes the payment rule to each customer in advance
of any data transfers. Customers can then choose whether
or not to route data at the offered prices and, if so, how
much to transfer. Supposing that xi units of data from re-
quest i are transmitted within the time interval [t1i , t

2
i], and

that the network provider charges a total price of pi(xi) for
this transmission, the utility of customer i is taken to be
ui(xi) = vi · xi − pi(xi). Each customer is a self-interested
agent aiming to maximize utility.
Objectives. We focus primarily on the objective of system
efficiency: generating a schedule that maximizes the total
value across all customers, minus provider costs. Precisely,
the system efficiency of schedule X is∑

i

∑
r∈Ri

∑
t∈[t1i ,t2i]

vi ·Xirt − C(X). (1)

This metric captures the overall efficiency of the network uti-
lization. It is important that costs are accounted for directly
in this objective: cost minimization is an important aspect of
transfer planning, and it is inefficient to route traffic whose
value does not at least outweigh its cost burden. We note that
this objective is known in the economic literature as social

Request v D [start, end]

R1: A → B 8 2 [0,1]

R2: A → B 4 2 [0,2]

R3: A → D 4 2 [0,1]

R4: C → D 1 4 [0,2]

v: value per byte, D: demand

R1 R2 R3 R4 Welfare

No Price 1 2 1 3 23

Fixed price: 4 1 2 2 0 24

Fixed price per link:
(A → B: 8, B → D: 0, A → C: 2, C → D: 2)

2 0 2 0 24

Fixed price per timestep: ([0,1]: 4, [1,2]: 1) 1 2 2 2 26

Pretium 2 2 2 2 34

A B

C D

2

2

2

2

Figure 2: Example illustrating the impact of pricing. Top: the net-
work (all links have capacity 2 units) and request specifications.
Bottom: the number of units of each request scheduled under dif-
ferent pricing methods (all prices per unit transferred), and total
welfare of the schedule.

welfare [33], and the optimization in (1) is known as wel-
fare maximization. Welfare is a natural objective for private
networks, but is also highly relevant in public cloud settings:
social welfare is a generalization of common performance
metrics, such as utilization, to a setting with utility-weighted
requests and operation costs.3

As a secondary objective, we also measure the profit of the
network provider when evaluating Pretium. This is the sum
of payments made by the customers minus costs incurred.
The profit of a schedule X is

∑
i pi(xi)− C(X).

Limitations. Our model does not feature bulk discounts,
which may help, e.g., in attracting new users to the cloud,
and utilizing capacity that is already paid for but would go
unused otherwise (e.g., [7]). It is reasonable to assume that
bulk discounts would be less relevant in a highly-utilized
network with transfer-SLAs, as in Pretium. Furthermore, we
do not explicitly model competition between providers. That
said, we do assume that the provider is concerned with max-
imizing the efficiency of its WAN resources, which may be
motivated by competitive pressure from other providers [33].

3.2 Example
We use a simple example of a network with four nodes

and four requests (Figure 2) to illustrate the importance of
prices in WANs, and showcase the benefits of Pretium.
Alternatives. A system without payments cannot distin-
guish high-value requests from low-value ones, and the opti-
mization problem becomes one of throughput maximization.
As a result, only a fraction of the valuable requests (R1 and
R3) is scheduled. Charging a fixed price p per unit sent en-
sures admission control (customers with value less than p
will opt out) but is too coarse to target specific regions and
time periods. In our example, a price of 4 per unit achieves
the highest welfare but this causes R1 and R2 to share the
link (A,B), even though R2 can be deferred to a later time.

Using different fixed prices on each link in the network,
and charging requests the sum of prices on links traversed,
allows for the use of higher prices in congested parts of the
3Another natural objective for public networks is profit maximization.
However, we note that it is important to account for market competition
when optimizing for profit. We take the position that the cloud market
is highly competitive, and hence a profit-seeking provider will anyway be
driven to optimize for welfare [33].

network, but still fails to respond to temporal shifts in de-
mand. In this case, the optimal link prices are 8 on link
(A,B), 2 each on links (A,C) and (C,D), but these prices
prevent requests R2 and R4 from transmitting in the second
timestep when the system is underutilized. Alternatively,
one could use a single uniform price but make it vary over
time. For instance, one could set higher prices when the sys-
tem is under heavy load. In our example, prices of 4 and 1
for the two timesteps achieve the best welfare but this again
causes (A,B) to be shared by the two requests R1 and R2.
Pretium combines both spatial and temporal price dif-
ferentiation. In Pretium, each link is given a price at every
timestep, and these prices can vary over time in response to
observed usage patterns. In this example, Pretium could set a
price of 8 on link (A,B) for the first timestep but lower it to
4 in the second timestep. This allows R2 to be deferred to a
later time and allows R1 (of higher value) to finish within its
allocated deadline. Similarly, the price on link (C,D) would
be set to 4 in the first timestep and lowered to 1 (to allowR4)
in the second timestep. Overall, in this example, Pretium can
achieve the maximum possible welfare of 34. The next sec-
tion describes how Pretium determines the prices.

4 Design of Pretium
We now turn to a detailed description of Pretium. Pretium

consists of three modules, as shown in Figure 3. A net-
work state datastructure is central to the various modules of
Pretium. This maintains the prices for the links and a plan for
how to route the accepted requests. Both aspects are main-
tained for multiple timesteps into the future.

1. The request admission interface (RA) (§4.1) is the user
interface. In response to a transfer request, it uses the
network state to generate a price quote for routing dif-
ferent guaranteed amounts of request data. Customers
can choose how much data they wish to transfer. A
preliminary routing schedule (or plan) is chosen.

2. The schedule adjustment module (SAM) (§4.2) runs at
each timestep to decide the actual routing and schedul-
ing for that timestep. This module can update the
plans for future timesteps. Its goal is to maximize wel-
fare (total value minus cost) while respecting a priori
guarantees on service (e.g., deadlines).

3. The price computer (PC) (§4.3) updates the prices for
each link and for each future timestep. While RA up-
dates prices after accepting individual requests, the PC
module anticipates future load levels (based on histor-
ical usage and current demand levels) and performs a
more holistic optimization to set prices.

Each of the above modules works at a different timescale.
The request admitter (RA) responds with a price quote online
to every new request. The RA executes a multi-timestep TE
to identify the least expensive way to schedule different por-
tions of the user transfer. Price quotes are computed by it in
a manner that ensures truthful behavior from users (§4.1).
RA lets the user pick a price and a service guarantee. Then,

once per timestep, the schedule adjustor (SAM) figures out the

Request Details:
{src, dest, start, deadline}

Request interface
(at each request arrival)

Transfer
size

P
ri

ce

Price quote

Request details
(including price paid)

Schedule Adjustor
(every timestep)

Network
state

Prices: {𝑃𝑒,𝑡} Updated
flows

Existing
flows

Price computer
(start of each window)

prices: {𝑃𝑒,𝑡}

Initial
flows

Accepted
requests

Figure 3: Overview of Pretium.

actual routes to install at switches and the amount of rate to
allocate to each user on each route in order to achieve the
promised service guarantees. SAM is related to recent work
on multi-timestep traffic engineering [22, 34] but extends
it in two ways: (1) it considers potentially non-linear link
costs and (2) optimizes for social welfare. Further, by using
prices, SAM is mostly protected from strategic users (§4.2).
Similar to prior work [18, 20], we execute SAM once every
few minutes. This leaves enough time to put routes in SDN
switches and change rates at the sending servers.

Finally, once every time window, the price computer (PC)
aggregates and analyzes all requests over a recent time pe-
riod, and updates the baseline link prices. Our logic to set
prices is straightforward (we use dual prices); however, our
method to learn the anticipated load levels is novel (§4.3).
We recommend prices be recomputed each hour.

When building an intertwined TE + pricing scheme, we
believe that decoupling the timescales is important. The
three modules share the network state but otherwise func-
tion independently. A monolithic implementation may be
less nimble in responding to the user than the RA. Further,
delaying the actual scheduling and routes to SAM lets Pretium
react to unexpected faults and congestion. We next describe
the details of each of the modules.

4.1 Request Admission Interface
When a customer’s request i arrives, Pretium must deter-

mine how that request would be served. The customer will
be quoted a price menu pi(·), where pi(x) is the price to
route x bytes of data. This menu depends on the current state
of the network and the request’s parameters (source, destina-
tion, arrival time, and deadline). A capacity upper bound x̄i
is also reported to the customer: x̄i is the maximum amount
of data that Pretium guarantees can be routed by the dead-
line. The customer then chooses how much data, xi, to trans-
fer (if any). This decision is viewed as a contract: Pretium
guarantees that min{xi, x̄i} bytes will be routed within the
specified time interval. If the customer asks to transfer more
than x̄i, then data beyond x̄i is routed on best-effort basis.
Calculating the price quote. The price computer (§4.3)
maintains, at each point in time, a price-per-byte Pe,t for
each link in the network e and each future time step t. For
request i, pi(x) is defined to be the minimum total price (i.e.,
sum of edge prices) at which x bytes can be routed within the
allowed time interval.

There is a natural interpretation of pi(·): first route traffic
along the minimum-price path/time until the path is satu-
rated – each byte is priced accordingly – then along the path

S T

A

Edge 𝒕 = 𝟏 𝒕 = 𝟐

𝑒1 1 3

𝑒2 3 1

𝑒3 2 1

Link Prices

𝑒1

𝑒2 𝑒3

0

5

10

15

20

0 1 2 3 4 5

P
ri

ce
, p

(x
)

amount of data, x

Price Menu: Transfer from S to T

time interval [1,2] time interval [1,1]

Network (all capacities = 1)

Figure 4: Sample price menus for two different requests, differing
only on their deadlines. A shorter deadline leads to higher prices.
The maximum possible guarantees (x̄) are circled.

with the next lowest price, and so on. As the price per byte
only increases, the price schedule pi(·) is a non-decreasing,
convex, and piece-wise linear function (Figure 4). The fact
that Pretium uses minimum-price paths in this calculation is
important as it drives its incentive properties (§5). It also
serves as a link between pricing and TE as lower-price paths
will tend to be those that have less congestion (§4.3).

User response. Given the price quote, each user decides
how much demand to send. Write πi(x) = pi(x)−pi(x−1)
for the marginal price to route byte x. The optimal choice for
each customer is to route as much of their demand as possi-
ble while the marginal price is at most their value per byte
(i.e., πi(x) ≤ vi). We establish this formally in §5. In this
paper, we assume that each request is associated with a fixed
deadline. However, one may also envision users with flex-
ible deadlines; e.g., “transfer my entire demand as soon as
possible, as long as the price is not too high." Such prefer-
ences can be manifested by users resubmitting requests with
different deadlines (each deadline would correspond to a dif-
ferent price quote). The analysis and evaluation of Pretium
with flexible deadlines, and request rescissions is an inter-
esting direction for future work.

Preliminary schedule. The customer’s chosen transfer is
immediately assigned a preliminary schedule, determined by
the price computation. Bandwidth is reserved (over multiple
timesteps, if needed) for the request on the minimum-price
routes that were used to compute pi(xi), and link utilization
is updated accordingly. In this way, the admission interface
also performs TE by steering traffic toward low-price paths.

Capacity Bound x̄. During periods of high utilization, it
may not be possible to route all requests fully. The price
quote therefore includes a “maximum countably transfer,”
x̄i, the largest transfer that Pretium will guarantee by the
specified deadline. The price menu extends beyond x̄i (Fig-
ure 4) and if the user chooses a large value xi > x̄i, only
x̄i data is guaranteed to be routed; any additional data (be-
yond x̄i) is routed on a best-effort basis, at a price of π(x̄i).
Allowing customers to specify demands beyond x̄i is im-
portant for improving utilization, as additional data may be
transferable after schedule adjustment if the amount of high-
pri traffic is less than anticipated.

Short-term price adjustments. To increase robustness to
sudden demand spikes, we increase link prices in response
to heavy, localized congestion. This short-term adjustment
complements the price computer (§4.3) which operates on
a slower timescale and updates all link prices at once. We
found that increasing the price of a link by a multiplica-
tive factor if its utilization crosses a threshold is a simple
yet efficient rule for controlling short-term demand spikes
(e.g., double the price of the last 20% of the link capacity).
This short-term adjustment is performed after each request
is admitted by the RA module. We note that this price ad-
justment is functionally equivalent to splitting each network
link into parallel links with different prices. Hence, the ad-
justment does not qualitatively change the complexity of the
price menu and user response.

4.2 Schedule Adjustment
The admission interface determines how much data to

transfer and performs initial traffic engineering, but the exact
routing schedule is flexible. The schedule adjustment mod-
ule exploits this flexibility by reoptimizing at each timestep.
Problem formulation. The schedule adjustor considers all
requests whose full demand has not been satisfied and whose
deadline has not expired. The objective is to maximize total
welfare (values minus costs) while satisfying flow guaran-
tees. This is a non-convex optimization problem, due to the
non-convex costs. Write Biτ for the total number of bytes
transferred before time τ for request i, and gi = min{x̄i, xi}
for the number of bytes guaranteed to be transferred (§4.1).
As user values vi are unknown, the marginal price from the
admission controller, πi ≡ πi(xi), is used as a proxy.4 For-
mally, the objective at timestep τ is

maximize
∑
i

∑
τ≤t≤t2i

∑
r∈Ri

Xirt · πi − C(X) (2)

subject to
∑

τ≤t≤t2i

∑
r∈Ri

Xirt ≤ xi −Biτ ∀i

∑
τ≤t≤t2i

∑
r∈Ri

Xirt ≥ gi −Biτ ∀i

∑
i:τ≤t≤t2i

∑
e∈r,r∈Ri

Xirt ≤ ce,t ∀t, e,

The available capacity for each link ce,t can vary over time.
As described in §3, the available capacity depends on the
expected volume of high-priority traffic.

We emphasize that although (2) uses the marginal prices
πi as a proxy for the expected values, the above program
does not encode profit maximization. Intuitively, profit-
maximizing prices are typically much higher, in order to ex-
tract more revenue from high-valued customers at the ex-
pense of lower utilization and overall user satisfaction.
Non-convex costs. The term C(X) of (2) is potentially non-
convex when link costs are usage-based. For example, 95th

percentile charges can be modeled as
∑
e Ce · ye where Ce

4The use of marginal prices for estimating user values is motivated by The-
orem 5.2, which implies that users will set these quantities equal if possible.

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

A
v
e

ra
g

e
 o

f
to

p
 1

0
%

95%ile utilization

Figure 5: Scatter plot of 95th percentile and average of top 10%
utilization values. Each point corresponds to a link.

is an edge-specific constant and ye is the relevant 95th per-
centile usage on that link. This makes the optimization
problem hard:

THEOREM 4.1. Maximizing (2), when C(X) is non-
convex, is an NP-hard optimization problem.

The proof follows by a reduction from the subset-sum
problem [28]; we omit the details for brevity.
Solution. We deal with the above challenge by using an al-
ternate metric that approximates the true costs. Define ze to
be the utilization on edge e, averaged over the 10% of time
steps in the window with highest utilization. For example,
if the window contains 30 timesteps and link e was utilized
most on steps 7, 13, and 26, then ze = 1

3 (Xe,7 + Xe,13 +
Xe,26), where Xe,t is the total traffic routed along edge e
on step t. Intuitively, ze will be positively biased over the
95th percentile usage on edge e, ye. The bias will be more
significant for heavy-tailed traffic distributions. Using traffic
data from our production network, we experimentally found
that ze is linearly correlated with ye, over different time pe-
riods. This relation is shown in Figure 5 as a scatter plot –
each point represents a single link in the network. To vali-
date this assumption further, we used a variety of synthetic
distributions (normal, exponential and pareto) to model net-
work traffic. For each distribution, we generated link traffic
over time. Given these traffic samples, we calculated ze and
ye for each link e, and found them to be linearly correlated,
with small difference between the absolute values.

Following the above analysis, we can solve an approx-
imation of (2) by substituting the 95th percentile cost by∑
e Ce · ze. The resulting optimization problem can be en-

coded as a linear program, although the straightforward en-
coding requires exponentially many constraints (as there are
exponentially many ways to choose 10% of the timesteps in
a window). We address this issue by using sorting-network
inequalities [25], which reduces the number of constraints to
polynomial without loss in accuracy.

THEOREM 4.2. There exists a set of O(kT) linear con-
straints which expresses an upper bound on sum of top k
values from the set Xe,1, . . . Xe,T .

See the appendix for the construction and proof. We note
that our solution improves upon the techniques proposed
in [25] by requiring 40% fewer “sorting" constraints per link
(details in appendix). Furthermore, we provide a rigorous
proof of correctness, which was missing in [25].

4.3 Price Computation
The price computer maintains temporal link prices {Pe,t}.

A price is stored for every link, and for every timestep in the
current time window (e.g., a day). We write W for the num-
ber of timesteps in a time window. Typically, most request
deadlines fall within the time window. To provide full flex-
ibility for requests with deadlines beyond the current time
window, we simply carry over the same prices to the follow-
ing time windows. This approach works well when W is
chosen in accordance with the periodic pattern of demand.

Prices are periodically updated at the start of every time
window using recent traffic data. The price computer con-
siders a previous reference window. It takes as input all re-
quests that arrived during a certain previous period of time
(say T , of length at leastW) that contains the reference win-
dow. It solves an offline version of the scheduling problem
to calculate the optimal prices, in hindsight, for time period
T . These prices, restricted to the reference window, are then
used as the updated link prices.

We allow T to be larger than the reference window be-
cause prices can be distorted at the beginning and end of pe-
riod T (since earlier requests are not included, and requests
are not scheduled beyond T). Allowing T to extend beyond
the reference window reduces the impact of this distortion.
Reference window selection. There are multiple options for
the reference window. One natural choice is the preceding
window. If the demand follows a clear diurnal pattern and
windows are shorter than 24 hours, one might instead choose
the corresponding window from the day before. These sim-
ple choices performed well in our simulations (§6).
Value estimation. As with schedule adjustment, the price
computer uses the marginal price-per-byte (πi) chosen from
the price menu as a proxy for the value of a request.
Computing prices. Given the input described above, the
price computer encodes the offline welfare-optimization
problem as an LP. It then solves the dual of that LP, which
can be interpreted as assigning prices to each (link, timestep)
pair. These prices, restricted to the reference window, will
be used as the updated internal link prices.

This method of computing prices is self-correcting. To
see why, suppose the price of a link was set too low. The RA
would tend to admit more requests on that link as they will
be offered lower prices. This causes increased congestion.
When prices are next updated, the optimal offline schedule
will address the congestion by diverting jobs away from that
link, corresponding to an increase in its dual price. In this
way, prices tend to rise for highly-demanded regions of the
network at peak usage times. Similarly, if a link is priced
too high, fewer requests will be admitted on that link. This
reduces congestion and causes the price to fall upon recalcu-
lation. Price convergence is discussed further in §4.4.

4.4 Discussion
Rate requests. So far, we described Pretium under the as-
sumption that users specify byte requests; i.e., transfer a cer-
tain number of bytes by a deadline. Pretium handles rate
requests via the following extension: model a rate request as

a sequence of byte requests, one per timestep. The request
admission interface computes prices separately for each time
step and quotes a total price by taking a sum over the entire
interval. The schedule adjustment module ensures that the
rate will be achieved in each timestep.
Nonlinear utilities. For simplicity, our model assumes that
user utilities are linear in the number of bytes transferred.
In practice, some users may have non-linear utilities, in-
cluding all-or-nothing transfers. But we note that the core
functionality of Pretium does not depend on this linearity as-
sumption. In the request admission phase, users can choose
a pricing option and transfer amount that maximizes their
overall utility, regardless of the nature of their utility func-
tion. In particular, a user with low value for a partial trans-
fer can elect not to choose a partial-transfer option from the
price menu. If desired, users could also indicate that they
are not interested in sending more traffic at the same price
(e.g., if their utility function is concave), which would be re-
spected by the schedule adjustment module. The main way
that Pretium uses the assumption of linear utilities is in the
price computer, which employs linearity during offline price
optimization. However, even if customer utilities are not
truly linear, we conjecture that prices computed under a lin-
earity assumption will be approximately correct in practice
if there are enough requests in the system (i.e., if no single
request consumes a significant fraction of the network ca-
pacity). A precise analysis of Pretium when customers have
non-linear utilities is a direction for future research.
Network faults and unexpected increases in high-pri vol-
ume. As described earlier, Pretium sets aside some capac-
ity to account for ad hoc high priority traffic; the volume
to be set aside is estimated based on historical usage [18].
When unexpected congestion occurs, perhaps because of
more high-pri traffic or network faults, Pretium’s schedule
adjustment module tries to satisfy all guarantees by spread-
ing the load over other paths and future times. In practice, we
find that the likelihood of reneging on guarantees is small.
Best-effort requests. The contrary to the above is that there
may be less-than-anticipated high-pri volume. As noted al-
ready, the schedule adjustor uses the residual capacity at
each timestep to route more volume of accepted requests
which in some cases lets requests finish before deadline.
Though less likely, it is possible that more unused capac-
ity remains. Hence, Pretium can offer a “scavenger” class
wherein requests can choose their price and Pretium sched-
ules them in a best-effort manner.
Hybrid requests. We note that the above changes allow
users to purchase a guarantee x, either for bytes or a rate,
and simultaneously make a scavenger class request. Such
added flexibility allows users (and their applications) further
flexibility to get good service at a low cost.
Convergence and Stability of price choice. In the most
general case of arbitrary request sizes and arrivals, it is hard
to prove strong properties about the online price selection
method (§4.3) but one can do so under some simplifying as-
sumptions. When requests are drawn from the same under-
lying distribution of customer demands and if there are suf-

ficiently many requests per time window, the price selection
will be approximately optimal for the upcoming window as
well. See [6] and Theorem 52 of [19] for a formalization.
Impact of dynamic prices on users. In Pretium, the price

of a request is unknown until it is submitted. We take the po-
sition that the service guarantee (i.e., achieving the deadline)
offsets the drawback of price-uncertainty. Our survey of op-
erators at Microsoft (Table 1) shows that there is demand for
this tradeoff, and many are willing to use such a system.
Fairness. The main objective of Pretium is to achieve high

social welfare, which balances total customer satisfaction
and platform profit. However, Pretium does not explicitly
enforce a fairness criterion. For example, a small number
of customers with high value and large demand (e.g., large
organizations in the public cloud setting) can drive up prices
beyond the reach of users with less willingness to pay. To
mitigate such scenarios, Pretium can be supplemented with
constraints that limit the effect of elephant traffic. For exam-
ple, the network provider could impose a limit on the amount
of bandwidth that can be allocated to any one user.
Interplay between the three modules. We conclude by re-
affirming the interplay between the three parts of Pretium. In
the strictly offline case, when request parameters are known
a-priori, the request admitter would work well alone by
simply choosing dual prices. The modified price selection
method (described above) helps with online request arrivals;
it learns the prices based on estimated usage. Further, the
schedule adjuster allows for high-pri traffic and offers ro-
bustness to unexpected faults or other congestion events.

5 Incentives and User Behavior
As discussed earlier, one motivation for Pretium is that

in a TE-only setup, customers can receive better service
by inflating their values or misrepresenting deadlines. We
will show that by combining prices with TE appropriately,
Pretium discourages such strategic behavior.
Attack model. Each user request consists of the following
parameters: {Si, Ti, Ri, t1i , t

2
i , di}. In order, these are the

source, target, allowed routes, begin time, end time, and de-
mand (in bytes). The customer’s value (per byte), vi, is pri-
vate information not reported to Pretium. We allow the user
to make changes to every aspect of his request, and even
to break it into multiple requests between possibly different
sources and targets. Under this attack model, we prove that:

THEOREM 5.1. Each user request maximizes utility by
reporting only a single request and by truthfully reporting
above parameters (under some technical conditions).

The proof, which appears in the appendix, follows from a
standard monotonicity argument. Because the RA interface
offers the lowest possible price for each request (by checking
all the specified routes and time-periods) any deviation in
parameters from their true values will either (a) lead to a no-
better price for the request or (b) cause the request to receive
a no-better service, or both.

There is one caveat, however, which necessitates the
“technical conditions” in the theorem statement: if more ca-
pacity becomes unexpectedly available (e.g., because of an

unanticipated dip in high-pri traffic), the schedule adjustor
could choose to route some requests earlier than anticipated.
This allows users to strategize. For example, a user could
report a later deadline (possibly obtaining a lower price) and
still hope to receive full service by the true deadline. How-
ever, we verified empirically that the potential gains of ma-
nipulation are low, by sampling users and simulating devi-
ations. In typical executions, fewer than 26% of admitted
requests could benefit (i.e., increase their utility) by alter-
ing their parameters even with omniscient knowledge of the
system state, and the average improvement (conditional on
being able to benefit) was less than 6%. Due to the risk of
missing deadlines, we believe that users are unlikely to mis-
report for minor potential gains. We hence claim that:

CLAIM 1 (INFORMAL). In practice, customers will
maximize their expected utility by truthfully reporting the pa-
rameters of their requests.

Further, we offer some constrained versions of Pretium
(i.e., the technical conditions referred to in Theorem 5.1)
that guarantee strategyproofness. One option is to disable
the schedule adjustment module. However, we believe that
such dynamic adaptation is useful both for robustness and to
get good network utilization. A second option is to enforce
that the transferred data can only be used after the stated
deadline t2i (e.g., if the user specifies a deadline of 5pm, then
at least some portion of the data will be unavailable before
5pm even if the transfer completes ahead of schedule). This
can be implemented at the network or the application lay-
ers by withholding some portions of the transfer until the
stated deadline. Intuitively, this helps because the request
can never finish before its stated deadline. In the appendix
we prove Theorem 5.1 under the assumption that transfers
are withheld until their deadlines. In practice, we feel that
the unconstrained Pretium is sufficiently strategy-proof and
do not recommend implementing these technical conditions.

Finally, we prove that users respond to price menus in a
predictable manner, as described in §4.1.

THEOREM 5.2. Given a quoted price schedule pi(·),
customer i maximizes utility by choosing to route
min{di,max{x : πi(x) ≤ vi}} bytes of data.

The proof (omitted due to lack of space) follows from the
fact that it is in the user’s interest to route as much data as
possible, as long as the marginal price is at most vi.

6 Evaluation
We evaluated Pretium using simulations by replaying traf-

fic traces that were collected from a large production inter-
DC WAN. Our main results are as follows.
(1) Pretium achieves more than 60% of the optimal wel-
fare, which is 3.5X higher than a region-based fixed pric-
ing scheme. Further, Pretium results in more than 2X higher
profit for the provider.
(2) We demonstrate that the prices picked by Pretium adapt
to load variations and that Pretium is robust to variations in
network and request characteristics.
(3) By comparing across a wide set of alternatives, we show
that combining TE with pricing offers clear benefits over
performing either TE or pricing individually.

6.1 Methodology
Datasets. We collected a month-long traffic trace from a
production inter-DC WAN. The network has 106 nodes and
226 edges; each node is a datacenter or a site. The col-
lected traffic trace is sampled NetFlow data and it was diffi-
cult to group the various network flows into appropriate user
requests. Hence, we convert the network data into a time-
series of traffic matrices between datacenters. Based on op-
erator survey about typical request parameters (size, average
request duration, deadline, etc.), we generated requests that
closely mimic the observed traffic matrix time-series, while
using different distributions for individual values and dead-
lines (e.g., normal). We note that we do not explicitly model
high-pri requests in our simulations. We assume that the
bandwidth required for such requests is known a priori (e.g.,
from historical usage, as in [18, 22]), and is appropriately
reserved on all links of the network. The link capacity avail-
able for Pretium is reduced by this reserved amount.
Link costs. Around 15% of the WAN edges are priced
based on 95th percentile usage, calculated over a period of
24 hours. Other links have fixed installation costs which are
not included in the social welfare formulation (§3.1).
Load factor. To examine the performance of Pretium under
different levels of network load, we scale the traffic matrix
with a load factor; higher or lower values indicate propor-
tionally more or less load.
Solver. We built our modules as linear programs and execute
them using the Gurobi solver [1].
Metrics. We evaluate a few different metrics. First, we
use Equation 1 to compute the social welfare from carry-
ing traffic i.e., total value minus costs. Second, we examine
provider profits. Finally, we report related metrics such as
network utilization, and fraction of requests that finish.
Baselines. We compare Pretium with various baselines.
(1) Offline optimal (OPT). We refer to OPT as the best
tractable offline solution we could come up with. Specifi-
cally, OPT provides an upper bound on the welfare of any
TE+pricing scheme that approximates 95th percentile costs
using the scheme described in §4.2. It assumes knowledge of
all future requests and their real values, and solves a linear
program which aims to maximize the total welfare (Equa-
tion 1). We use the term OPT for simplicity. The true opti-
mal welfare might be higher; however, we cannot compute
it precisely due to non-convex 95th percentile costs (§4.2).
(2) Offline scheduling without pricing (NoPrices). This
mimics state-of-the-art TE schemes that do not use prices.
Recall that without prices users can strategize in several
ways (change deadline, claim higher value or higher demand
etc.). Rather than evaluating all strategic options, we con-
sider the following simplification. As such, a scheduler can-
not credibly learn the customer values, we offer it full in-
formation about requests except for the value. NoPrices
solves a single offline LP to maximize the sum of total bytes
transferred by the network (assume value=1 for every re-
quest) minus the cost incurred. Practical online versions of
this scheme (such as Tempus [22]) would obviously perform
worse and hence we do not consider them in our evaluation.

-0.5

 0

 0.5

 1

 0 1 2 3 4 5

W
e
lf
a
re

 (
re

l.
 t

o
 O

P
T
)

Load factor

Pretium
VCGLike

RegionOracle
PeakOracle

NoPrices

Figure 6: Welfare relative to OPT at different load factors.

(3) Region-based pricing oracle (RegionOracle). This
scheme closely resembles the prices used in practice (Ta-
ble 2). The network is divided into a few regions (corre-
sponding to U.S., Europe, Asia etc.). Requests within a re-
gion pay one price per byte and requests between regions pay
a higher price. We try all possible values of these two price
numbers, and choose the ones that offer the highest welfare
in hindsight. These prices are used to admit requests, and ad-
mitted requests are scheduled so as to transfer the maximum
amount of bytes before the respective per-request deadlines
while accounting for the 95th percentile network costs.
(4) Time-of-day based pricing oracle (PeakOracle). In this
scheme, we divide the day into two periods: (a) peak period,
and (b) off-peak period. These periods are statically cho-
sen based on the traffic traces – the peak period is chosen
as the time interval when the network utilization is consis-
tently over the daily average, and the remaining time is set as
off-peak. Requests are charged a lower price during the off-
peak period, and a higher price during the peak period. As
in the case of RegionOracle, we set the prices optimally by
searching the space of prices and selecting those that maxi-
mize welfare, in hindsight.
(5) VCGLike spot pricing scheme (VCGLike). This scheme
models a spot market that responds to demand. Along with
their requests, customers submit bids (bi) which are assumed
to be equal to the value of the requests (vi). At each timestep,
all byte requests are converted into rate requests by calcu-
lating the bandwidth ri required to route any remaining de-
mand by the deadline. Then, the provider routes requests, up
to their allotted bandwidth, to maximize the declared welfare
(
∑
i biri). Finally, each customer is charged their VCG pay-

ment. This process is repeated every timestep. Even though
VCG payments are used, this scheme is not truthful as byte
requests are served over multiple timesteps. Further, it does
not account for the costs incurred by the provider.

6.2 Benefits of Pretium
Figure 6 shows the welfare achieved by the above base-

lines and Pretium, relative to the offline optimal (OPT). The
request values are drawn from a normal distribution with
standard deviation smaller than the mean. We find that with-
out prices (NoPrices), the welfare can end up being nega-
tive. This is because without prices any request can enter the
system and there is no incentive to spread the load across
lightly-loaded paths or time-periods. Hence, the network
costs become high; much higher than the total value from
bytes carried. While RegionOracle achieves 1-17% of the
optimal welfare, PeakOracle achieves 18-30% of it. This

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0 20 40 60 80 100

U
ti

liz
at

io
n

P
ri

ce
 (

re
l.

to
 m

ax
im

u
m

)

Timesteps

Prices Utilization

(a) Temporal variation of prices and utilization
on a single network link.

 0
 0.25

 0.5
 0.75

 1
 1.25

 1.5

100 150 200 250 300 350

T
o
ta

l
v
a
lu

e
(r

e
l.
 t

o
 O

P
T
)

Value per byte

Pretium
VCGLike

RegionOracle
PeakOracle

(b) Total value achieved for different val-
ues per byte.

 0

 100

 200

 300

 400

 0 50 100 150 200 250 300 350

P
ri

ce
 p

e
r

b
y
te

Value per byte

Pretium
VCGLike

RegionOracle
PeakOracle

(c) Price charged vs. value of request.

Figure 7: Dynamic prices help increase welfare achieved by Pretium.

shows that pricing can increase the overall usefulness of the
system. We note that RegionOracle and PeakOracle are
oracular schemes rather than practical ones, as they use the
true values of all requests to determine prices.

While the VCGLike baseline uses the users’ bids (equal
to their values) to schedule requests, it does not account
for provider costs and results in negative welfare at lower
load factors. Pretium outperforms all the other baselines and
achieves more than 60% of the optimal welfare. The benefits
of Pretium stem from using dynamic prices based on demand
and network utilization. This is shown in Figure 7a where
Pretium charges higher prices (black solid line) during peri-
ods of higher utilization (brown dotted line) on a particular
link in the network, for a load factor of 2. Pretium prevents
lower valued requests from occupying bandwidth that can be
better used to serve requests with higher value.

Further, to illustrate the benefits of Pretium, Figure 7b
shows a histogram of the total value achieved (y-axis) by
different schemes relative to OPT, binned by the value per
byte of the requests (x-axis). Correspondingly, Figure 7c
shows the value per byte (x-axis) of each request and the
price (y-axis) at which it is admitted into the network.
RegionOracle and PeakOracle do not perform well as
they set high prices to accept higher valued requests, and
do not provide service to requests with low value (value
from requests in lower buckets is 0). Pretium overcomes this
problem with a richer price structure, resulting in requests
with lower value being admitted at lower prices, and charg-
ing higher prices to requests with higher value. VCGLike
retrieves more value from requests of lower value per byte
but performs poorly in terms of welfare as it myopically al-
locates requests per timestep and ignores the costs incurred.
Profits. Figure 8 shows the profits of Pretium, PeakOracle
and VCGLike for the provider, relative to RegionOracle –
Pretium achieves more than 2X higher profits. This gap is
higher at lower load factors, as RegionOracle sets a high
price per byte (to offset the costs on edges) and only a few
requests are admitted. As a result, a large portion of the
network is under-utilized and the provider’s revenue is low.
Request completion. Pretium achieves higher request com-
pletion compared to the baselines (Figure 9) because (a)
unlike VCGLike, it plans into the future and (b) unlike
NoPrices, PeakOracle and RegionOracle, it schedules
requests with lax deadlines and smaller values during peri-
ods of low network load. We also note that Pretium provides
completion guarantees to requests when admitted but none

Module Run time (sec)
Median 95th%’ile

RA (for each request) 0.59 0.62
SAM (for every 5 minute timestep) 0.99 1.08
PC (for every 24 hour time window) 3.17 3.3

Table 4: Runtimes of different modules in Pretium.
of the other schemes provide such guarantees.
Network utilization. Pretium performs schedule adjust-
ment every timestep to minimize the incurred costs (§4).
This, in turn, reduces the spikes in link utilization. Fig-
ure 10 shows the CDF of the 90th percentile link utiliza-
tion for the different schemes. Pretium reduces the median
link’s 90th percentile utilization by nearly 30% compared to
RegionOracle. It further reduces the maximum utilization
on about 16% links (not shown) by 25%, representing sig-
nificant savings in WAN bandwidth.
Benefits of different modules in Pretium. The separation
of price-adaption and traffic engineering (via schedule ad-
justment) in Pretium, along with the flexibility offered to
requests (§4) all contribute towards its gains. Figure 11
shows the welfare (relative to OPT) of (a) Pretium without
price menus (Pretium-NoMenu), in which all requests either
get their entire demand allocated or none, and (b) Pretium
without schedule adjustment (Pretium-NoSAM), where the
schedule adjustment module in Pretium is skipped.

We see that the flexibility Pretium offers with a menu
of prices allows it to achieve nearly 1.3X-2X higher wel-
fare (Pretium vs. Pretium-NoMenu in figure). Further,
Pretium-NoSAM performs more than 3X times worse than
Pretium – a large portion of this difference is because of
reoptimizing the schedule at every timestep, accounting for
changes in network traffic and taking network costs into ac-
count significantly improves performance.
Computational overhead. Table 4 shows the execution
time for each module in Pretium for the above setup. The re-
quest admission module (RA), which is on the critical path of
every request, and the schedule augmentation module (SAM),
which runs every timestep, are fast and take around a second.
The price computer takes around 3 seconds but it runs once
every 24 hours, and incurs a small overhead to the provider.

6.3 Sensitivity analysis
In this section, we explore the sensitivity of Pretium to

variations in link costs, and request value distributions.
Link costs. We varied the mean link cost of the network
links by over 2X (at a load factor of 1). The welfare (relative

 0.1

 1

 10

 100

 0 1 2 3 4 5

P
ro

fi
ts

(r
e
l.
 t

o
 R

e
g

io
n

O
ra

cl
e
)

Load factor

Pretium
VCGLike

PeakOracle

Figure 8: Profits of different
schemes.

 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5

F
ra

ct
io

n

Load factor

Pretium
VCGLike

RegionOracle
PeakOracle

NoPrices

Figure 9: Of the requests
admitted, fraction of requests
completed.

 0

 0.25

 0.5

 0.75

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 (

o
v
e
r

lin
k
s)

90th percentile utilization

Pretium
VCGLike

RegionOracle
PeakOracle

NoPrices

Figure 10: Network utiliza-
tion.

 0

 0.25

 0.5

 0.75

 1

 0 1 2 3 4 5

W
e
lf

a
re

 (
re

l.
 t

o
 O

P
T
)

Load factor

Pretium
Pretium-NoSAM

Pretium-NoMenu

Figure 11: Benefits of differ-
ent modules in Pretium.

 0

 0.25

 0.5

 0.75

 1

 0.6 0.8 1 1.2 1.4

W
e
lf
a
re

 (
re

l.
 t

o
 O

P
T
)

Normalized mean cost

Pretium
RegionOracle

Figure 12: Varying mean link cost, at load factor 1.

 0

 0.25

 0.5

 0.75

 1

σ>µ σ=µ σ<µW
e
lf

a
re

 (
re

l.
 t

o
 O

P
T
)

Pretium

RegionOracle

(a) Pareto distribution.

 0

 0.25

 0.5

 0.75

 1

σ>µ σ=µ σ<µW
e
lf

a
re

 (
re

l.
 t

o
 O

P
T
)

Pretium

RegionOracle

(b) Normal distribution.

Figure 13: Welfare achieved for value distributions with different
mean (µ) to standard deviation (σ) ratios, at load factor 1.

to OPT) obtained by Pretium and RegionOracle is shown in
Figure 12. While the welfare of both schemes reduces with
increasing cost, RegionOracle has a significantly higher re-
duction because it sets higher prices to compensate for the
increasing cost. As a result, fewer requests are admitted.
Pretium is more robust as it increases the prices only on the
higher cost links and retains lower prices on low cost links.
Request value distribution. The benefits of Pretium depend
on the distribution of request values. Figure 13 shows wel-
fare of Pretium and RegionOracle (relative to OPT) where
request values are drawn from (a) pareto and (b) normal dis-
tributions with different mean (µ) to standard deviation (σ)
ratios. Figure 14 shows the profits achieved by Pretium rel-
ative to RegionOracle for the same distributions. While
both the metrics vary with the distributions, we see that
Pretium consistently outperforms RegionOracle.

7 Related Work
Pricing for communication networks has been studied for

over three decades; see [9] for an extensive survey. Initial
applications were motivated by the ATM standard, followed
by proposals to incorporate pricing for Internet congestion
control (e.g., [23, 26, 30]) and inter-ISP transit networks [27,
31]. More recently, there has been work on increasing profits
of ISPs through flexible pricing structures, leading to better
utilization and user satisfaction. TUBE [16] deals with pric-
ing mobile data. TUBE uses time-dependent dynamic pric-
ing (TDP) instead of traditional per-usage pricing, to offload

 1

 2

 3

 4

 5

 6

σ>µ σ=µ σ<µ

P
ro

fi
ts

(r

e
l.
 t

o
 R

e
g

io
n

O
ra

cl
e
)

Pretium

(a) Pareto distribution.

 0

 5

 10

 15

 20

 25

σ>µ σ=µ σ<µ

P
ro

fi
ts

(r

e
l.
 t

o
 R

e
g

io
n

O
ra

cl
e
)

Pretium

(b) Normal distribution.

Figure 14: Profits of Pretium for value distributions with different
mean (µ) to standard deviation (σ) ratios, at load factor 1.

delay-tolerant users in peak traffic periods. Similar ideas can
be found in [35]. Our work also incorporates time-varying
prices, but our setting and interface are different in that re-
quests specify deadlines and demands, and the provider uses
traffic engineering to accommodate multiple requests. [32]
proposes destination-based tiered pricing for transit ISPs –
based on both the traffic demand, as well the cost of carry-
ing it; they use three or four tiers. We also offer “tiers" for
demand; however, the actual price also depends on current
congestion levels and the delay tolerance of users. To the
best of our knowledge, we are the first to propose and ana-
lyze a pricing framework for WAN traffic.

The Pretium pricing model and update method is moti-
vated by the theory literature on dynamic pricing and ma-
chine learning. The existence of optimal "market" prices is
a classical result in economics [3], and given sufficient data
it is possible to learn those prices [6]. Hsu et al. [19] point
out that such prices can be used to guide online allocation.
An alternative line of work [5, 8, 12] employs online learn-
ing methods to find near-optimal prices, rather than directly
computing optimal prices for historical data. Adapting such
techniques to WAN allocation is a direction for future work.

Incentive issues in routing have also been explored on the
supply side, where individual routing nodes may act strate-
gically [13, 15]. We instead consider consumer incentives
and assume a single provider coordinates the entire network.

Pretium uses traffic engineering (TE) to provide promises
to requests, and to augment its promise, taking link costs into
account. Traffic Engineering has been a widely studied prob-
lem in networking. Notable works include adaptive conges-
tion avoidance [21], oblivious routing [2, 14], and finding
suitable routing parameters for given protocols (e.g., OSPF
[14]). Recent papers consider the objective of imposing fair-
ness in a shared network [10, 11].

Traffic engineering for datacenter WANs has been drawn
recent attention from both industry and academia [18, 20,
24]. SWAN [18] and B4 [20] aim to improve the utiliza-
tion of inter-DC WAN. However, the underlying resource

management policies of these systems do not compute long-
term allocation schedules and do not offer time-guarantees.
From the TE perspective, the most relevant work to ours is
Tempus [22] which introduces a TE framework which in-
corporates request demands and deadlines, and allows for
guaranteed transfers. However, Tempus does not incorpo-
rate (non-linear) link costs into the scheduling framework,
and does not consider pricing. To the best of our knowl-
edge, our method of modeling link percentile costs through
the sum-of-k proxy (§4.2) is novel.

8 Conclusion
In this paper, we present Pretium, a framework that com-

bines dynamic pricing with traffic engineering for inter-
datacenter WANs. While Pretium maintains an internal time-
varying price for each link in the network, it provides a sim-
ple interface to users – each user specifies her request de-
mand and deadline, and can choose a promise from a price
quote, based on her preferences. A subsequent schedule ad-
justment module runs periodically to reoptimize flow alloca-
tions to manage available capacity and usage costs. Pretium
uses the information of historical demands and prices ac-
cepted by users to dynamically estimate future demands and
update prices. This allows Pretium to quote higher prices
during periods of high demand, preferentially serving re-
quests with higher value and shifting traffic with lower value
to low utilization periods. Experiments with production
WAN traces show that Pretium achieves up to 80% of the
welfare of an offline oracular scheme, significantly outper-
forming various baselines, even when the latter have oracle
information on request values and future demands.

Appendix
Proof of Theorem 4.2. Inspired by the bubble sort algo-
rithm, we construct a set of O(kT) constraints and show
that the construction results in an upper bound Se on the
sum of the k largest utilization levels in each link. Since
we are maximizing

∑
i

∑
t:t1i≤t≤t2i

∑
r:r∈Ri

Xirt · πi−
∑
e CeSe,

we are minimizing each Se and the upper bound becomes
tight as required. We will omit subscript e from our no-
tation.We proceed in k iterations: in the first, we “bub-
ble" the largest element, then the second largest, etc.. Our
constraints mimic the bubbling operations – for each two
numbers x, y to be compared, we have a linear compara-
tor, which is manifested through the following inequalities:
x + y = m + M,m ≤ x,m ≤ y. Note this implies M ≥
max{x, y} and m ≤ min{x, y}. We note that [25] uses five
sorting constraints in their solution; hence, our construction
results in 40% less constraints per link, which is substantial
especially for large networks. Let f ij denote the minimum of
the two outputs of the j-th comparator at the i-th iteration,
and let F ij denote the maximum of the two values. We use
the convention f0j = fj for all j ∈ {1, 2, . . . T}. Accord-
ingly, our first comparator at the first iteration is given by
f01 + f02 = f11 + F 1

1 , f11 ≤ f01 , f11 ≤ f02 . As in bubble sort,
the maximum output is pushed to the next comparator, i.e.,

the rest of the constraints for this iteration have following
form: f0j +F 1

j−2 = f1j−1 +F 1
j−1, f1j−1 ≤ f0j , f1j−1 ≤ F 1

j−2,
for every j ∈ {3, 4, . . . T}. Using all the above constraints,
it can be easily shown that

F 1
T−1 ≥ max{f01 , f02 . . . f0T } (3)

f01 + f02 + · · ·+ f0T = f11 + f12 + . . . f1T−1 + F 1
T−1 (4)

Proceeding iteratively, we use (T − i) comparators in the
i-th iteration (all outputs of iteration i excluding F iT−i, are
inputs for iteration i+ 1). Using (4) inductively, we have the
following equality after k iterations

f01 +· · ·+f0T = fk1 +. . . fkT−k+F kT−k+F k−1T−k+1+· · ·+F 1
T−1.

(5)
Finally, we add the constraint S ≥ F kT−k + F k−1T−k+1 +

· · · + F 1
T−1. Note that we have a total of O(kT) equali-

ties/inequalities.
In order to formally prove that S is not smaller than sum

of k largest elements we need the following lemma:

LEMMA 1. For any i and any set of indices Yi (
{1, 2 . . . T − i} we can find a subset of indices Yi+1 ⊆
{1, 2 . . . T − i− 1} such that |Yi| = |Yi+1| and

∑
j∈Yi

f ij ≥∑
j′∈Yi+1

f i+1
j′ .

The lemma’s proof follows by a charging argument and is
omitted here due to lack of space.

We are now ready to prove the theorem. We let Y0 be
the set of indices corresponding to the T − k smallest el-
ements among f01 , f

0
2 , . . . f

0
T . And then consequently con-

struct Y1, Y2 . . . Yk. We obtain that Yk = {1, 2, . . . T − k}.
It means that fk1 + fk2 + . . . fkT−k is not larger than the sum
of T − k-smallest numbers from f01 , f

0
2 , . . . f

0
T . This to-

gether with (5) guarantees that F kT−k + F k−1T−k+1 + · · · +

F 1
T−1 is greater or equal to sum of k largest elements from
f01 , f

0
2 , . . . f

0
T .

Proof of Theorem 5.1. We will prove that each user re-
quest maximizes utility by reporting its request truthfully, if
the data being transferred is made unavailable during the pe-
riod [t1i , t

2
i] (this unavailability is the technical assumption

alluded to in the statement of Theorem 5.1). It is never ben-
eficial to misreport Si or Ti, nor to report [t̂1i , t̂

2
i] 6⊆ [t1i , t

2
i],

since the user has no value for data routed incorrectly, early,
or late. So assume [t̂1i , t̂

2
i] ⊆ [t1i , t

2
i] and let p̂i(·) be the cor-

responding price menu. We claim that p̂i(x) ≥ pi(x) for
all x: this is because pi(x) has only a larger pool of (route,
time) pairs over which to minimize price. This means that
reporting (t̂1i , t̂

2
i) and requesting x is no better than reporting

(t1i , t
2
i) and requesting x.

Finally, we argue that it is utility-optimal to report only a
single request. Breaking a request from Si to Ti into multi-
hop requests (e.g., Si toA, thenA to Ti) only restricts the set
of routes that can be selected, and hence only increases price
(as above). Next consider making multiple requests, each
from Si to Ti. Since link prices can only increase between
requests made in the same timestep, the total payment over
all requests can be only greater than the payment of making
only a single (truthful) request of the same total size.

Acknowledgments
We thank Michael Schapira, Mohit Singh, our shepherd

Bruce Maggs and the Sigcomm reviewers for their useful
feedback.

9 References
[1] Gurobi Optimization. http://www.gurobi.com/.
[2] D. Applegate and E. Cohen. Making Intra-Domain

Routing Robust to Changing and Uncertain Traffic
Demands. In ACM SIGCOMM, 2003.

[3] K. J. Arrow and G. Debreu. Existence of an
Equilibrium for a Competitive Economy.
Econometrica: Journal of the Econometric Society,
pages 265 – 290, 1954.

[4] B. Awerbuch, Y. Azar, and A. Meyerson. Reducing
Truth-telling Online Mechanisms to Online
Optimization. In STOC, 2003.

[5] M. Babaioff, S. Dughmi, R. Kleinberg, and
A. Slivkins. Dynamic Pricing with Limited Supply. In
EC, 2012.

[6] M. F. Balcan, A. Blum, J. D. Hartline, and Y. Mansour.
Reducing Mechanism Design to Algorithm Design via
Machine Learning. J. of Computer and System
Sciences, 74(8):1245 – 1270, 2008.

[7] P. Bangera and S. Gorinsky. Economics of Traffic
Attraction by Transit Providers. In Networking
Conference, 2014 IFIP, pages 1–9, June 2014.

[8] A. Blum, V. Kumar, A. Rudra, and F. Wu. Online
Learning in Online Auctions. In SODA, 2003.

[9] C. Courcoubetis and R. Weber. Pricing
Communication Networks: Economics, Technology
and Modelling. Wiley Online Library, 2003.

[10] E. Danna, A. Hassidim, H. Kaplan, A. Kumar,
Y. Mansour, D. Raz, and M. Segalov. Upward Max
Min Fairness. In INFOCOM, 2012.

[11] E. Danna, S. Mandal, and A. Singh. A Practical
Algorithm for Balancing the Max-Min Fairness and
Throughput Objectives in Traffic Engineering. In
INFOCOM, 2012.

[12] N. R. Devanur and T. P. Hayes. The Adwords
Problem: Online Keyword Matching with Budgeted
Bidders Under Random Permutations. In EC, 2009.

[13] J. Feigenbaum, C. Papadimitriou, R. Sami, and
S. Shenker. A BGP-based Mechanism for Lowest-cost
Routing. Distributed Computing, 18(1):61–72, 2005.

[14] B. Fortz and M. Thorup. Internet Traffic Engineering
by Optimizing OSPF Weights in a Changing World.
In INFOCOM, 2000.

[15] P. B. Godfrey, M. Schapira, A. Zohar, and S. Shenker.
Incentive Compatibility and Dynamics of Congestion
Control. In ACM SIGMETRICS, 2010.

[16] S. Ha, S. Sen, C. Joe-Wong, Y. Im, and M. Chiang.
TUBE: Time-dependent Pricing for Mobile Data. In
ACM SIGCOMM, 2012.

[17] M. T. Hajiaghayi, R. Kleinberg, M. Mahdian, and
D. C. Parkes. Online Auctions with Re-usable Goods.

In EC, 2005.
[18] C. Y. Hong et al. Achieving High Utilization with

Software-Driven WAN. In ACM SIGCOMM, 2013.
[19] J. Hsu, J. Morgenstern, R. M. Rogers, A. Roth, and

R. Vohra. Do prices coordinate markets? CoRR,
abs/1511.00925, 2015.

[20] S. Jain et al. B4: Experience with a
Globally-Deployed Software Defined WAN. In ACM
SIGCOMM, 2013.

[21] S. Kandula, D. Katabi, B. Davie, and A. Charny.
Walking the Tightrope: Responsive Yet Stable Traffic
Engineering. In ACM SIGCOMM, 2005.

[22] S. Kandula, I. Menache, R. Schwartz, and S. R.
Babbula. Calendaring for Wide Area Networks. In
ACM SIGCOMM, 2014.

[23] F. Kelly, A. Maulloo, and D. Tan. Rate Control for
Communication Networks: Shadow Prices,
Proportional Fairness and Stability. In Journal of the
Operational Research Society, 1998.

[24] N. Laoutaris, M. Sirivianos, X. Yang, and
P. Rodriguez. Inter-datacenter Bulk Transfers with
Netstitcher. In ACM SIGCOMM, 2011.

[25] H. H. Liu et al. Traffic Engineering with Forward
Fault Correction. In ACM SIGCOMM, 2014.

[26] S. Low and D. Lapsley. Optimization Flow Control, I:
Basic Algorithm and Convergence. In IEEE/ACM
Transactions on Networking, Dec 1999.

[27] R. T. B. Ma, D. M. Chiu, J. C. S. Lui, V. Misra, and
D. Rubenstein. Internet Economics: The Use of
Shapley Value for ISP Settlement. In IEEE/ACM
Transactions on Networking, June 2010.

[28] R. G. Michael and S. J. David. Computers and
Intractability: A Guide to the Theory of
NP-completeness. W.H Freeman, 1979.

[29] C. Raiciu et al. How Hard Can It Be? Designing and
Implementing a Deployable Multipath TCP. In NSDI,
2012.

[30] S. Shenker, D. Clark, D. Estrin, and S. Herzog. Pricing
in Computer Networks: Reshaping the Research
Agenda. ACM SIGCOMM CCR, Apr. 1996.

[31] V. Valancius, N. Feamster, R. Johari, and V. Vazirani.
MINT: A Market for INternet Transit. In ACM
CONEXT, 2008.

[32] V. Valancius, C. Lumezanu, N. Feamster, R. Johari,
and V. V. Vazirani. How Many Tiers?: Pricing in the
Internet Transit Market. In ACM SIGCOMM, 2011.

[33] H. Varian. Microeconomic Analysis. Norton
International edition. W.W. Norton, 1992.

[34] H. Zhang et al. Guaranteeing Deadlines for
Inter-datacenter Transfers. In Eurosys, 2015.

[35] L. Zhang, W. Wu, and D. Wang. The Effectiveness of
Time Dependent Pricing in Controlling Usage
Incentives in Wireless Data Network. In ACM
SIGCOMM, 2013.

http://www.gurobi.com/

	Introduction
	Background and Motivation
	The WAN Ecosystem
	Formal model
	Example

	Design of Pretium
	Request Admission Interface
	Schedule Adjustment
	Price Computation
	Discussion

	Incentives and User Behavior
	Evaluation
	Methodology
	Benefits of Pretium
	Sensitivity analysis

	Related Work
	Conclusion
	References

