
Automatic Abstraction for Complex Partial Designs
Rayna Dimitrova, Saarland University, Germany

Partial Design Verification
property Φ

YES
the implementation
can be completed

env

synthesis
derive automatically

correct implementation

bug in the implemented
components → revise
existing implementation

NO

partial design
-distributed system
-communicating components
-interacts with environment

env

– already implemented
– no implementation yet

?∃ implementations
for such that

the system satisfies Φ

Motivation & Challenges
Goals of partial-design verification:

• apply verification in early design stages

• reduce development time and costs

Challenges in partial-design verification:

• deal with infinite (or very large) state space

• account for components having incomplete
information about the global system state
(e.g., private variables of other processes)

Partial Design: Bakery Mutual Exclusion

Process A:

l0: ticketA := 0;
l1: while(true){
l2: ticketA := ticketB + 1;
l3: await(ticketB = 0 ∨

ticketA < ticketB);
l4: critical;
l5: ticketA := 0;

}

Process B:

m0: ticketB := 0;
m1: while(true){
m2: | ticketB := 0;

| ticketB := ticketA;
| ticketB := ticketA + 1;

m3: await(?);
m4: critical;
m5: ticketB := 0;

}

Property:

it is never the case that pcA = l4 ∧ pcB = m4 and
}

safety property

(whenever pcA = l3, then eventually pcA = l4 and
whenever pcB = m3, then eventually pcB = m4)

}

strengthen to
bounded liveness

Game Model
infinite turn-based game between

a component and its environment
env

tries to violate
the property Φ

tries to ensure
the property Φ

Strategies in the game for the:

• component → implementation

• environment → counterexample

Informedness of the component

• the component player has incomplete
information about the global state

• strategy for the component must not depend
on information that is not available to it

Results

infinite-state concrete game
with incomplete information

+
abstraction predicates

finite-state
abstract game with
perfect information

abstract countexample
strategy for environment

abstract

solve game

analyze
counterexample

refinement
predicates

YESNO

YES
NO

counterexample-guided
abstraction refinement

for

games with
incomplete information

Abstraction
predicate abstraction

w.r.t. finite set of predicates
knowledge-based

subset construction

pcA=l4 pcA 6=l4

...
ticketA=0 ticketA=1 ticketA=2 ...

predicate abstraction + knowledge-based subset constriction
the predicate pcA=l4 is not observable

pcA=l4

ticketA=0

pcA 6=l4

ticketA=0

pcA=l4

ticketA 6=0

pcA 6=l4

ticketA 6=0

reachable

abstract

state

Sound abstraction for games under incomplete information

• overapproximate the power of the environment player

• underapproximate the power of the component player

• the abstract component has less information than the concrete

⇒ abstract implementation → concrete implementation

Refinement
Sound and complete analysis of abstract counterexamples

• safety properties: abstract strategy for the environment → strategy tree

reduction to satisfiability of a strategy-tree formula

⇒ determine correctly whether an abstract counterexample is concretizable

Refinement procedure for games under incomplete informatio n

interpolant computation based on constraint solving

• impose constraints on the interpolants to obtain suitable predicates

⇒ appropriately refine the abstract informedness when this is necessary

Ongoing & Future Work
Prototype implementation

• optimize interpolation computation

• extend to other logical theories

Application to timed games

• find a suitable symbolic model

Distributed partial designs

• make use of component’s locality

[1] Rayna Dimitrova and Bernd Finkbeiner. Abstraction Refinement for Games with Incomplete Information. In Proc. FSTTCS’08


